
EPiC Series in Computing

Volume 77, 2021, Pages 90–103

Proceedings of ISCA 30th International Confer-
ence on Software Engineering and Data Engineering

DBKnot

A Transparent and Seamless, Pluggable, Tamper Evident

Database

Islam Khalil, Sherif El-Kassas, and Karim Sobh

The American University in Cairo, Cairo, Egypt
{ikhalil,sherif,kmsobh}@aucegypt.edu

Abstract

Database tampering is a key security threat that impacts the integrity of sensitive in-
formation of crucial businesses. The evolving risks of security threats as well as regulatory
compliance are important driving forces for achieving better integrity and detecting pos-
sible data tampering by either internal or external malicious perpetrators. We present
DBKnot, an architecture for a tamper detection solution that caters to such problem while
maintaining seamlessness and ease of retrofitting into existing append-only database ap-
plications with near-zero modifications. We also pay attention to data confidentiality by
making sure that the data never leaves the organization’s premises. We leverage designs
like chains of record hashes to achieve the target solution. A set of preliminary exper-
iments have been conducted that resulted in DBKnot adding an overhead equal to the
original transaction time. We have run the same experimemts experiments with different
parallelization and pipelining versions of DBKnot which resulted in cutting approximately
66% of the added overhead.

1 Introduction

With the growing need for digitalization by various industries and the pervasiveness of sophis-
ticated software systems, there is a matching growing need for securing such systems. Systems
mange information like bank transactions, medical information, government records, as well
as many other critical information often fall as prey for perpetrators who often are insiders or
external attackers colluding with insiders to commit their fraud crimes using their legitimately
assigned access rights. According to the Association of Certified Fraud Examiners (ACFE)
2018 report[14], $7 Billion of losses were incurred due to internal fraud alone with an average
fraud scheme going for 16 months unnoticed.

According to Harvard Business Review[23], more than 80 million insider security breaches
occur every year costing tens of billions of dollars every year in the US alone. For example,
an incident of $350,000 that were stolen from 4 Citibank customers by employees of a software
and service company that Citibank had contracted. According to Accenture[23] and The World
Economic Forum (WEF)[24], the cost of insider malicious activity constitutes 15% of all cy-
bercrime. The IETF’s RFC 4810[8] guidelines for “Long Term Archive Services Requirements”

F. Harris, R. Wu and A. Redei (eds.), SEDE 2021 (EPiC Series in Computing, vol. 77), pp. 90–103

DBKnot:A Transparent and Seamless, Pluggable, Tamper Evident Database Khalil, Kassas, and Sobh

indicate that non-repudiation and integrity are important to any store of data to protect against
potential tampering.

Various governments have put into place different regulations to reduce such risks by govern-
ing the collection, retention, and disclosure of data. Among such regulations are the Gramm-
Leach-Bliley Act[5] for financial institutes, Sarbanes-Oxley Act[17] (SOX), and Health Insurance
Portability and Accountability Act[22] (HIPAA) for medical records.

The goal of our work is to design an architecture that enables traditional database systems
to be tamper-evident. Such architecture can be implemented at different levels; namely the
ORM level, database level, or web-service level. The primary goal is to eliminate the need for
relying completely on trust inside the organization while minimizing the overhead added by
the solution. Ease of integration is a key feature while requiring near-zero changes to existing
systems. Our proposed architecture targets primarily append-only systems like server security
logs, banking transactions, accounting ledgers in enterprises, notary and real-estate records,
birth and death records, time and attendance systems, and many others.

The rest of the paper is organized as follows: we present the needed background in section
2 followed by a selection of the related work in section 3. We formulate our problem statement
in section 4 coupled with our motivation behind the proposed tamper detection architecture.
In Section 5 we present our proposed solution followed by experiments and results in section 6.
Finally we conclude and present possible future work venues in section 7.

2 Background

2.1 Object Relational Mapping

Object Relational Mapping (ORM) frameworks[6][11] sit between developer applications and
databases. They provide developers with full object oriented semantics to the database allowing
developers to use object oriented design to model their data without having to worry about
how this maps to the database. ORM frameworks in turn take care of the mapping between
data objects on one hand, and tables and relations on the other hand during database creation,
definition, transactions, as well as querying. Figure 2 shows how the ORM layer sits between the
developer code and the database itself and abstracts away all of the DBMS specific relational
database operations.

2.2 Web Services

Web services provide a standard mechanism of integrating different software systems or subsys-
tems while abstracting away all implementation details and technologies. Web services usually
provide the functionality to make database transactions as well as queries through formats like
the REST API[12]. Figure 1 is an example of how web-services work.

2.3 Transaction Chaining

The idea behind blockchain is that each block contains a set of transactions. Blocks are verified
and synchronized with other computers on the network. Once verified, the blocks are chained
to the last block in the blockchain as illustrated in Figure 3. To ensure the correct order of
the blocks inside the blockchain, each block contains the hash of the previous block. Using the
hash of the previous block ensures integrity between transactions and the immutability of such
transactions because a modification of any of the transactions will invalidate the rest of them

91

DBKnot:A Transparent and Seamless, Pluggable, Tamper Evident Database Khalil, Kassas, and Sobh

Figure 1: REST API Request and Re-
sponse

Pipelined Hashing & Signing

Database Layer

Integration

Options

Webservice LayerORM Layer

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_2

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_1

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

H
as

he
r

Record

Record

Record

hash

hash

hash

hash

S
ig

ne
r

Clock

Private Key

S
ig

ne
r

Clock

Private Key

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

Hash Chain Table

Sequential
ID Hash of Record

Contents

Record Source Table ID

Record Signing

Timestamp

Signature (record_hash,
record_hash_timestamp,

previous_signature)

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

H
as

he
r

hash

hash

hash

hash

hash+prev_hash

timestamp +
sign (hash+ts)

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Persistent
Object Operations

Data Definition

Language

(DDL)/SQL

Data Manipulation
Language

(DML)/SQL

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Persistent
Object Operations

Data Definition

Language

(DDL)/SQL

Data Manipulation
Language

(DML)/SQL

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Model Objects
& Queries

Data Definition
Language
(DDL)/SQL

Data Manipulation
Language
(DML)/SQL

S
ig

ne
r

Clock

Private Key

ORM Overlay / Interceptor

Model Objects
& Queries

DBKnot Models
& Queries

hash +
prev_sign +

prev_timestamp

 new_signature

Transaction SignHash Transaction SignHash Transaction SignHash Transaction SignHash

Transaction

Sign

Hash Transaction

Sign

Hash Transaction

Sign

Hash Transaction

Sign

Hash

Transaction

SignHash

Transaction

SignHash

Transaction

SignHash

Transaction

SignHash

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

All Inline

Inline Hashes - Pipelined Signing

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

All Inline

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

Inline Hashes -
Pipelined Signing

Transaction

Sign

HashTransaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

Pipelined Hashing & Signing

Transaction

Sign

HashTransaction

Sign

HashTransaction

Sign

HashTransaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

illustration
 and

 do
 not

 denote
 proportionality

 of
 opration

 tim
e.

All Pipelined

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

Signer

C
lock

P
rivate

K
e
y

Application Software
(e.g.: ERP)

Proper Transactions
+

Malicious /
Fraudulent Transactions Organization N

Application Software
(e.g.: ERP)

Proper Transactions Organization X

Application Software
(e.g.: ERP)

Proper Transactions Organization Y

Application Software
(e.g.: ERP)

Proper Transactions Organization Z

Application Software
(e.g.: ERP)

Proper Transactions Organization P

Application Software
(e.g.: ERP)

Proper Transactions Organization Q

Timestamper/Signer

Notary ServiceSchool Bank

System Log
ERP / CRM

SystemInternet

Signer

C
lock

P
rivate
K

ey

hash + prev-hash
Timestamp + Signed
(Hashes + Timetamp)

Record Has
No Hash

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Record Has
No Hash

Record Has
No Hash

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Hash Has
No Record

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

Record Has
No Hash

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Hash-Signature
Mismatch

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

S
ig

ner

Clock

Private

Key

Timestamp +

Signed (Hashes +

Timetamp)

Timestamper/Signer

Notary ServiceSchool Bank

System Log ERP / CRM

System
Internet

hash + prev_hash

Figure 2: Standard ORM Operation

and thus, “break the chain”. The first block in a blockchain is called the “Genesis block”. Each
blockchain has its own genesis block.

Figure 3: Chaining of Hashes into Blocks

3 Related Work

A number of different solutions have been proposed to target the problem we are addressing.
Solutions vary in the way they tackle the problem. Some of them use a similar technique of
chained hashes. All of the solutions surveyed failed to provide a seamless and non-invasive
way to get retrofitted into existing solutions with little-or-zero changes necessary. Another
important difference is the requirement that data does not leave the users’ premises.

DRAGOON[18][20][19][21] is an information accountability system that relies on continuous
cryptographic hashing of transactions. DRAGOON primarily relies on an external “Digital
Notarization Service” rather than just a simple external transaction signer.

Amazon Quantum Ledger Database (QLDB)[1][2] – a blockchain based database - solves
part of the problem addressed in our work. QLDB provides the clock-chaining functionality in
a proprietary database that is hosted on Amazon cloud and provided a Software-As-A-Service.

QLDB provides the ledger database service based on the premise that there is a “central”
and “trusted” authority which in this case is Amazon. Amazon in this case provides the signing
and trust service as well as the hosting of the actual data. Which is exactly the model we are
trying to avoid and solve. Having both the storage of the data as well as the verifiability of its
integrity in the hands of the same party. The difference though is that it requires data to be

92

DBKnot:A Transparent and Seamless, Pluggable, Tamper Evident Database Khalil, Kassas, and Sobh

stored at amazon premises meaning that amazon needs to be depended on as a trusted host of
the data.

BigchainDB[3] leverages a blockchain network to provide decentralized and immutable
database. However, due to its sophisticated setup, it does not allow seamless retrofitting into
existing systems.

There are other research work that focus on documents rather than data. Some of which
are designed to track documents provenance throughout their lifecycle. A number of other
research work has catered to a similar problem in the domains of operating systems and filesys-
tems. Examples are [4][16][10][9][13][7][15]. But most of them either depend on a local trusted
administrator or use mechanisms that require data to be moved to outside the local premises.

4 Problem Statement and Motivation

Database environments are sometimes vulnerable to illegitimate tampering by internal admin-
istrators who have full access to the data by virtue of their administration roles. The need for a
tamper detection mechanism is important as an initial counter measure against the disastrous
effects of such actions.

By looking at the related work, we highlight the primary gaps in existing solutions. Some
solutions address one or more of the gaps but most of them fail to address all the critical ones
simultaneously. For example: eliminating the need to base all security on trusting an insider
administrator, ensuring that all organization’s data remains inside, and ease of retrofitting into
existing applications with near-zero intervention. This has motivated us to work on a solution
that tries to address a number of the important goals simultaneously with a primary focus on
applicability to retro-fitting to existing systems.

5 Proposed Solution

5.1 Solution Overview

In our presented solution we build a transparent and seamless middleware for securing database
transactions against possible tampering by individuals who have full administrative access to
the database and all its related infrastructure. The way this is to be achieved is by leveraging
some features of the technology similar to blockchain to interweave sequences of transactions in
an unbreakable chain. This is done by generating a unique hash for each transaction and using
it in a chain of transactions. Any attempts to modify previously entered data will break the
hash and therefore the sequence of transactions following such transaction will be invalidated.

In order to guarantee that such a chain could not be re-generated following any tampering
attempt, an external source is used for time-stamped signing of hashes. Another alternative
could be a physical Hardware Security Module (HSM).

In our work, we propose three integration architectures. One is used for Object Relational
Mapping frameworks (ORM), the second is for direct database integration, and the third mi-
croservice solutions by being implemented as a totally transparent reverse proxy.

5.2 The Hasher and The External Timestamping Signer

The direction adopted is to introduce a third-party externalized time-stamper/signer that is
outside the boundaries of the organization as shown in Figure 4 and/or a tamper-resistant HSM
(Hardware Security Module). The role of the signer is to sign a hash of each record/transaction

93

DBKnot:A Transparent and Seamless, Pluggable, Tamper Evident Database Khalil, Kassas, and Sobh

that gets added to the database. In addition to the record, a hash of the previous record
is added. A timestamp is also added to the signed data in order to protect against future
signing-replay attacks Figure 4.

Being external, the signer is outside the reach of organization insiders which reduces and
ideally eliminates the possibility of collusion among internal and external stakeholders. We
introduced in Figure 4, an independent signer + time-stamper service (in red). The signer
service could cater to different organizations as illustrated in the diagram.

DBKnot does not rely on the signer keeping any information regarding the data being signed
or its corresponding hashes. Such statelessness makes the following possible: Such statelessness
reduces possible attack vectors, ensures confidentiality of the tracked data since it is not stored
on the signer server, saves bandwidth and storage that would have been required in cases where
a data replica is stored, and makes it simpler to implement load-balancing, redundant signing
servers for CDN-like servers.

Pipelined Hashing & Signing

Database Layer

Integration

Options

Webservice LayerORM Layer

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_2

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_1

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

H
as

he
r

Record

Record

Record

hash

hash

hash

hash

S
ig

ne
r

Clock

Private Key

S
ig

ne
r

Clock

Private Key

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

Hash Chain Table

Sequential
ID Hash of Record

Contents

Record Source Table ID

Record Signing

Timestamp

Signature (record_hash,
record_hash_timestamp,

previous_signature)

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

H
as

he
r

hash

hash

hash

hash

hash+prev_hash

timestamp +
sign (hash+ts)

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Persistent
Object Operations

Data Definition

Language

(DDL)/SQL

Data Manipulation
Language

(DML)/SQL

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Persistent
Object Operations

Data Definition

Language

(DDL)/SQL

Data Manipulation
Language

(DML)/SQL

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Model Objects
& Queries

Data Definition
Language
(DDL)/SQL

Data Manipulation
Language
(DML)/SQL

S
ig

ne
r

Clock

Private Key

ORM Overlay / Interceptor

Model Objects
& Queries

DBKnot Models
& Queries

hash +
prev_sign +

prev_timestamp

 new_signature

Transaction SignHash Transaction SignHash Transaction SignHash Transaction SignHash

Transaction

Sign

Hash Transaction

Sign

Hash Transaction

Sign

Hash Transaction

Sign

Hash

Transaction

SignHash

Transaction

SignHash

Transaction

SignHash

Transaction

SignHash

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

All Inline

Inline Hashes - Pipelined Signing

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

All Inline

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

Inline Hashes -
Pipelined Signing

Transaction

Sign

HashTransaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

Pipelined Hashing & Signing

Transaction

Sign

HashTransaction

Sign

HashTransaction

Sign

HashTransaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

illustration
 and

 do
 not

 denote
 proportionality

 of
 opration

 tim
e.

All Pipelined

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

Signer

C
lock

P
rivate

K
e
y

Application Software
(e.g.: ERP)

Proper Transactions
+

Malicious /
Fraudulent Transactions Organization N

Application Software
(e.g.: ERP)

Proper Transactions Organization X

Application Software
(e.g.: ERP)

Proper Transactions Organization Y

Application Software
(e.g.: ERP)

Proper Transactions Organization Z

Application Software
(e.g.: ERP)

Proper Transactions Organization P

Application Software
(e.g.: ERP)

Proper Transactions Organization Q

Timestamper/Signer

Notary ServiceSchool Bank

System Log
ERP / CRM

SystemInternet

Signer

C
lock

P
rivate
K

ey

hash + prev-hash
Timestamp + Signed
(Hashes + Timetamp)

Record Has
No Hash

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Record Has
No Hash

Record Has
No Hash

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Hash Has
No Record

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

Record Has
No Hash

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Hash-Signature
Mismatch

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

S
ig

ner

Clock

Private

Key

Timestamp +

Signed (Hashes +

Timetamp)

Timestamper/Signer

Notary ServiceSchool Bank

System Log ERP / CRM

System
Internet

hash + prev_hash

Figure 4: Introduction of Third Party Signing Service

Pipelined Hashing & Signing

Database Layer

Integration

Options

Webservice LayerORM Layer

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_2

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_1

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

H
as

he
r

Record

Record

Record

hash

hash

hash

hash

S
ig

ne
r

Clock

Private Key

S
ig

ne
r

Clock

Private Key

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

Hash Chain Table

Sequential
ID Hash of Record

Contents

Record Source Table ID

Record Signing

Timestamp

Signature (record_hash,
record_hash_timestamp,

previous_signature)

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

H
as

he
r

hash

hash

hash

hash

hash+prev_hash

timestamp +
sign (hash+ts)

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Persistent
Object Operations

Data Definition

Language

(DDL)/SQL

Data Manipulation
Language

(DML)/SQL

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Persistent
Object Operations

Data Definition

Language

(DDL)/SQL

Data Manipulation
Language

(DML)/SQL

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Model Objects
& Queries

Data Definition
Language
(DDL)/SQL

Data Manipulation
Language
(DML)/SQL

S
ig

ne
r

Clock

Private Key

ORM Overlay / Interceptor

Model Objects
& Queries

DBKnot Models
& Queries

hash +
prev_sign +

prev_timestamp

 new_signature

Transaction SignHash Transaction SignHash Transaction SignHash Transaction SignHash

Transaction

Sign

Hash Transaction

Sign

Hash Transaction

Sign

Hash Transaction

Sign

Hash

Transaction

SignHash

Transaction

SignHash

Transaction

SignHash

Transaction

SignHash

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

All Inline

Inline Hashes - Pipelined Signing

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

All Inline

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

Inline Hashes -
Pipelined Signing

Transaction

Sign

HashTransaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

Pipelined Hashing & Signing

Transaction

Sign

HashTransaction

Sign

HashTransaction

Sign

HashTransaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

illustration
 and

 do
 not

 denote
 proportionality

 of
 opration

 tim
e.

All Pipelined

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

Signer

C
lock

P
rivate

K
e
y

Application Software
(e.g.: ERP)

Proper Transactions
+

Malicious /
Fraudulent Transactions Organization N

Application Software
(e.g.: ERP)

Proper Transactions Organization X

Application Software
(e.g.: ERP)

Proper Transactions Organization Y

Application Software
(e.g.: ERP)

Proper Transactions Organization Z

Application Software
(e.g.: ERP)

Proper Transactions Organization P

Application Software
(e.g.: ERP)

Proper Transactions Organization Q

Timestamper/Signer

Notary ServiceSchool Bank

System Log
ERP / CRM

SystemInternet

Signer

C
lock

P
rivate
K

ey

hash + prev-hash
Timestamp + Signed
(Hashes + Timetamp)

Record Has
No Hash

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Record Has
No Hash

Record Has
No Hash

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Hash Has
No Record

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

Record Has
No Hash

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Hash-Signature
Mismatch

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

S
ig

ner

Clock

Private

Key

Timestamp +

Signed (Hashes +

Timetamp)

Timestamper/Signer

Notary ServiceSchool Bank

System Log ERP / CRM

System
Internet

hash + prev_hash

Figure 5: Signer
Service

As explained before in section 2.3, Figure 6 shows how the whole architecture fits together
to form a single immutable chain of transactions. This is implemented by using an external
signer. Transactions are chained at record insert time. The private key of the external signer
is used to sign transactions and the public key is used for verification.

5.3 Integration Models

5.3.1 ORM Level Integration

One implementation technique is to embed the DBKnot support into existing ORM layers. Such
support empowers developers to include DBKnot features into their database models using a
simple declarative notation without having to go through any implementation details. The idea
here is to embed the DBKnot functionality inside the ORM layer itself and provide a totally
transparent and seamless experience to application developers that requires near-zero changes
to their application code.

In addition to the declarative semantics and ease of use by developers, embedding tamper-
detection layer inside the ORM layer also makes it completely database agnostic. Meaning that

94

DBKnot:A Transparent and Seamless, Pluggable, Tamper Evident Database Khalil, Kassas, and Sobh

Pipelined Hashing & Signing

Database Layer

Integration

Options

Webservice LayerORM Layer

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_2

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_1

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

H
as

he
r

Record

Record

Record

hash

hash

hash

hash

S
ig

ne
r

Clock

Private Key

S
ig

ne
r

Clock

Private Key

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

Hash Chain Table

Sequential
ID Hash of Record

Contents

Record Source Table ID

Record Signing

Timestamp

Signature (record_hash,
record_hash_timestamp,

previous_signature)

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

H
as

he
r

hash

hash

hash

hash

hash+prev_hash

timestamp +
sign (hash+ts)

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Persistent
Object Operations

Data Definition

Language

(DDL)/SQL

Data Manipulation
Language

(DML)/SQL

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Persistent
Object Operations

Data Definition

Language

(DDL)/SQL

Data Manipulation
Language

(DML)/SQL

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Model Objects
& Queries

Data Definition
Language
(DDL)/SQL

Data Manipulation
Language
(DML)/SQL

S
ig

ne
r

Clock

Private Key

ORM Overlay / Interceptor

Model Objects
& Queries

DBKnot Models
& Queries

hash +
prev_sign +

prev_timestamp

 new_signature

Transaction SignHash Transaction SignHash Transaction SignHash Transaction SignHash

Transaction

Sign

Hash Transaction

Sign

Hash Transaction

Sign

Hash Transaction

Sign

Hash

Transaction

SignHash

Transaction

SignHash

Transaction

SignHash

Transaction

SignHash

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

All Inline

Inline Hashes - Pipelined Signing

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

All Inline

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

Inline Hashes -
Pipelined Signing

Transaction

Sign

HashTransaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

Pipelined Hashing & Signing

Transaction

Sign

HashTransaction

Sign

HashTransaction

Sign

HashTransaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

illustration
 and

 do
 not

 denote
 proportionality

 of
 opration

 tim
e.

All Pipelined

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

Signer

C
lock

P
rivate

K
e
y

Application Software
(e.g.: ERP)

Proper Transactions
+

Malicious /
Fraudulent Transactions Organization N

Application Software
(e.g.: ERP)

Proper Transactions Organization X

Application Software
(e.g.: ERP)

Proper Transactions Organization Y

Application Software
(e.g.: ERP)

Proper Transactions Organization Z

Application Software
(e.g.: ERP)

Proper Transactions Organization P

Application Software
(e.g.: ERP)

Proper Transactions Organization Q

Timestamper/Signer

Notary ServiceSchool Bank

System Log
ERP / CRM

SystemInternet

Signer

C
lock

P
rivate
K

ey

hash + prev-hash
Timestamp + Signed
(Hashes + Timetamp)

Record Has
No Hash

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Record Has
No Hash

Record Has
No Hash

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Hash Has
No Record

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

Record Has
No Hash

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Hash-Signature
Mismatch

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

S
ig

ner

Clock

Private

Key

Timestamp +

Signed (Hashes +

Timetamp)

Timestamper/Signer

Notary ServiceSchool Bank

System Log ERP / CRM

System
Internet

hash + prev_hash

Figure 6: Signer and Timestamper

the same implementation will work on any database as long as it is supported by the used ORM
layer without any change at all.

As the user code initiates any persistent database insert operations that are tagged as
trackable, the ORM interceptor takes the transaction, passes it to the original ORM layer
which takes care of the transaction as normally expected. Afterwards, the ORM interceptor
starts doing its own hashing and signing work.

Figure 7 shows how the DBKnot hook is inserted in the middle of the operation. DBKnot
intercepts all calls to the ORM, performs the needed hashing and signing functionality, and
passes execution to the original ORM framework. The integration layer is designed to provide a

Figure 7: Adding DBKnot ORM Hook - Activity Diagram

completely seamless user experience to developers. In the current implementation, as illustrated
in the python/django code below, all a user (developer) needs to do is to have the model classes
extend a class (a mixin) that provides all needed functionality. This is an example of the
DBKnot mixin usage written in python.

class Test(DBKnotMixin): # Embedded in the form of a simple mixin

name=models.CharField("Name", max_length=50)

def __str__(self)

return self.name

95

DBKnot:A Transparent and Seamless, Pluggable, Tamper Evident Database Khalil, Kassas, and Sobh

5.3.2 Database Level Integration

Database-level integration is done using the exact same methodology as the ORM but on a
database-level. In this design, the DBKnot features are implemented as a set of scripts, macros,
triggers, etc. on the level of the database directly. The goal of this approach is that it will also
be totally seamless. In addition, being close to the database layer makes it perform with less
overhead than through the ORM.

5.3.3 Web Service API Level Integration

DBKnot functionality could be implemented inside a reverse-proxy middleware. The benefit of
injecting the functionality in the form of a middleware is that it could allow the functionality to
be retrofitted into existing applications and microservices with doing zero changes to the existing
application. This way existing applications can benefit from DBKnot and secure their data
seamlessly. The primary challenge is that it will require an easy-to-use mini language/syntax
for application developers to define their application web-service’s semantics. The primary
advantage however is that it is totally non-invasive and could be totally external to server
inside a reverse proxy. Advantages if this approach include being agnostic with regards to
the technology in use, supporting any mix of hybrid microservices as well as supporting load-
balancing multi-server architectures.

5.4 Verification Steps

Verification of records and thus, the detection of possible tampering is done by checking for
the validity of signatures as well as the consistency of signatures and hashes with the actual
data. The validation algorithm will look for dangling hashes, missing hashes, or inconsistent
record-hash pairs.

Figure 8 shows an example of the inconsistencies resulting from maliciously adding a record
to the database. There are two cases when a verification is triggered. The first one is at

Pipelined Hashing & Signing

Database Layer

Integration

Options

Webservice LayerORM Layer

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_2

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_1

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

H
as

he
r

Record

Record

Record

hash

hash

hash

hash

S
ig

ne
r

Clock

Private Key

S
ig

ne
r

Clock

Private Key

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

Hash Chain Table

Sequential
ID Hash of Record

Contents

Record Source Table ID

Record Signing

Timestamp

Signature (record_hash,
record_hash_timestamp,

previous_signature)

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

H
as

he
r

hash

hash

hash

hash

hash+prev_hash

timestamp +
sign (hash+ts)

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Persistent
Object Operations

Data Definition

Language

(DDL)/SQL

Data Manipulation
Language

(DML)/SQL

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Persistent
Object Operations

Data Definition

Language

(DDL)/SQL

Data Manipulation
Language

(DML)/SQL

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Model Objects
& Queries

Data Definition
Language
(DDL)/SQL

Data Manipulation
Language
(DML)/SQL

S
ig

ne
r

Clock

Private Key

ORM Overlay / Interceptor

Model Objects
& Queries

DBKnot Models
& Queries

hash +
prev_sign +

prev_timestamp

 new_signature

Transaction SignHash Transaction SignHash Transaction SignHash Transaction SignHash

Transaction

Sign

Hash Transaction

Sign

Hash Transaction

Sign

Hash Transaction

Sign

Hash

Transaction

SignHash

Transaction

SignHash

Transaction

SignHash

Transaction

SignHash

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

All Inline

Inline Hashes - Pipelined Signing

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

All Inline

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

Inline Hashes -
Pipelined Signing

Transaction

Sign

HashTransaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

Pipelined Hashing & Signing

Transaction

Sign

HashTransaction

Sign

HashTransaction

Sign

HashTransaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

illustration
 and

 do
 not

 denote
 proportionality

 of
 opration

 tim
e.

All Pipelined

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

Signer

C
lock

P
rivate

K
e
y

Application Software
(e.g.: ERP)

Proper Transactions
+

Malicious /
Fraudulent Transactions Organization N

Application Software
(e.g.: ERP)

Proper Transactions Organization X

Application Software
(e.g.: ERP)

Proper Transactions Organization Y

Application Software
(e.g.: ERP)

Proper Transactions Organization Z

Application Software
(e.g.: ERP)

Proper Transactions Organization P

Application Software
(e.g.: ERP)

Proper Transactions Organization Q

Timestamper/Signer

Notary ServiceSchool Bank

System Log
ERP / CRM

SystemInternet

Signer

C
lock

P
rivate
K

ey

hash + prev-hash
Timestamp + Signed
(Hashes + Timetamp)

Record Has
No Hash

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Record Has
No Hash

Record Has
No Hash

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Hash Has
No Record

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

Record Has
No Hash

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Hash-Signature
Mismatch

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

S
ig

ner

Clock

Private

Key

Timestamp +

Signed (Hashes +

Timetamp)

hash + prev_hash

Figure 8: Detection of Maliciously Added Record

data-read or insertion time where a record needs to be verified. The verification step will trace
the record back throughout the chain through an “n” predefined depth before generating the
assumption that it was not tampered with within a particular time-window (1 week, 1 month,
1 year, etc.)

The second case is the case of patrolling threads/processes. These are housekeeping threads
that regularly patrol the database to check and confirm the correctness of all records, hashes,
signatures, and linkages. Patrolling tasks would adaptively work when resource utilization is
low so they do not impact the performance of the day-to-day system transactions.

96

DBKnot:A Transparent and Seamless, Pluggable, Tamper Evident Database Khalil, Kassas, and Sobh

We believe more work could be done on both verification cases to optimize such a process
and increase the coverage of tests within the same short duration of time.

5.5 Performance Optimization

To minimize the performance impact of the tracking, signing, and hashing layer, in this section
we illustrate a number of different optimizations that could be used to mitigate and reduce such
an impact. Most of them will introduce different forms of parallelism into the design.

5.5.1 Signing Distribution

In this design illustrated in Figure 9, a technique similar to database record sharding is used
to distribute workload on a number of different shards. Instead of chaining signed blocks in a
purely sequential manner, they are chained in a round-robin form. In this case, if the system
is configured to use “n” shards, then each record “i” will be distributed to shard “s=i % n”.
The record will be linked to the previous record in the same shard too. Please note that the
“i” is the sequence ID of the hash record rather than the ID of any of the tables. So, there
is no possibility of collisions with other IDs in the system. The advantage of this technique

Data
Signer 0

Consistent
Hasher

Signer 1

Signer 2

Signer 3

Hash Hash Hash Hash

Hash

Hash

Hash

Hash

Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash

𝒔 = 𝒊	%	𝒏
Where
s = signer id
i = record sequence id
n = number of signers

Figure 9: Why one should use EasyChair

is that it breaks down the added latency and sequentiality of the process and introduces a
degree of parallelism. Utilizing this method, a number of insert statements together with their
corresponding hashes could be done in parallel without having to wait for each other to finish.

The tradeoff in this approach is that database verification is divided into “n” independent
chunks which makes the chaining process less complex. One mitigation for that is to introduce
occasional inter-shard linkages to tightly intertwine them together and eliminate that indepen-
dence.

Figure 10 illustrates how consecutive transactions are linked, hashed, chained, and signed
together and how they are split into groups.

Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

Re
co

rd
 H

as
h

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20𝒔 = 𝒊	%	𝒏
Where
s = signer id
i = record sequence id
n = number of signers

S
1

S
2

S
3

S
0

S
1

S
2

S
3

S
0

S
1

S
2

S
3

S
0

S
1

S
2

S
3

S
0

S
1

S
2

S
3

S
0

Chain 1 17 -> 13 -> 9 -> 5 -> 1

Chain 2 18 -> 14 -> 10 -> 6 -> 2

Chain 3 19 -> 15 -> 11 -> 7 -> 3

Chain 4 20 -> 16 -> 12 -> 8 -> 4

Figure 10: Why one should use EasyChair

97

DBKnot:A Transparent and Seamless, Pluggable, Tamper Evident Database Khalil, Kassas, and Sobh

5.5.2 Coarse Grained Block Signing

Instead of performing hashing and signing on a record-by-record level, records are grouped into
blocks. Each block is hashed together and then the group hash is signed by the signer.

To optimize the signing process, transactions batches are broken down into blocks and
each block is hashed and signed separately. This approach reduces the signing overhead and
enhances performance. Instead of a hashtable with an entry for every record, a smaller hashtable
is utilized with a record per batch. There is a tradeoff however between the batch (block) size
and the time required to verify a record.

Another drawback is that records of a whole batch will remain untracked until the batch
is completed and signed. This will be problematic in cases where the database undergoes
few transactions. To mitigate for this problem, a variable-size block could be implemented as
illustrated in Figure 11. If a block remains open for a certain configurable duration of time,
the system generates a clock-event. This clock event with its corresponding timestamp will
force the closing and signing of the open block regardless of the number of records in the block.
This approach will also have the added benefit of being able to work in an environment with
intermittent or unreliable connectivity.

Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash
Record Hash

Batch 1 Hash

Batch 3 Hash
Batch 4 Hash
Batch 5 Hash

Batch 2 Hash
Signer

Hash + PHash

Signature + TS

🕘
Clock Event

🕘
Clock Event

🕘
Clock Event

🕘
Clock Event

Figure 11: Coarse Grined Signing - Variable Block Size

5.6 Performance Optimization - Pipelining

Four different techniques are being used for handling sequentiality / parallelism in implement-
ing the DBKnot chaining process. The first technique is purely sequential, the second technique
pipelines the signing process, the third technique pipelines both the hashing and signing pro-
cesses combined, and the fourth technique designs everything to be pipelined. Each one of the
techniques will be further explained in its own corresponding section. maliciously-added-record

5.6.1 Parameters

For each of the techniques used, there are 3 assumed scenarios that will be tested. All the
scenarios are variants of the following set of variables: Transaction Time, Hashing Time, and
Signature Time.

All Variables:

• n=number of transactions
• t=transaction time (t1→short transaction,t2→long [4X] transaction)
• h=hashing time
• s=signing time

98

DBKnot:A Transparent and Seamless, Pluggable, Tamper Evident Database Khalil, Kassas, and Sobh

Pipelined Hashing & Signing

Database Layer

Integration

Options

Webservice LayerORM Layer

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_2

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_1

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

H
as

he
r

Record

Record

Record

hash

hash

hash

hash

S
ig

ne
r

Clock

Private Key

S
ig

ne
r

Clock

Private Key

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

Hash Chain Table

Sequential
ID Hash of Record

Contents

Record Source Table ID

Record Signing

Timestamp

Signature (record_hash,
record_hash_timestamp,

previous_signature)

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

H
as

he
r

hash

hash

hash

hash

hash+prev_hash

timestamp +
sign (hash+ts)

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Persistent
Object Operations

Data Definition

Language

(DDL)/SQL

Data Manipulation
Language

(DML)/SQL

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Persistent
Object Operations

Data Definition

Language

(DDL)/SQL

Data Manipulation
Language

(DML)/SQL

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

User / Developer Code

ORM Layer

Model Objects
& Queries

Data Definition
Language
(DDL)/SQL

Data Manipulation
Language
(DML)/SQL

S
ig

ne
r

Clock

Private Key

ORM Overlay / Interceptor

Model Objects
& Queries

DBKnot Models
& Queries

hash +
prev_sign +

prev_timestamp

 new_signature

Transaction SignHash Transaction SignHash Transaction SignHash Transaction SignHash

Transaction

Sign

Hash Transaction

Sign

Hash Transaction

Sign

Hash Transaction

Sign

Hash

Transaction

SignHash

Transaction

SignHash

Transaction

SignHash

Transaction

SignHash

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

All Inline

Inline Hashes - Pipelined Signing

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

All Inline

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

Inline Hashes -
Pipelined Signing

Transaction

Sign

HashTransaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

 illustration
 and

 do
 not

 denote

proportionality
 of

 opration
 tim

e.

Pipelined Hashing & Signing

Transaction

Sign

HashTransaction

Sign

HashTransaction

Sign

HashTransaction

Sign

Hash

N
ote:

 B
lock

 P
roportions

 A
re

 T
he

 S
am

e
 and

 are
 only

 for
 sequence

illustration
 and

 do
 not

 denote
 proportionality

 of
 opration

 tim
e.

All Pipelined

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

Note: Block Proportions Are The Same and are only for sequence illustration and do not denote proportionality of opration time.

Signer

C
lock

P
rivate

K
e
y

Application Software
(e.g.: ERP)

Proper Transactions
+

Malicious /
Fraudulent Transactions Organization N

Application Software
(e.g.: ERP)

Proper Transactions Organization X

Application Software
(e.g.: ERP)

Proper Transactions Organization Y

Application Software
(e.g.: ERP)

Proper Transactions Organization Z

Application Software
(e.g.: ERP)

Proper Transactions Organization P

Application Software
(e.g.: ERP)

Proper Transactions Organization Q

Timestamper/Signer

Notary ServiceSchool Bank

System Log
ERP / CRM

SystemInternet

Signer

C
lock

P
rivate
K

ey

hash + prev-hash
Timestamp + Signed
(Hashes + Timetamp)

Record Has
No Hash

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Record Has
No Hash

Record Has
No Hash

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Hash Has
No Record

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

Record Has
No Hash

id table_name record_hash timestamp signature

1 User_Table_1 <hash> <ts> <signature>

2 User_Table_2 <hash> <ts> <signature>

3 User_Table_3 <hash> <ts> <signature>

4 User_Table_2 <hash> <ts> <signature>

HashTable

Hash-Signature
Mismatch

Field 1 Field 2 Field 3 Field 4 Field 5

data 1 data 2 data 3 data 4 data 5

data 6 data 7 data 8 data 9 data 10

data 11 data 12 data 13 data 14 data 15

data 16 data 17 data 18 data 19 data 20

User_Table_3

S
ig

ner

Clock

Private

Key

Timestamp +

Signed (Hashes +

Timetamp)

Timestamper/Signer

Notary ServiceSchool Bank

System Log ERP / CRM

System
Internet

hash + prev_hash

Figure 12: Comparison of the 5 Pipelining Techniques

• v=total batch duration

The following categories of transactions were derived from the preceding variables:

• Transaction Bound: In these scenarios, the transaction time is the longest of the 3 num-
bers.

• Hashing Bound: In these scenarios, the hashing time is the longest of the 3 numbers.
• Signing Bound: In these scenarios, the signing time is the longest of the 3 numbers.

All tests are done on 2 batches of transactions, one of them is made up of transactions that
require a small “t1” to run, another one is a long batch with transactions taking longer time
“t2” where (t2=4×t1). There are two other intermediate batches but we have decided to not
include their results in this document due to the sufficient clarity of the other samples.

5.6.2 Technique 1: Inline Hashing and Signing

The first technique is used is to perform the transaction, followed by the hashing process,
followed by the signing process. They are all done in series as illustrated in Figure 12.

The formula v =
∑n

i=0 t + h + s shows that due to the linear dependency nature of this
approach, the total time taken is a simple sum of the total time taken for each transaction
(transaction time “t” + hashing time “h” plus signing time “s”) and that the process is a very
basic sequential one without any performance gains from any potential parallelism.

5.6.3 Technique 2: Partial Concurrency Through Signature Pipelining

This technique removes the signing process out of the main execution pipeline to allow running
it in parallel to gain some performance. Please note that the transaction and hashing in this
approach remain sequential.

99

DBKnot:A Transparent and Seamless, Pluggable, Tamper Evident Database Khalil, Kassas, and Sobh

5.6.4 Technique 3: Concurrency Through Hash and Signature Pipelining

This technique separates the hashing and signing from the main thread and executes them
separately in a single thread of sequential execution. Please note that they are both sequential
as well. The signing process has been increased in duration to illustrate the sequential nature
of the process and its impact. This time taken for a transaction is summarized as follows:
v = max(s +

∑n
i=0 t + h, t +

∑n
i=0 s + h)

5.6.5 Technique 4: Concurrency Through Pipelining All Operations

This technique is different from all the others above. In this technique we separate each of
the 3 steps (transaction, hashing, and pipelining) into its own pipeline and let them run asyn-
chronously while preserving sequence dependencies.

In this solution everything runs in parallel. Where a hasher is separate from a signer and
separate from the main transaction thread of execution. The time taken for a transaction is
equivalent to: v = max(h + s +

∑n
i=0 t, t + s +

∑n
i=0 h, t + h +

∑n
i=0 s)

6 Experimentation and Results

Workloads were automatically generated by taking into consideration covering all different
combinations of different inputs. For example, signing time was generated to include a whole
spectrum of signing time to take into consideration the existence of local vs. remote signer
and different delays in the signing process. The same was done for the hashing time as well as
transaction time.

Figure 13 shows the classification of test data based on a comparison of time taken by the ac-
tual transaction, the hashing process, and the signing process. As illustrated, the generated test
data ensures that all different combination scenarios are taken into consideration. This includes
transaction-bound operations, hashing-bound operations, as well as signing-bound operations.

Figure 13 also shows a visual comparison of how the 4 different techniques of parallelism
visually compare in the 3 different scenarios of workloads.

The comparison sets of heatmaps below shows that pipelining does enhance performance in
most cases. The following is a summary of the pipelining results:

• All Inline
– Base performance
– Increase in record hashing or signing time results in equal impact on performance.

• Pipeline Signing

– Better overall performance
– Increase in signing time results in less performance degradation than increase in

hashing time due to parallelism

• Pipeline Signing and Hashing

– Slight performance improvement from the signing-only pipelining
– Equal impact of increase in hashing and signing time on the total duration.

• Pipeline All

– Significantly better performance.
– Performance is slightly better when hashing and signing time are similar

100

DBKnot:A Transparent and Seamless, Pluggable, Tamper Evident Database Khalil, Kassas, and Sobh

T

Technique 1 – All Inline

H
S

T

H

S

T
H

S

T

H
S

T

H
S

T

H

S
T

H

S

T
H

S

T
H

S

Case A: Transaction Bound Case B: Hash Bound Case C: Signature Bound

Transaction
Hash
Sign

T

Technique 2 – Pipeline Signature

H
S

T

H

S

T
H

S

T

H
S

T

H
S

T

H

S
T

H

S

T
H

S

T
H

S

Case A: Transaction Bound Case B: Hash Bound Case C: Signature Bound

Transaction
Hash
Sign

T

Technique 3 – Pipeline Hash & Signature

H
S

T

H

S

T
H

S

T

H
S

T

H
S

T

H

S

T

H

S

T
T

H

S

H

S

Case A: Transaction Bound Case B: Hash Bound Case C: Signature Bound

Transaction
Hash
Sign

T

Technique 4 – Pipeline All

Case A: Transaction Bound Case B: Hash Bound Case C: Signature Bound

H
S

T

H

S

T
H

S
T

H
ST

H
S

T

H

S

T

H

S

T
H

S

T
H

S

Transaction
Hash
Sign

Figure 13: Classification of Generated Test Data

More details are outlined in Figure 14 and Figure 15 with a numerical comparative indication
of relative performance speedup. We have also assessed the impact of the proposed hashing,

5 10 15 20
Parallel Sign 40.25 40.5 40.75 41
Parallel Sign & Hash 26 31 36 41
All Parallel 21.25 21.5 21.75 22
Sequential 45 50 55 60

0

10

20

30

40

50

60

70

To
ta

l T
ra

ns
ac

tio
n

Ti
m

e
In

cl
ud

in
g

Si
gn

in
g

(t
im

e
un

its
)

Signing Complexity (time units)

Comparing Different Paralellization Techniques
on Total Transaction Time

Parallel Sign Parallel Sign & Hash All Parallel Sequential

Figure 14: Comparison of Pipelining
Techniques Results

0

10

20

30

40

50

60

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

5
10

15
20

To
ta

l T
ra

ns
ac

ti
n

Ti
m

e
(u

ni
ts

)

Hash Time & Sign Time (units)

Different Parallelization Techniques
Variable Hash & Sign Time

All Parallel Parallel Sign & Hash Parallel Sign Sequential

Figure 15: Comparison of Pipelining
Techniques Results

signing, and chaining architecture on the performance of the transactions in comparison with
the plain transactions without any additional tracking. Our solutions did add an overhead that
is slightly higher than transaction time that is slightly more than the double of the transaction-
only time. As illustrated however by Figure 17, the overhead is reduced with time. The
overhead time however was cut down to approximately 33% using the pipelining techniques we
implemented.

101

DBKnot:A Transparent and Seamless, Pluggable, Tamper Evident Database Khalil, Kassas, and Sobh

Figure 16: Diminishing Performance
Overhead

Figure 17: Total Time Taken Using
Sequential Hashing and Signing

7 Conclusions and Future Work

We designed a tamper-evident architecture called DBKnot for detecting database tampering.
An external signer is being used to provide stronger detection of database tampering even by
an insider who has full authority and access rights over the whole system including operating
systems, databases, networks, and firewalls. DBKnot enables tracking of individual immutable
tables by chaining transaction hashes and signing them by an external signer or a hardware-
security-module. Based on our experiments, performance overhead was significantly reduced
by using different parallelization and pipelining techniques that reduced the synchronicity of
hashing and signing.

Based on the related work presented above, we believe that our proposed architecture
achieves tamper detection for a certain class of database applications (i.e.: Append only use-
cases). The architecture is designed to be lightweight, easy to retrofit into existing systems, as
well as being easy to integrate with near-zero modifications.

DBKnot was able to achieve initially the target functionality with an extra overhead that
is approximately equal to the plain transaction time without tracking. The overhead varies
according to different workload scenarios outlined in the experiment results chapter. At the
second round of repeated experiments and as per the normalized numbers, Figure 14 and
Figure 15 show that the fully parallel approach to our hashing and signing design leads to 66%
performance speedup than the non-parallel approach.

The following are some areas that could be enhanced or features that could be added in
upcoming related work:

• Expand beyond immutable transactions to support update and delete
• More advanced verification algorithms
• Work on supporting web-services and IoT
• Cater to database structural changes

References

[1] Amazon gets into the blockchain with Quantum Ledger Database &
Managed Blockchain. URL: http://social.techcrunch.com/2018/11/28/

amazon-gets-into-the-blockchain-with-quantum-ledger-database-managed-blockchain/.

[2] Amazon QLDB. URL: https://aws.amazon.com/qldb/.

102

http://social.techcrunch.com/2018/11/28/amazon-gets-into-the-blockchain-with-quantum-ledger-database-managed-blockchain/
http://social.techcrunch.com/2018/11/28/amazon-gets-into-the-blockchain-with-quantum-ledger-database-managed-blockchain/
https://aws.amazon.com/qldb/

DBKnot:A Transparent and Seamless, Pluggable, Tamper Evident Database Khalil, Kassas, and Sobh

[3] BigchainDB 2.0 Whitepaper • • BigchainDB. URL: https://www.bigchaindb.com/whitepaper/.

[4] Designing better file organization around tags, not hierarchies. URL: https://www.

nayuki.io/page/designing-better-file-organization-around-tags-not-hierarchies#

git-version-control.

[5] Gramm-Leach-Bliley Act. URL: https://www.ftc.gov/tips-advice/business-center/

privacy-and-security/gramm-leach-bliley-act.

[6] Object-relational Mappers (ORMs). URL: https://www.fullstackpython.com/

object-relational-mappers-orms.html.

[7] OSTree. URL: https://ostree.readthedocs.io/en/latest/.

[8] RFC 4810 - Long-Term Archive Service Requirements. URL: https://datatracker.ietf.org/
doc/rfc4810/.

[9] Snapcraft - Snaps are universal Linux packages. URL: https://snapcraft.io/.

[10] Welcome to Flatpak’s documentation! — Flatpak documentation. URL: https://docs.flatpak.
org/en/latest/.

[11] What is Object/Relational Mapping? - Hibernate ORM. URL: https://hibernate.org/orm/
what-is-an-orm/.

[12] What is REST. Library Catalog: restfulapi.net. URL: https://restfulapi.net/.

[13] Canonical’s Snap: The Good, the Bad and the Ugly, July 2016. Section: Development. URL:
https://thenewstack.io/canonicals-snap-great-good-bad-ugly/.

[14] Report to the Nations - 2018 Global Study on Occupational Fraud and Abuse. Techni-
cal report, Association of Certified Fraud Examiners, 2019. URL: https://www.acfe.com/

report-to-the-nations/behind-the-numbers/.

[15] George W Dunlap, Samuel T King, Sukru Cinar, Murtaza A Basrai, and Peter M Chen. ReVirt:
Enabling Intrusion Analysis through Virtual-Machine Logging and Replay. page 14.

[16] Luis Lavaire. Immutable systems: how they work and why
should we care., July 2019. URL: https://medium.com/nitrux/

immutable-systems-how-they-work-and-why-should-we-care-39e567a59f28.

[17] Michael G. Oxley. H.R.3763 - 107th Congress (2001-2002): Sarbanes-Oxley Act of 2002, July
2002. URL: https://www.congress.gov/bill/107th-congress/house-bill/3763.

[18] Kyriacos Pavlou and Richard Snodgrass. DRAGOON: An Information Accountability System for
High-Performance Databases. Proceedings - International Conference on Data Engineering, pages
1329–1332, April 2012. doi:10.1109/ICDE.2012.139.

[19] Kyriacos Pavlou and Richard T. Snodgrass. Forensic Analysis of Database Tampering. In Proceed-
ings of the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD ’06,
pages 109–120, New York, NY, USA, 2006. ACM. URL: http://doi.acm.org/10.1145/1142473.
1142487, doi:10.1145/1142473.1142487.

[20] Kyriacos E. Pavlou and Richard T. Snodgrass. Generalizing Database Forensics. ACM Trans.
Database Syst., 38(2):12:1–12:43, July 2013. URL: http://doi.acm.org/10.1145/2487259.

2487264, doi:10.1145/2487259.2487264.

[21] Kyriacos E. Pavlou and Richard T. Snodgrass. Generalizing Database Forensics. ACM Trans.
Database Syst., 38(2):12:1–12:43, July 2013. URL: http://doi.acm.org/10.1145/2487259.

2487264, doi:10.1145/2487259.2487264.

[22] Office for Civil Rights (OCR). Summary of the HIPAA Security Rule, November 2009. URL:
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html.

[23] David M. Upton and Sadie Creese. The Danger from Within. Harvard Business Review, (Septem-
ber 2014), September 2014. URL: https://hbr.org/2014/09/the-danger-from-within.

[24] Weltwirtschaftsforum and Zurich Insurance Group. Global risks 2019: insight report. 2019. OCLC:
1099890423. URL: http://www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf.

103

https://www.bigchaindb.com/whitepaper/
https://www.nayuki.io/page/designing-better-file-organization-around-tags-not-hierarchies#git-version-control
https://www.nayuki.io/page/designing-better-file-organization-around-tags-not-hierarchies#git-version-control
https://www.nayuki.io/page/designing-better-file-organization-around-tags-not-hierarchies#git-version-control
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act
https://www.fullstackpython.com/object-relational-mappers-orms.html
https://www.fullstackpython.com/object-relational-mappers-orms.html
https://ostree.readthedocs.io/en/latest/
https://datatracker.ietf.org/doc/rfc4810/
https://datatracker.ietf.org/doc/rfc4810/
https://snapcraft.io/
https://docs.flatpak.org/en/latest/
https://docs.flatpak.org/en/latest/
https://hibernate.org/orm/what-is-an-orm/
https://hibernate.org/orm/what-is-an-orm/
https://restfulapi.net/
https://thenewstack.io/canonicals-snap-great-good-bad-ugly/
https://www.acfe.com/report-to-the-nations/behind-the-numbers/
https://www.acfe.com/report-to-the-nations/behind-the-numbers/
https://medium.com/nitrux/immutable-systems-how-they-work-and-why-should-we-care-39e567a59f28
https://medium.com/nitrux/immutable-systems-how-they-work-and-why-should-we-care-39e567a59f28
https://www.congress.gov/bill/107th-congress/house-bill/3763
https://doi.org/10.1109/ICDE.2012.139
http://doi.acm.org/10.1145/1142473.1142487
http://doi.acm.org/10.1145/1142473.1142487
https://doi.org/10.1145/1142473.1142487
http://doi.acm.org/10.1145/2487259.2487264
http://doi.acm.org/10.1145/2487259.2487264
https://doi.org/10.1145/2487259.2487264
http://doi.acm.org/10.1145/2487259.2487264
http://doi.acm.org/10.1145/2487259.2487264
https://doi.org/10.1145/2487259.2487264
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
https://hbr.org/2014/09/the-danger-from-within
http://www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf

	Introduction
	Background
	Object Relational Mapping
	Web Services
	Transaction Chaining

	Related Work
	Problem Statement and Motivation
	Proposed Solution
	Solution Overview
	The Hasher and The External Timestamping Signer
	Integration Models
	ORM Level Integration
	Database Level Integration
	Web Service API Level Integration

	Verification Steps
	Performance Optimization
	Signing Distribution
	Coarse Grained Block Signing

	Performance Optimization - Pipelining
	Parameters
	Technique 1: Inline Hashing and Signing
	Technique 2: Partial Concurrency Through Signature Pipelining
	Technique 3: Concurrency Through Hash and Signature Pipelining
	Technique 4: Concurrency Through Pipelining All Operations

	Experimentation and Results
	Conclusions and Future Work

