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TYMOCZKO CODES FOR STANDARD YOUNG TABLEAUX

FELEMU OLASUPO AND PRAISE ADEYEMO

ABSTRACT. Given a partition λ of integer n > 0, there exists a diagram (called Young diagram
Yλ) associated with λ. The filling of such diagram from [n] such that the entries increase from
top to bottom and from left to right is called the standard Young tableaux (SYT) of shape λ. In
this paper, we associate an invariant with each standard Young tableau of shape λ, and provide
some combinatorial interpretations of these invariants.

1. INTRODUCTION

Let V be an n−dimensional vector space over C, by a flag, we mean a sequence of subspaces
(Vi )i=1,··· ,n ordered by inclusions V• = V1 ⊂ V2 ⊂ ·· · ⊂ Vn = V = Cn , such that di mCVi = i . The
collection of all such flags is called full flag variety denoted by Fℓn(C) = {V• : V1 ⊆ V2 ⊆ ·· · ⊆
Vn =Cn}. The set of flags stabilized by a nilpotent operator X (of Jordan typeλ) is known as the
Springer variety (Sprλ). T.A. Springer noted that the cohomology ring of this variety carries
a symmetric group action in 1976 and provided a thorough geometric formulation of this
action. After a decade, Garsia and Procesi in [3], presented the cohomology ring as a graded
quotient of a polynomial ring, which improved the clarity and accessibility of Springer’s work.
In [9], Tymoczko use fillings of Young tableaux to characterize these affine pieces of Springer
varieties, and demonstrate that the dimension of the affine piece can be calculated using
combinatorial techniques that extend the concept of Eulerian numbers. The study of Springer
varieties by Garsia and Procesi was expanded to include a two-parameter generalization of
Springer varieties known as Hessenberg varieties in [5].
In her study of the connection between Springer fibers and Schubert varieties, Tymoczko in
[8] introduces certain invariants of standard tableaux (SY T ) . These are used to construct
indexing permutation wT , called the Schubert point, of Schubert varieties whose union has
Betti numbers as a certain Springer fiber in [6].
Using the algorithm through which a permutation was attached to each standard tableau of
shape λ, we introduce an invariant, called Tymoczko codes, denoted by (codT). We studied
the combinatorial properties of these codes and provided combinatorial interpretations of
them. Finally, using the weight associated with the codes, we realize the Bruhat graph of the
Schubert variety associated with the set of all standard tableaux of the partitions λ of n.

In section two, we review some basic properties of the symmetric group Sn , partitions, and
composition of integers, as relevant to our discussion. In section three, we present and study
the combinatorial properties of the Tymoczko code. In section four, we characterize the re-
duced words associated with each Tymozcko code.
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Group of permutations .
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2. SYMMETRIC GROUP AND INTEGER PARTITIONS

The symmetric group Sn is generated by the set S = {s1, s2, · · · , sn−1} of adjacent transpositions
si , (1 ≤ i ≤ n−1) such that it swaps i and i +1 and fixes other elements of [n], subject to braid
relations. The length of w , denoted by ℓ(w) is the smallest integer k ≥ 0 such that, w can
be written as a product of k elements of S (i.e. w = sc1 sc2 · · · sck ∈ Sn), then, this expression is
called the reduced decomposition of w and we say k is the length of w and we write ℓ(w) = k.
The string of subscripts c1c2 · · ·ck is the word ω of w ,( both are not necessarily unique). We
shall denote the set of all possible reduced word of w ∈ Sn by R(w). For details on this topic,
readers are encouraged to consult [2],[7] and [4].
A lattice word is a string of integers ai > 0, in which every subword contains at least many ai

as ai +1.
A Yamanouchi word is a string of positive integers whose reversal is a lattice word.
For instance, string 22233232 is a lattice word, and 23233222 is a Yamanouchi word. Following
[1], an increasing factorization for ω, partitions ω into blocks, such that the entries starting
from the left increases from left to right within each block.
For instance, the word ω = 345231 is an increasing factorization since it can be factored into
blocks 345|23|1 with each block from the left increases from left to right.
For any w ∈ Sn a reduced factorization for w is an increasing factorization of a reduced word
for w.

2.1. The Bruhat order is a partial order ≤ defined on Sn . For any σ,τ ∈ Sn , we say σ ≤ τ in
Bruhat order if τ can be obtained from σ via a sequence of transpositions. In other words, we
say σ≤ τ if and only if the reduced word of σ is a subword of the reduced word of τ.

2.2. A partition λ of non negative integer n written as λ ⊢ n, is a sequence λ = (λi )k
i=1 of

integers such that λ1 ≥λ2 ≥ ... ≥λk and
∑k

i=1λi = n. Each λi is called part of λ. The number of
parts is called the length ofλdenote by ℓ(λ), and the sum of parts is the weight ofλdenoted by
|λ| = λ1+λ2+λ3+ ...+λk . Similar to partition of integers, is a sequence (ai )k

i=1 of nonnegative

integers such that
∑k

i=1 ai = n is called composition of nonnegative integer n.
For example, let n = 4, the following are all compositions of 4

(4), (3,1), (1,3), (2,2), (2,1,1), (1,2,1), (1,1,2), (1,1,1,1)

We consider (1,3) and (3,1) as different composition but they are the same as partition.

2.3. For any partition λ of an integer n > 0, there corresponds a diagram called Young dia-
gram (Yλ) which gives an interesting and pictorial way of visualizing partitions. It is a col-
lection of cells (boxes) arranged in left justified rows such that the number of cells in i th row
corresponds to the size of a part λi in λ, and is weakly decreasing from top to bottom.
For instance, the Young diagram of λ= (3,2,1) is shown in figure below.

TABLE 1. Young diagram of shape λ= 3,2,1
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We adopt matrix notation in labeling each cell of Yλ,and we write (i , j ) to denote a cell in the
i th row and j th columns of Yλ.
We call the filling of Yλ a row strict tableau (r st ) if the filling is such that the entries strictly
increase from left to right along the row,with no condition on the columns.

TABLE 2. row strict tableau

1 4 6 8 9 10
3 12 13 14 16
2 5 15
7 11

We denote by (r st )λ the set of row strict tableaux of shape λ = (λ1, λ2, · · · , λk ). The size of
(r st )λ denoted by #(r st )λ is given by the multinomial coefficient. That is,

#(r st )λ = n!∏k
i=1λi !

If the filling of Young diagram of shape λ is such that the integers from 1 to n appears exactly
once and that its entries are increasing across each row and column, then such a filling is call
standard Young tableaux.

TABLE 3. standard tableau

1 2 5 6 11 15
3 7 8 12 14
4 9 16

10 13

Remark 2.1. We shall henceforth denote the collection of all standard Young tableaux of shape
λ⊢ n by STλ(n), and by ST (Pλ(n)) the set of all standard Young tableau of all Shapes λ ∈ P (n).

Hook length formula (Frame, Robinson, and Thrall). If λ is a Young diagram with n boxes,
then the number #STλ(n) of standard tableaux with shape λ is given as

#STλ(n) = n!∏
(i , j )∈λhi , j

Where hi , j is the number of cells directly to the right and directly bellow the cell in (i , j )th

position including the cell.
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3. TYMOCZKO CODES AND THEIR COMBINATORIAL PROPERTIES

In what follows, we discuss Tymoczko’s procedure of associating a permutation to each stan-
dard tableaux and then associate a code to this procedure.

Definition 3.1. Let di (1 ≤ i ≤ n), be the number of row(s) above i in T ∈ STλ(n), and wi denote
the increasing product of simple transpositions

wi = si−di si−di+1si−di+2 · · · si−2si−1

where each si = (i , i +1). If di = 0 then wi = e is the identity. Then the Schubert point associ-
ated to T is the permutation wT = wn wn−1wn−2 · · ·w2 [8]

Example 3.2. Let n = 6. Consider a partition λ= (3,2,1) with standard tableaux

1 2 3
4 5
6

d1 = 0, d2 = 0, d3 = 0, d4 = 1, d5 = 1, d6 = 2 with w6 = s4s5, w5 = s4, w4 = s3, w3 = e, w2 = e,
w1 = e, then wT = s4s5s4s3. Arranging the values of the d ′

i s in a natural order of i ′s we obtain
an n−turple and called it Tymoczko code (denoted by codT) for wT . For instance, the Ty-
moczko code in the above example is given as (d1, d2, d3, d4, d5, d6) = (0, 0, 0, 1 , 1, 2) =
cod(T). Let ST (Pλ(n))n>2 be the set of all the standard tableaux associated with shapes λ
where λ are the partitions of n.
Define a map

φ : ST (Pλ(n)) −→Zn

by
T 7→ cod(T).

Which takes the standard tableaux T to the n−tuple (d1, · · · ,dn) of integer vectors, where di

is the number rows strictly above i in T, and denote it by cod(T). We call (d1, · · · ,dn) the Ty-
moczko code associated to T.

Example 3.3. Let n = 6 T ∈ ST(P(6)) such that T is of shape λ= (3,2,1). There are five of such

T ∈ ST (P (6)). Consider T =

1 4 6
2 5
3 then codT = (0,1,2,0,1,0).

We attach a word to codeT denoted by ω(T ) by eliminating the brackets and comas between
the coordinates of codT. In the above example, we have ω(T ) = 012010

Theorem 3.4. Let Ar be the collection of the integer coordinates di in codT such that di = r
and let λ= (λ1, · · · ,λℓ(λ)) be the shape of T. Then

i) Ar is either a singleton set or multiset.
ii) The size of Ar is λ1+r , r ∈ [0, ℓ(λ)−1].

Proof.

i) Since Ar is the collection of all di such that di = r and di is the number of rows strictly
above i in T, then the size of Ar will definitely be one, if it happens that i is the only
entry in the (r +1)th row, otherwise it is a multiset.
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ii) We show the second part of the theorem is true by induction on r starting from r = 0.
For r = 0, we have

A0 = {di | di = 0}

The implication of this is that, all i ′s such that di = 0 appear in the cells of the first row
of T from the top, and the number of cells in this first row is determined by λ1. Hence
#A0 =λ1+0 =λ1.
For r = 1.
Here,

A1 = {di | di = 1}

As it is in the case of r = 0, the number of rows strictly above i is 1. This implies that all
i ′s such that di = 1 are in the second row of T (since T is a standard tableaux) and the
number of entries in the second row of T is determined by λ2

Therefore, #A1 =λ2 =λ1+1.
Now, for an arbitrary value of r = k > 0, we have

Ak = {di : di = k}

The number of rows strictly above i is k and all such i ′s are in the (k +1)th row of T,
where the number of entries in that row is determined by λ1+k .
Hence #Ak =λ1+k =λ1+k .
Finally, we consider the case of r = ℓ(λ)−1 where we have

Aℓ(λ)−1 = {di | di = ℓ(λ)−1}

Entries i that satisfy the condition in Aℓ(λ)−1 appear in the last row (bottom) of T. We
know that the number of such entries are determined by λℓ(λ) and the number of rows
strictly above those entries is determined by ℓ(λ)−1. Then we have
#Aℓ(λ)−1 =λℓ(λ) =λ1+ℓ(λ)−1

□

Example 3.5. Let n = 7 and λ= (3,2,2),
ℓ(λ) = 3. Consider

T =

1 4 7
2 5
3 6

with d1 = 0, d2 = 1, d3 = 2, d4 = 0, d5 = 1, d6 = 2, d7 = 0, then,
A0 = {d1, d4, d7}, #A0 = 3 =λ1, A1 = {d2, d5}, #A1 = 2 =λ2, and A2 = {d3, d6}, #A2 = 2 =λ3

Remark 3.6. So, given a partition λ = (λ1, · · · , λℓ(λ)) of n, the Tymoczko code (codT) associ-
ated with the standard tableau T of shape λ, has λi integer coordinates i −1 where 1 ≤ i ≤ k.
It turns out that the values of the coordinate of codT encodes the partition λ.

Lemma 3.7. Tymoczko code associated to a standard tableau is a lattice word.
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Proof. We recall that a Young diagram (Yλ) of shape λ is a pictorial view of partition λ= λ1 ≥
·· · λk , and we are considering T ∈ ST(Pλ(n)).
Therefore, the number of di = 0, 1, · · · , k −1, are respectively determine by λ1, · · · ,λk .
Since λ1 ≥λ j , 2 ≤ j ≤ k and di = 0, implies that there are λ1 0′s in ω(T), hence there will be at
least many 0′s in any subword of ω(T) as 1′s.
Also, since λ2 ≥ λl , 3 ≤ l ≤ k and di = 1, implies that there are λ2 1′s in ω(T), hence there will
be at least many 1′s in any subword of ω(T) as 2′s.
In general, for any v ≥ 1, λv ≥ ·· · ≥ λk , di = v −1 implies that the number of (v −1) in ω(T) is
λv , and this leads to at least many occurrence of (v −1)′s as v ′s.
Hence ω(T) is a lattice word. □

In what follows, we use the weight associated to each code ST(Pλ(n)) to realize the Bruhat
graph of the Schubert points associated with the set of all standard Young tableaux of all
shapes λ ∈ P (n).

It will be noticed from the graph that for n ≥ 2, the number of T ∈ ST(Pλ(n)) with minimal
weight (0) is one, the number of T ∈ ST(Pλ(n)) with maximal weight is also one. Of important
interest to us at this point, is the number of T ∈ ST(Pλ(n)) with weight one and there are n −1
of such T ∈ ST(Pλ(n)) . These happens to be the generators of codT of other weights. For
instance,consider n = 5, below is a table of all T ∈ ST(Pλ(5)) and the corresponding weight.
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w t (T ) T ∈ ST(Pλ(5))

10

1
2
3
4
5

6

1 2
3
4
5

1 3
2
4
5

1 4
2
3
5

1 5
2
3
4

4

1 2
3 4
5

1 3
2 4
5

1 4
2 5
3

1 2
3 5
4

1 3
2 5
4

3

1 2 3
4
5

1 2 4
3
5

1 2 5
3
4

1 3 4
2
5

1 3 5
2
4

1 4 5
2
3

2

1 2 3
4 5

1 2 4
3 5

1 3 4
2 5

1 3 5
2 4 ;

1 2 5
3 4

1

1 2 3 4
5

1 2 3 5
4

1 2 4 5
3

1 3 4 5
2

0 1 2 3 4 5

TABLE 4. Standard Tableaux of all Partition of 5 and their Corresponding Weight

Proposition 3.8. For any T ∈ ST(Pλ(n)), codT can be uniquely expressed as a linear combina-
tion of codes with weight one.

Proof. Given any T ∈ ST(Pλ(n)), there are n coordinates in codT with the first coordinate al-
ways equal to zero. Therefore, there are n −1 coordinates which are either zero or a, 1 ≤ a ≤
ℓ(λ)−1.
For T with weight one, there are n−1 of them with codT = ei, 2 ≤ i ≤ n, where ei is an n−tuple
with 1 in i th position and zero elsewhere. Hence, the result follows from the elementary linear
algebra that every x ∈Rn can be uniquely expressed as a linear combination of ei . □

Example 3.9. Let n = 5 and λ= (2,2,1). Consider T ∈ ST(Pλ(5)), such that T =

1 2
3 4
5 . Then

codT = (0,0,1,1,2) = 0(0,0,0,0)+0(0,1,0,0,0)+1(0,0,1,0,0)+1(0,0,0,1,0)+2(0,0,0,0,1).

The polynomial corresponding to the weights of cod(T) for all T ∈ ST(Pλ(5)) in table 3 is

P(wt(T),x) = 1+4x+5x2 +6x3 +5x4 +4x6 +x10
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The coefficients of each term is the number of T ∈ ST(Pλ(n)) whose weights give the index
of x in the term. For 1 ≤ n ≤ 6, the associated polynomial P(wt(T),x) is palindromic, this we
display in the table below.

n P(wt(T),x)
1 1
2 1+x
3 1+2x+x3

4 1+3x+2x2 +3x3 +x6

5 1+4x+5x2 +6x3 +5x4 +4x6 +x10

6 1+5x+9x2 +15x3 +16x4 +15x6 +9x7 +5x10 +x15

7 1+6x+14x2 +29x3 +35x4 +21x5 +41x6 +35x7 +14x9 +15x10 +14x11 +6x15 +x21

TABLE 5. Table of polynomials corresponding to the weights all T ∈ ST(Pλ(n))

4. CHARACTERIZATION OF SCHUBERT POINTS wT ASSOCIATED TO STANDARD YOUNG

TABLEAUX

Here, we study the composition structure of the reduced word of Schubert points wT and
describe its standard form for any λ. this is displayed in our next result present the canonical
form for the structure of the reduced word of wT

Proposition 4.1. Let wT be the Schubert point associated to T ∈ STλ(n) of any shape, with
codT = (d1,d2, · · · ,dn). Then, the standard form for the composition structure of the reduced
word of wT is given as
a1(a1 +1)(a1 +2) · · · (a1 +k1)|a2(a2 +1)(a2 +2) · · · (a2 +k2)| · · · |ar (ar +1)(ar +2)
· · · (ar +kr )|
Where a j = (i −di ), k j = di − 1 and j = n − i + 1, 1 ≤ j ≤ r , r is the number of di such that
di ̸= 0, 1 ≤ i ≤ n.

Proof. Let wT ∈ STλ(n) such that T is of any shape λ.
Let j = n − i +1. Suppose di = 0, then there is nothing to proof since wi , (2 ≤ i ≤ n) is always
an identity (from the definition of wi ). Now, suppose di ̸= 0 and i = n. Then j = n −n + 1
which implies that a1 = (n −dn).
Since dn ̸= 0, let’s assume dn = q, 1 ≤ q ≤ ℓ(λ)−1.
From the definition of wi in [8], wn = sn−q sn−q+1sn−q+2 · · · sn−2sn−1, then the first block from
the left is written as

|(n −q)(n −q +1)(n −q +2) · · · (n −2)(n −1)|
By replacing n with i and q with di in the above, we have

|(i −di )(i −di +1)(i −di +2) · · · (i −di +di −2)(i −di +di −1)|
with a j = (i −di ) and k j = di −1 then the above equation becomes

|a j (a j +1)(a j +2) · · · (a j +k j −1)(a j +k j )|
Also, we have from the theorem that j = n − i + 1 which implies that j = 1 (since i = n by
hypothesis ). Hence, we have |a1(a1 +1)(a2 +2) · · · (a1 +k1 −1)(a +k1)| as the first block of the
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composition structure of wT provided dn ̸= 0.
By mimicking the proof of the first block we obtain the structure of the remaining blocks. □

Example 4.2. Let codT = (0,0,0,1,1,2), be a code of a certain Schubert point . It is easy to see
that the shape of the associated partition is λ= (3,2,1) with n = 6. From the statement of the
theorem, we have that; j = n − i +1, 1 ≤ j ≤ 3, a j = (i −di ), k j = di −1. Now, when i = n = 6,

then j = 1 =⇒ , a1 = 4 also, k1 = 1. Therefore we have a1(a1 +k1)| = 45|. This give the first
block. For the second and third block, we respectively have i = 5 and i = 4, a2 = 4, k2 = 0

which implies that 4 is the only element in the second block. and for the third block a3 = 3.
Hence a1(a1 +1)|a2|a3 = 45|4|3 is the composition structure of the given code. We confirm

this by computing the Schubert point wT = s4s5s4s3 of the standard tableau T =

1 2 3
4 5
6

associated to the given code.

Theorem 4.3. Let ℓ(αcT ) be the length of the partition associated to the composition structure
of Schubert point wT identified with standard tableau of shape λ. Then

(i) ℓ(λ) = ℓ(αcT )+1 if λ= (n −k, 1k ), k ≥ 2.
(ii) ℓ(λ) = ℓ(αcT ) if λ= (n − (k +2),2,1k ), n ≥ 4, 0 ≤ k ≤ n −4.

Proof. (i) In this case, the corresponding Young diagram is either of the form

· · ·
...

or

...

depending on either 2 ≤ k < n or k = n respectively. For each T ∈ STλ(n), we define
DT = {di | di ̸= 0}.
Obviously, #DT =
el l (λ)−1, since di = 0 for all i in the first row of T (from the top). Recall that each di ̸= 0
determines a block in the reduced word of wT .
This implies that

ℓ(αcT ) = #DT

and

ℓ(αcT ) = ℓ(λ)−1

Hence
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ℓ(αcT )+1 = ℓ(λ)

(ii) Here, the corresponding Young diagram is either of the form

, if n = 4 and k = 0 or

...

if n > 5 and k increases with the value of n. Now, suppose the length of the first column
is r , thenαcT = (r −1,r −2, · · · ,1,1). Which implies ℓ(αcT ) = (r −1)+1 = r. We recall that
the length of the first column of a Young diagram of shape λ is equal to ℓ(λ). In other
words ℓ(λ) = r. Hence ℓ(λ) = ℓ(αcT ).

□

Theorem 4.4. Let αcT = (c1, c2, · · · , ck ) be the composition structure associated with wT , then
ck = 1 for all T ∈ STλ(n).

Proof. It is known from [8] that each wT ∈ Sn is of the form wT = wn wn−1wn−2 · · ·w2 where
each wi = si−di si−di+1 si−di+2 · · · si−2si−1, 2 ≤ i ≤ n. The reduced word of each wi gives a block
(since the subscripts are increasing in a natural order),and hence forms a part in αcT .
Assume i = 2, then w2 = s2−d2 . In this case d2 = 1, this implies w2 = s1 hence ck = 1
If d2 = 0, then 2 must be in the first row of T and wT becomes wT = wn wn−1wn−2 · · ·w3 with
d3 = 1 or 2. If d3 = 2 then 1 and 2 must be above 3 in the same column which implies that
d2 = 1, otherwise d3 = 1 n n w3 = s2 which implies that ck = 1.
Finally, assume wT = wn wn−1wn−2 · · ·wr , r > 3, then wr = sr−dr sr−dr+1 sr−dr+2 · · · sr−2sr−1

which implies that there are some q < r above r in the same column which in not possi-
ble.
Therefore, wr = sr−dr with dr = 1. Hence ck = 1 □

Lemma 4.5. Let λ be a partition of n > 0 such that λ= 1n . Consider the Schubert point wT of
standard Young tableau of shape λwith αcT = (c1,c2 · · ·ck ) being the partition associated to the
composition structure of wT ∈ Sn . Then αcT is always a staircase partition with ci = n − i and∑n−1

i=1 ci =
(n

2

)
.

Proof. Let λ= 1n , n ≥ 2, there is only one standard tableau in this case, and is of the form

1

2
...

n
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with wT of the form wT = s1s2 · · · sn−1s1s2 · · · sn−2 · · · s1s2s1 with the word (string of subscript)
(123 · · ·n − 1)(123 · · ·n − 2) · · · (12)(1), arranging the cardinalities of the blocks in descending
order, we have αcT = (n −1,n −2, · · · ,2,1)

To show that
∑n−1

i=1 ci =
(n

2,

)
We note that

n−1∑
i=1

ci = (n −1)+ (n −2)+·· ·+ (n − (n −1))

= (n −1)+ (n −2)+·· ·+1

= n(n −1)− (1+2+3+·· ·+ (n −1))

Recall that the sum of the first n−1 natural numbers is given as n(n−1)
2 . Therefore, equation

4.22 becomes

= n(n −1)− n(n −1)

2
= n(n −1)

2
=

(
n

2

)
□

Since our dear Schubert points wT , T ∈ ST (Pλ(n)) are always elements of Sn , expressed in
its reduced decompositions (which are not unique). A big question begging for answer here
is that, which of the reduced decompositions of w ∈ Sn gives wT ? We give answer to this
question in our next remark

Remark 4.6. Let wT ∈ Sn , for any v ∈ R(wT ) to be a Schubert point,It must satisfies the follow-
ing conditions:

i) v must be a reduced factorization,
ii) v should be able to generate a code such that its first coordinate is zero.

iii) v should be able to generate a tableaux such that the number of di = r, (0 ≤ r ≤ ℓ(λ)−
1,1 ≤ i ≤ n) must be equal to λr+1

Below is the sage command for :

(1) generating the code of any standard Young tableau with its weight and command for
generating the associated Standard Young tableau given any code.

(2) computing the polynomial associated to the set of standard tableaux of all partitions
of n > 0,

(3) determining the degree of the polynomials in 2.

5. CONCLUSION

Springer varieties (Sprλ), also known as Springer fibers, Where λ is a partition of inte-
ger n > 0, are subvarieties of the full flag varieties FV . The geometry and combinatorics of
Springer varieties has been an active area of research over decades.
In the study of the connection between Springer varieties and another subvarieties of FℓnC

called Schubert varieties, Tymoczko in [8] introduces certain algorithm through which she
attached a permutation wT , called the Schubert point, to each row-strict tableaux of shape
λ, whose union has Betti numbers as a certain Springer varieties in [6]. The length ℓ(wT ) of
these permutations turns out to be equal to the dimension of T which was equally introduced
by Tymoczko in [9]
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Through the algorithm introduce in [8], invariants were attached to a set of row- strict tableaux
of shape λ, the attached invariants were studied, investigated and give some combinatorial
properties of these invariants and re-interpret some of the results in [8] and [6] in terms of
these properties. Lastly, using the weight associated with the codes, Bruhat graph of the
Schubert variety associated with the set of all standard tableaux of the partitions λ of n was
realised.



Sage Code Implementation

January 12, 2023

In [1]: sage: def code_to_Tableau(C): # This function the Standard tableaux of a given code.
....: L =[]
....: T = []
....: for i in C:
....: if (i in L)==False:
....: L.append(i)
....: for j in L:
....: H = []
....: t =0
....: for k in C:
....: t = t+1
....: if j==k:
....: H.append(t)
....: T.append(H)
....: return Tableau(T)
....:
....: def code_weight(C): # This function returns the weight of a given code
....: return sum(C)
....:
....: def tableau_to_Code(T): # This function return the code of a given code
....: C = range(sum(T.shape()))
....: for i in range(len(T)):
....: for j in T[i]:
....: C[j-1] = i
....: return (C)

In [2]: sage: T = Tableau([[1,3,5],[2,6],[4]])
sage: T1 = Tableau([[1,3,5],[2,6],[4]])
sage: C1 = tableau_to_Code(T1)
sage: C1

Out[2]: [0, 1, 0, 2, 0, 1]

In [3]: sage: code_weight(C1)

Out[3]: 4

In [4]: sage: code_to_Tableau(C1)

1

FIGURE 1. Sage Implementation.



Out[4]: [[1, 3, 5], [2, 6], [4]]

In [8]: sage: T= Tableau([[1,2,3,4],[5,6,7],[8]])
sage: T2= Tableau([[1,2,3,4],[5,6,7],[8]])
sage: C2= tableau_to_Code(T2)
sage: C2

Out[8]: [0, 0, 0, 0, 1, 1, 1, 2]

In [10]: sage: code_weight(C2)

Out[10]: 5

In [11]: sage: code_to_Tableau(C2)

Out[11]: [[1, 2, 3, 4], [5, 6, 7], [8]]

In [12]: def tableau_weight(T):
weight =0
for i in range(len(T)):

weight += i*T[i]
return weight

def weight_poly(n):
P =Partitions(n)
R.<x> = PolynomialRing(QQ, order='lex')
poly = 0
for i in list(P):

coef =StandardTableaux(i).cardinality()
exp = tableau_weight(i)
poly += coef*x^exp

return poly

In [13]: weight_poly(1)

Out[13]: 1

In [14]: weight_poly(2)

Out[14]: x + 1

In [15]: weight_poly(3)

Out[15]: xˆ3 + 2*x + 1

In [16]: weight_poly(4)

Out[16]: xˆ6 + 3*xˆ3 + 2*xˆ2 + 3*x + 1

In [17]: weight_poly(5)

2



Out[17]: xˆ10 + 4*xˆ6 + 5*xˆ4 + 6*xˆ3 + 5*xˆ2 + 4*x + 1

In [18]: weight_poly(6)

Out[18]: xˆ15 + 5*xˆ10 + 9*xˆ7 + 15*xˆ6 + 16*xˆ4 + 15*xˆ3 + 9*xˆ2 + 5*x + 1

In [5]: def poly_deg(n):
deg=binomial(n,2)
return deg

In [6]: poly_deg(1)

Out[6]: 0

In [7]: poly_deg(2)

Out[7]: 1

In [8]: poly_deg(3)

Out[8]: 3

In [9]: poly_deg(4)

Out[9]: 6

In [10]: poly_deg(5)

Out[10]: 10

In [11]: poly_deg(6)

Out[11]: 15

In [13]: poly_deg(7)

Out[13]: 21

In [14]: poly_deg(8)

Out[14]: 28

In [ ]:

3
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