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Abstract
Clause selection plays a crucial role in modern saturation-based automatic theorem

provers. A commonly used heuristic suggests prioritizing small clauses, i.e., clauses with
few symbol occurrences. More generally, we can give preference to clauses with a low
weighted symbol occurrence count, where each symbol’s occurrence count is multiplied by a
respective symbol weight. Traditionally, a human domain expert would supply the symbol
weights.

In this paper, we propose a system based on a graph neural network that learns to
predict symbol weights with the aim of improving clause selection for arbitrary first-order
logic problems. Our experiments demonstrate that by advising the automatic theorem
prover Vampire on the first-order fragment of TPTP using a trained neural network, the
prover’s problem solving capability improves by 6.6% compared to uniformly weighting
symbols and by 2.1% compared to a goal-directed variant of the uniformly weighting
strategy.

1 Introduction
Clause selection is a major choice point in modern saturation-based provers for first-order logic.
It amounts to deciding, at each iteration of the saturation loop, which clause should be the next
to activate, i.e., to participate in generating inferences with the previously activated clauses.
Since the generating inferences form the backbone of the sought proof, a perfect clause selection
oracle would completely alleviate the need for a search. Practical clause selection heuristics in
the tightly optimized state-of-the-art provers, however, also need to be efficient to compute.
The most widely used general-purpose ones are based on the first-in/first-out principle and
simple symbol counting [23].

A promising line of research is to automatically derive new clause selection heuristics from
prover successes using machine learning [21, 6]. In recent years, learning systems such as
ENIGMA [11, 4, 13] or Deepire [28] have been able, for example, to substantially improve the
performance of the base prover on problems exported from a large mathematical corpus [14].
As with classical heuristics, ensuring that the learned part is not too expensive to evaluate was
key to success [12, 27].
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A natural generalization of the symbol counting heuristic, mentioned, for example, in the E
prover [24] manual [22] under the name FunWeight, allows each symbol to have a user-specified
weight to act in the heuristic as a multiplier for the respective symbol’s occurrence count.
While the extra degrees of freedom make the heuristic, in theory, strictly more powerful than
its simple variant, only a true expert on a particular problem domain or on a specific encoding
could possibly possess the knowledge to capitalize on the additional power easily. The main
reason for this is that the proof search is typically quite fragile [29], making it very hard to
draw conclusions about cause and effect. Additionally, the idea of using the extra generality to
develop new proving strategies comes with a complication: The symbol weights depend on the
problem’s signature, so there is no immediate general way of specifying them in advance.

In this paper, we design and implement a learning system that automatically recommends
good symbol weights for clause selection for any given problem. The system is based on a graph
neural network (NN) that operates on the structure of the input problem’s clause normal form.
Similarly to ENIGMA or Deepire, we use previous prover successes to train the system, but rely
on a novel scheme for balancing positive (coming from a proof) and negative (not coming from
proof) training clauses. Because the GNN only computes in a one-time preprocessing phase to
recommend the weights, there is no noticeable performance penalty during actual saturation.

We train and evaluate our system on first-order problems from Thousands of Problems for
Theorem Provers (TPTP) [30], finding it to substantially improve performance over a baseline
strategy with uniform symbol weights. TPTP is a very diverse problem collection, which means
that the knowledge the system extracts through training must be, to a large degree, general-
purpose and readily useful elsewhere. We attempt to shed some light on what was learned by
having a closer look at the recommended weights on several problems that were only solved
with our system’s help.

The remainder of the paper is organized as follows. Section 2 reviews the basic concepts used
throughout the paper. Sections 3 and 4 describe the main task we tackle and our solution—a
GNN-based symbol weight recommender. In Section 5, we describe experiments we performed to
evaluate our recommender and analyze the results, and in Section 6, we continue the analysis in
a case-based manner. We discuss possible modifications and enhancements of our recommender
in Section 7 before concluding in Section 8.

2 Background

We assume that the reader is familiar with the basic concepts related to automatic theorem
proving. In this section, we provide a brief overview of the terminology relevant to our research
with references to detailed explanations.

Formulas in first-order logic (FOL) are built using variables, function and predicate sym-
bols, the equality symbol (which we denote ≈), logical connectives, and quantifiers [1, 5]. A
FOL problem consists of FOL formulas: a conjecture and zero or more axioms. Solving the
problem amounts to finding a proof that the conjecture necessarily follows from the axioms.
In refutational proving, we look for a proof by contradiction—we negate the conjecture and
proceed to infer a trivial contradiction. A common approach is to convert the problem to an
equisatisfiable clause normal form (CNF) problem and to perform the inferences in the clause
space, ultimately inferring a trivial contradiction in the form of the empty clause.

A saturation-based automatic theorem prover (ATP), such as Vampire [15] or E [24], relies
on a given-clause procedure [18, 23] to orchestrate the processing of inferences. It maintains
two sets of clauses: active and passive. At the beginning of a proof search, the passive set is
populated with the input clauses. Then, iteratively, a clause is always selected from the passive
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C W (C)
p(X1, c,X2) ∨ q(X1) 3w(X) + w(p) + w(q) + w(c)
g(X1, h(X2)) ≈ f(g(X1, X2), X1) 5w(X) + w(≈) + w(f) + 2w(g) + w(h)
¬(h(X1) ≈ h(X2)) ∨X1 ≈ X2 4w(X) + 2w(≈) + 2w(h)

Table 1: Examples of clauses and their symbol-counting weights

set and put into the active set. It is made to participate in inferences with all the active clauses,
and the newly generated clauses are added to the passive set. The proof search is completed as
soon as the empty clause is inferred.

In a typical proof search, selecting inauspicious clauses quickly clutters the active set with
useless clauses, slowing the proof search considerably and thus reducing the chance of finding
a proof in a reasonable time. On the contrary, accurately selecting proof clauses leads to
quick success. Thus, the quality of the clause selection heuristic is crucial for the performance
of the prover [23]. Most provers interleave several priority queues of passive clauses, each
prioritized by a distinct criterion. Commonly utilized criteria include clause age, which favors
early-inferred clauses, and symbol count, often referred to as clause weight. These queues
are commonly interleaved at a predetermined ratio. For example, in its default configuration,
Vampire interleaves age- and weight-based selection at a ratio known as the age-weight ratio
[15].

While the proof search may also conclude by depleting the passive set and thus demonstrat-
ing the satisfiability of the input clause set, in this work, we are only concerned with refutation
proofs and only consider a proof search successful if it infers the empty clause.

3 Task Definition

3.1 Symbol-Counting Clause Weight

Extended signature. Consider a problem P defined over the signature ΣP (the set of pred-
icate and function symbols in P ). We define the extended signature Σ+

P by extending ΣP with
two fresh symbols: ≈ (for the equality predicate) and X (a generic variable). In the following
text, we use the term “symbol” in the broader sense of any member of Σ+

P .

Symbol occurrence count. Given a clause C over ΣP , we define SC : Σ+
P → N as the symbol

occurrence count operator of C: The values of SC(≈) and SC(s) for s ∈ ΣP are to be computed
in an obvious way and SC(X) is the total number of positions in C at which a variable occurs.

Symbol and clause weight. Any mapping w : Σ+
P → R≥1 is a symbol weight assignment

for P . By extension, W (C) =
∑

s∈Σ+
P
SC(s) · w(s) is the symbol-counting weight of clause C

induced by the symbol weight assignment w.
See examples of symbol-counting clause weights in Table 1.

Fairness. When W is used as a clause selection heuristic in an ATP, a weight-based selection
chooses the clause that minimizes W among the passive clauses. While we could, in principle,
allow symbol weights smaller than 1 (or even negative), constraining the symbol weights with
a lower bound greater than 0 makes the induced clause selection heuristic fair [23]: For each
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W ′ ∈ R, there is only a finite number of clauses (up to variable renaming) that weigh at most
W ′, so no clause inferred during the proof search is denied selection indefinitely.1

The standard weight criterion used by Vampire assigns the weight 1 to each symbol [15].

3.2 Main Task
We assume a fixed distribution of FOL problems (the target distribution) and a fixed FOL ATP
(the target prover) with a fixed time limit (specified in wall-clock time or CPU instructions).
Furthermore, we assume that the target prover is a saturation-based prover that selects at
least some clauses by a symbol-counting clause weight W instantiated by a configurable symbol
weight assignment w.

Our main goal is to create a system that, when presented with a FOL problem P sampled
from the target distribution, produces a symbol weight assignment w such that the target prover
is likely to solve P within the time limit when using w.

4 Recommender
To solve the main task, we propose a system based on a neural network (NN) that produces a
symbol weight assignment. The system is trained on traces of successful proof searches of the
target prover on the target problem distribution.

4.1 Input Problem Format
Given a FOL problem, we first convert it to an equisatisfiable CNF problem [17]. The conver-
sion may introduce new function symbols by Skolemizing the existential quantifiers and new
predicate symbols by naming some subformulas. In the remainder of this text, we assume that
the input problem is specified in CNF.

In addition to the CNF specification of the problem, some metadata are considered part
of the input. Specifically, the recommender is given the role of each clause (axiom, assump-
tion, or negated conjecture), and, for each symbol, whether the symbol was introduced during
preprocessing (Skolemization or subformula naming) and whether it appears in the conjecture.

4.2 Prediction
4.2.1 Graph Representation of Problems

Given a problem in CNF, we convert it to a graph. Each node in the graph represents a
syntactic element of the input problem, such as a clause, an atom, a term, a predicate or
function symbol, or a variable. The edges represent direct relations of the syntactic elements;
for example, a clause is connected to all the atoms it contains and an atom is connected to a
predicate symbol and zero or more arguments. The nodes and edges are typed according to
their meaning: The type of a node denotes the role of the corresponding syntactic element (for
example, “clause” or “atom”), and the type of an edge denotes the relation it represents (such
as “clause contains atom”) and is typically fully specified by the types of the adjacent nodes.

1Strictly speaking, interleaving weight-based selection with age-based selection suffices to ensure fairness.
However, in practice, we observed that allowing negative symbol weights may have undesirable effects even when
age-based selection is present; see Section 5.5.3.
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4.2.2 Graph Neural Network

The graph neural network (NN) that constitutes the predictive core of the recommender is
a relational graph convolutional network (GCN) [20]. It maintains an embedding (a numeric
vector), in our case of length 16, for each node in the input graph.

Initially, the embedding of a node is a trainable vector common to all nodes of one type. In
the clause and symbol nodes, the initial embedding is augmented with the metadata extracted
from the input problem.2

Four message-passing layers follow: In each of these layers, each node embedding is updated
by aggregating messages incoming from the node’s neighbors. Each message is the output of a
trainable affine transformation of the embedding of the source node. The trainable coefficients
of the transformation are shared by all edges of the same type in the same layer.3

After all four layers are evaluated, the final node embeddings are available. To obtain an
output weight w(s) of symbol s ∈ ΣP , the final embedding of the node that represents s is
transformed using an affine transformation, the trainable coefficients of which are shared by
all symbols, followed by an output activation function. To obtain an output variable weight
w(X), the embeddings of all variable nodes are aggregated by summation and transformed by a
trainable affine transformation followed by an output activation function. Similarly, the output
weight of equality w(≈) is calculated by aggregating the embeddings of all equality atom nodes.

We use the output activation function a(x) = 1+softplus(x), where softplus(x) = log(ex+1).
This ensures that every output weight is greater than 1, which ensures fairness of the clause
selection, as described in Section 3.1. The empirical experiments described in Section 5.5.3
confirm the efficacy of this activation function.

In the way just described, GNN transforms an input problem graph into a symbol weight
assignment w. The quality of the assignment can be empirically assessed by trying to solve the
input problem using the target prover with a symbol-counting clause selection heuristic induced
by w.

4.3 Training
Next, we explain how the NN is trained. Our approach exploits the fact that the symbol weight
assignment w predicted by the NN can be used outside of the prover to compute the weight
W (C) of an arbitrary clause C and that W (C) is differentiable with respect to the trainable
parameters of the NN.

4.3.1 Training Data Collection

We train the NN on traces of successful proof searches. To collect training data, we run the
target prover on the training problem set. We use a fixed clause selection heuristic, namely one
that interleaves an age-based queue with symbol-counting with uniform symbol weights at the
ratio 1:5. We enforce a time limit to curb impractically long proof searches.

From each successful proof search produced this way, we extract all the selected clauses. We
divide the selected clauses into two sets: proof clauses C+ and nonproof clauses C−, depending
on whether or not the clause contributed to the proof. We limit the size of each of these sets
to 10 000 clauses by subsampling if necessary.

2More precisely, the initial embedding of a node is the concatenation of a node-specific metadata vector
(empty in all nodes except clause and symbol nodes; see Section 4.1), and a trainable vector common to all
nodes of one type.

3The architecture and hyperparameters of the GNN are the same as those used in our earlier work on
recommending symbol precedences [2] which we refer the reader to for additional details.
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4.3.2 Training Example

We construct a training example from each pair of a proof clause C+ and a nonproof clause
C− from the Cartesian product C+ × C−. We interpret such an example as “C+ should be
selected before C−”. Since we know the occurrence counts of variables and symbols in each of
these clauses, we can use the weights predicted by the NN to predict clause weights W (C+)
and W (C−).

We define the predicted probability of C+ being preferable to C− according to the NN as
p(C+, C−) = sigmoid(W (C−) − W (C+)), where sigmoid(x) = 1

1+e−x is a standard activation
function that maps real numbers to the interval [0, 1].

4.3.3 Accuracy

We consider the example (C+, C−) classified correctly if and only if p(C+, C−) > 0.5. Since
this occurs if and only if W (C−) > W (C+), this ultimately corresponds to the prover selecting
C+ before C−.

Given a set of examples, the prediction accuracy of the NN is defined as the number of
correct classifications divided by the total number of examples. While the main task of the NN
remains to achieve a strong performance of the target prover, we train the NN on this proxy
task of achieving high accuracy on the training data. The proxy task has two crucial practical
advantages:

1. Proxy performance evaluation is relatively inexpensive, so we can quickly assess a trained
NN using its proxy performance.

2. Since p is differentiable with respect to the trainable parameters of the NN, we can use
gradient descent [8] to optimize the proxy performance of the NN.

4.3.4 Loss Function

To conclude the exposition of the training process, we define the loss on training example
(C+, C−) as the negative log-likelihood:

ℓ = − log p(C+, C−) = − log sigmoid(W (C−)−W (C+)) = log(1 + eW (C+)−W (C−))

This is a standard choice for binary classification tasks [10].

4.3.5 Training Procedure

We use minibatch stochastic gradient descent [8] to minimize the total loss on the training set.
We use a weighted sum to aggregate the loss values of multiple proof searches of different sizes
to reflect our intuition that every successful proof search has the same value. Training proceeds
in epochs, each using each training example exactly once.

When optimizing the proxy performance, we are effectively training a clause ranking function
W based on training examples of the form “W (C+) should be smaller than W (C−)”. The general
task of training a NN to rank arbitrary objects has been explored in RankNet [3]. In our case,
unlike RankNet, W is a mere proxy metric, not a final goal, so we need to ensure that W
represents our main task sufficiently. This representation is realized by the decomposition of
W into the symbol-wise components w.
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4.4 Evaluation
The quality of the NN can be assessed by measuring proxy performance or empirical perfor-
mance. Proxy performance is the mean prediction accuracy on a set of proof searches (see
Section 4.3.3). To determine the empirical performance on a set of problems, we run the tar-
get prover using symbol weight assignments predicted by the NN for the respective problems.
Empirical performance is measured as the number or proportion of proofs found within a fixed
proof search instruction limit.

For the experiments reported in the next section, we implemented a prototype recommender.
We did not attempt to optimize the recommender to reduce the computational overhead in-
troduced in addition to the proof search. In the version of the recommender we used in the
experiments4, this overhead for solving a single input problem is of the same order as the time
limit we used for empirical evaluation (5 × 1010 CPU instructions). When solving a batch of
problems, the overhead can be amortized to a great extent, so the recommender can already be
useful in such a setting. Further optimization is necessary to make the recommender practically
useful for solving isolated problems with time limits in the order of 1010 instructions5 or less.

5 Experiments
To assess the strength of the architecture and training procedure described in Section 4, we
performed a collection of experiments. In the experiments, we targeted the first-order fragment
of the Thousands of Problems for Theorem Provers (TPTP) problem library as our target
problem distribution and the ATP Vampire as our target prover.

5.1 System
We performed our experiments on a computer with a CPU Intel Xeon Gold 6140 (72 cores @
2.30GHz) and 502GiB random access memory (RAM).

5.2 Target Prover
Vampire [15] is a powerful ATP that has shown success especially in proving FOL theorems.
We modified Vampire

• to allow exporting the signature and the graph representation of the input problem,

• to print all the clauses selected in the proof search, and

• to allow the user to override the symbol weight assignment for clause selection.6

We used Vampire in its default configuration with the following exceptions: the Discount satura-
tion algorithm, age-weight ratio 1:5, no AVATAR [31], and a limit of 5×1010 CPU instructions7.
Using the Discount saturation algorithm, as opposed to the default limited resource strategy
[18], removes a prominent source of nondeterminism from the proof search. With Discount, the

4Source code of the recommender: https://github.com/filipbartek/vampire-ml/tree/lpar2023
5The order of seconds on a contemporary CPU
6Source code of the modified Vampire: https://github.com/filipbartek/vampire/tree/lpar2023
7In our experimental setup, 5 × 1010 instructions were executed in approximately 16 seconds of wall-clock

time.
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age-weight ratio 1:5 is stronger than the default 1:1 and increases the significance of weight-
based clause selection. Disabling AVATAR is a convenience that facilitates the parsing of the
selected clauses.

5.3 Problem Sets

We first collected all the 17 436 problems annotated as clause normal form (CNF) or first-order
form (FOF) in TPTP [30] v8.1.2. We set aside 3487 (approximately 20%) randomly sampled
problems as the test set for the final evaluation. We divided the remaining 13 949 problems in
a ratio of approximately 80 to 20 into 11 159 training problems and 2202 validation problems.

The validation set was used to measure the performance of the trained NN during the
training to compensate for the possible overfitting of the NN to the training set. Analogously,
performing the final evaluation on a separate test set ensures that the observed success is not
due to overfitting to the validation set.

Due to practical concerns, we restricted our attention to problems whose graph representa-
tion has at most 100 000 nodes. Therefore, the training, validation, and test sets have 10 016,
2492, and 3149 problems, respectively.

5.4 Training

First, we ran Vampire on the training and validation problem sets. The proofs found in this
way form the training and validation data. Each proof search trace was subsampled to at most
10 000 proof clauses and at most 10 000 nonproof clauses.

We trained a GNN as described in Section 4. Each training epoch was followed by a proxy
evaluation on the training and validation problem sets. Every 10 epochs, we performed an
empirical evaluation. After approximately 60 hours (160 epochs) of training, we chose the final
model based on the performance observed on the validation set.

Since the accuracy (both training and validation) grew smoothly within the first 80 epochs
and turned noticeably noisy afterward, we chose the final version of the GNN among the first
80 epochs to avoid accidental overfitting to the validation problem set. The final version has
the highest observed number of proofs found on the validation set.

5.5 Results

5.5.1 Empirical Performance

We evaluated the empirical performance of the final trained NN and the standard symbol
weight assignment that assigns the weight 1 to each symbol (denoted as baseline). Table 2
and Figure 1 show the results of the evaluation. The GNN improves the performance by
approximately 6.6% over the baseline. Furthermore, Figure 1 shows that the performance of
the trained GNN generalizes to instruction limits up to 4 times as large as the limit used to
generate the training data (5× 1010 instructions).

To get a better sense of the scale of this result, we evaluated the baseline with AVATAR
enabled. AVATAR is a powerful and sophisticated Vampire feature that aids saturation-based
theorem proving using a propositional SAT solver [31]. When we enabled AVATAR under the
same conditions as the baseline, we observed an improvement of 5.9% over the baseline, which
is of a magnitude similar to the improvement brought about by our trained GNN.
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Configuration Proofs found Compared to B
/3149 % + − %

Trained GNN 1494 47.4% +141 −49 +6.6%
Baseline (B) 1402 44.5% +0 −0 +0.0%
B + AVATAR 1485 47.2% +5.9%
B + Goal-directed 1463 46.5% +4.4%

Table 2: Results of the final empirical evaluation. The reported performance is the number of
proofs found on the test set (3149 problems) within 5×1010 CPU instructions per proof search.
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Figure 1: Total number of proofs found on the test set (3149 problems) in a given number
of CPU instructions per proof search. The dashed line shows the default evaluation limit of
5 × 1010 instructions that was used to generate the training data. The configurations were
evaluated to up to 2× 1011 instructions.

5.5.2 Iteration Efficiency

Figure 2 shows that the trained GNN is relatively efficient in terms of iterations of the saturation
loop. This is an expected outcome: The training indirectly incentivizes the prover to select
proof clauses in relatively early iterations, making the proof search conclude in relatively few
iterations. There were 1453 test problems that both the GNN and the baseline solved within
2× 1011 instructions. Of these, 828 were solved in fewer iterations by the GNN, while only 471
were solved in fewer iterations by the baseline.
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Figure 2: Total number of proofs found on the test set (3149 problems) in a given number
of iterations of the saturation loop per proof search. Only proofs found within 2 × 1011 CPU
instructions and 463 iterations are included. Proof searches with more than 463 iterations are
not shown to ensure that no more than 10% proofs are obscured from the plot by the instruction
limit.

5.5.3 Activation Function Comparison

As described in Section 4.2.2, we forced the output symbol weights to have values greater than
1. To understand what the effect of allowing weights smaller than 1 would be, we trained the
GNN for 24 hours with various final activation functions: a1(x) = 1 + softplus(x) (default),
a2(x) = 0.1+softplus(x) (greater than 0.1), a3(x) = softplus(x) (greater than 0), and a4(x) = x
(unconstrained). In almost all observed epochs, the empirical performance on the validation set
decreased from a1 to a4. Manual inspection of several failed proof searches performed with the
weights found with the activation function a4 confirmed our suspicion that allowing negative
symbol weights can often lead to infinite derivation chains of increasingly long clauses with
decreasing negative weights.

6 Interpreting the Learned Advice
The details behind the computation performed by a trained network are notoriously hard to
interpret. Although this holds for our GNN, too, we at least have the possibility to study
its end result—the recommended symbol weights—and to attempt to discover some important
features of the recommendations that lead to an efficient proof search. In this section, we
report our findings from manually analyzing the GNN symbol weight recommendations and
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the corresponding Vampire runs on several TPTP problems. To have the highest chance of
noticing impactful features, we selected the problems so that Vampire with recommendations
solves each of them fast while the baseline configuration fails (under the limit of 5× 1010 CPU
instructions).

Small conjecture symbols. For most of the problems we examined, symbols appearing
in the conjecture were assigned weights very close to the smallest allowed value, 1. At the
same time, other symbols were assigned weights ranging from 1 to approximately 10. Having
the conjecture symbols weigh less than the rest is a way to make the search goal-directed, a
well-known, generally successful strategy [e.g., 23].8

We find the fact that the GNN “reinvents” this strategy from the training data quite encour-
aging. However, it also raises the question of whether this is not all that has been learned. To
check this possibility, we reran the baseline configuration in a goal-directed mode.9 It solved
1463 (46.5%) problems in the test set, compared to 1494 (47.4%) solved by the trained GNN
(cf. Table 2). In other words, the trained GNN solved 2.1% more problems than the goal-
directed strategy. In summary, while goal-directedness seems to play an important role, it does
not explain all the gains obtained through the GNN symbol recommendation.

Bumped-up “Tseitin variables”. The TPTP problem ALG066+1 contains a ground descrip-
tion of a finite algebra with one binary operation op on five elements e0,...,e4 (one of which
is a unit). Its conjecture is a formula with a complex Boolean structure, for which efficient
clausification Vampire introduces 130 new predicate symbols sPi as names for subformulas [17].

The baseline run on this problem does not finish in a reasonable time, activating thousands
of clauses such as sP126 | sP125 | sP107 | sP88 | sP58, where the resolution rule system-
atically “distributes out” parts of the conjecture’s Boolean structure (previously abstracted by
new names during preprocessing). However, the GNN-advised Vampire finds a proof in 0.25 s
and approx. 2500 iterations of the main loop. The search proceeds differently because the GNN
assigns high weights (between 2 and 4) to the new predicate symbols sPi.

It seems that the rule discovered here is that it may pay off to postpone working on clauses
that are heavy by containing too many subformula names. We note, however, that ALG066+1,
being ground, becomes trivial also for the baseline when equipped with AVATAR [31], as all
the Boolean structure gets then efficiently dealt with by the SAT solver.

Variable weight. We noticed that the trained GNN almost always assigns a low weight (a
value very close to 1) to variables. (Recall that in our setting, there is only one global variable
occurrence weight for each problem.) This could be interpreted as “Other things being equal, a
general clause is more likely to help finish a proof than a specific one.”, which is actually obvious
when thinking about logical strength and the ultimate goal of finding a contradiction. At the
same time, some caution should be in order, as we also know that a clause with more variables
provides more opportunities for inferences, which often leads to a more explosive proof search.

Curious to see whether the learned tendency to have variables weigh less than most other
symbols was not stopped early by our fairness constraint (stating that any recommended weight
must be ≥ 1, cf. Section 4.2.2), we reran Vampire with the GNN symbol weights but overriding

8An interesting variant of this idea in the context of equational proving has been given by Smallbone [25].
9Specifically, by setting Vampire’s non-goal weight coefficient option [15] to 5. This makes the search goal-

directed by globally multiplying the weight of every clause not derived (directly or indirectly) from the conjecture
by 5. The concrete value 5 has been found to lead to good performance in previous experiments on TPTP [26].
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variable weight to 0.5. However, this resulted in a decline in overall performance, and the
number of problems uniquely solved by this modified configuration was not too high either.

This makes us conclude here that the variable weight of 1 is probably working as a reference
value for the GNN recommendations, in the sense that the weights assigned to other symbols
are appropriately scaled in relation to this unit, and, in its internal reckoning, they are neither
too low nor too high.

Rarely useful axioms? The problem SET016+1 formalizes the set theory lemma that the
first components of equal ordered pairs are equal. The conjecture is stated in the context of 43
common set theory axioms and definitions included from the file SET005+0.ax.

Vampire’s clausification produces 10 Skolem functions. The last four of these correspond to
the universally quantified variables of the conjecture and get recommended weights close to 1 by
our GNN. At the other end of the scale, there are the Skolems sK1 of arity 0 with weight 5.1 and
sK4 of arity 1 with weight 4.1. These correspond to the witnesses from the axioms of infinity
and regularity, respectively. We speculate that these relatively “exotic” axioms were rarely, if
at all, useful in the proofs used for training (there were 41 training problems that included
the axiom file SET005+0.ax) and, at the same time, that the GNN was able to recognize them
just from their structure and how they relate to the surrounding symbols and other axioms.
If these assumptions are correct, assigning the corresponding (uniquely determined) Skolems
large weights is a good way to steer the search away from exploring possible inferences with
such axioms. However, we did not find a way to easily confirm this rigorously.

7 Future Work
This paper has shown that generalizing the standard clause selection heuristic and automatically
determining the symbol weights improves the performance of the prover. Arguably, the clause
weight scheme could be generalized further with a negligible computational overhead by a
conservative augmentation of the set of clause features used to compute the clause weight, for
example, by the number of positive literals10, the number of distinct variables, or the depth
of the clause. Further generalization of the recursively implemented (via summation) symbol-
counting clause weight heuristic would yield a recursive neural network (NN) operating on the
term structure. An RNN-based clause selection heuristic has been trained by Chvalovský et al.
[4] on the proxy task of proof clause classification.

Although allowing clause feature weights smaller than 1 has proven detrimental to the
performance of the trained system (see Section 5.5.3), we hypothesize that this effect could
be compensated by enriching the training data using failed proof searches from the empirical
evaluations.

Using additional or different Vampire base configurations for training data collection and
final evaluation, for example, one that enables AVATAR, could yield an even stronger trained
prover.

Finally, using constrained logistic regression allows one to find nearly optimal symbol weights
(in terms of proxy performance) for one or more successful proof searches with a common sig-
nature. It would be interesting to see if we could use such a method to find nearly optimal
weights for some interesting domain with a shared signature, such as the Mizar Mathematical
Library [9]. In a more general setting, we could collapse the problem-specific symbol counts into
a small number of common symbol-counting features such as the number of literals (the sum of

10Cf. parameter pos_mult of the generic weight functions in E [22].
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all predicate and equality occurrence counts), the total number of non-Skolem function symbol
occurrences, or the total number of occurrences of predicates introduced in preprocessing. An-
other way to combine logistic regression with misaligned signatures could involve decomposing
the weight of a symbol into common symbol features (such as the arity or an indication of being
introduced in preprocessing) and learning, for each symbol category (such as predicate symbols
or function symbols), the weights of these symbol features from the data.

8 Conclusion

We proposed and evaluated a symbol weight recommender based on a GNN. The recommender
instantiates weights for the weighted symbol occurrence count, a clause selection heuristic we
implemented in the FOL ATP Vampire. When trained on a set of proof search traces produced
using a baseline Vampire configuration, the recommender outperforms the baseline by 6.6%
in the number of proofs found within a fixed instruction limit. This is, to the best of our
knowledge, the first time a machine-learned clause selection heuristic has achieved a comparable
improvement on the diverse TPTP problem library.

In this work, we make the following main observations. First, classifying proof-nonproof
pairs of clauses is a good proxy task for training a clause selection heuristic. Second, a good
symbol weight recommendation can boost the performance of our chosen baseline strategy to a
similar degree as enabling the AVATAR architecture. Third, constraining the symbol weights
with a nontrivial lower bound helps the performance of a trained recommender significantly.
Finally, strong symbol weight assignments tend to assign variable occurrences a small weight.
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