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Abstract

We present a benchmark of 29687 problems derived from the On-Line Encyclopedia
of Integer Sequences (OEIS). Each problem expresses the equivalence of two syntactically
different programs generating the same OEIS sequence. Such programs were conjectured by
a learning-guided synthesis system using a language with looping operators. The operators
implement recursion, and thus many of the proofs require induction on natural numbers.
The benchmark contains problems of varying difficulty from a wide area of mathematical
domains. We believe that these characteristics will make it an effective judge for the
progress of inductive theorem provers in this domain for years to come.

1 Introduction: Induction, OEIS and Related Work

In mathematics, the principle of induction is an essential tool for proving various conjectures.
This is especially true if the problem can be expressed as an arithmetical problem. Our goal
in this project is to provide a benchmark to test the progress of theorem provers at proving
mathematical formulas. Our hope is that in the long run, mathematicians will be able to use
these tools to automatically prove non-trivial conjectures.

The 29,687 problems in our benchmark were derived automatically by running a program
synthesis algorithm on the OEIS [21]. The OEIS repository archives common (and less common)
integer sequences observed in combinatorics, group theory, geometry, etc. Every time two
programs P and Q generate the same OEIS sequence, we can make the conjecture that ∀x ∈
N. fP (x) = fQ(x). Depending on the number of terms tested, this conjecture is more or less
likely to be true. In this work, to minimize the number of false conjectures, only programs that
cover all terms of a sequence available in the OEIS repository are considered. Equalities are also
tested on additional inputs not present in the OEIS data.

We believe that this benchmark is a good challenge for inductive theorem provers as it is
naturally grounded in mathematical theories. Our benchmark contains some easy problems, as
shown in our first evaluation, but most of them are out of reach of the current best inductive
theorem provers while being quite easy for a university student. We hope that our benchmarks
will help developers bridge that gap. Although the problems in our benchmark were derived
from data compiled by mathematicians, a large portion of them is also relevant for software
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verification as mathematical optimizations are common place in computer code. Section 3.3
provides examples of such optimizations.

As a starting point for this research endeavor, we provide a translation of our benchmark to
SMT-LIB [2] and evaluation baselines for future comparisons.

There already exist two benchmarks for inductive theorem provers. Compared to our
benchmark, both of them are mostly focused on problems related to software verification. The
first one is the “Tons of Inductive Problems” benchmark [6] including 340 problems about
lists, natural numbers, binary trees, and integers originating from Isabelle, Agda and CLAM
translated to SMT-LIB or to WhyML. The second set of problems is “Inductive Benchmarks
for Automated Reasoning” [13]. It consists of 3,516 problems about lists, natural numbers,
trees, and integers. These problems were either handcrafted or inspired by software verification
problems. To test the limit of inductive problems, multiple versions of the same problem with
increased parameters were included. All those problems were translated to SMT-LIB and some
of them to formats supported by Zipperposition and ACL2.

2 Programming Language

We now present the programming language used in our benchmark. This language contains the
same operators as our system for synthesizing programs from integers sequences [11]. There, a
simplified presentation of the semantic of the operators was given. In this paper, we present a
formal version that matches the definitions given in the SMT problems.

Syntax The set P of programs in our language is inductively defined to be the smallest set
such that 0, 1, 2, X, Y ∈ P, and if A,B,C, F,G ∈ P then A + B, A − B, A × B, A div B,
A mod B,cond(A,B,C), loop(F,A,B), loop2 (F,G,A,B,C), compr(F,A) ∈ P.

In the rest of this paper, we refer to loop, loop2 , and compr as looping operators, and
we refer to the other operators (0, 1, 2, X, Y , +, −, ×, div , mod , and cond) as first-order
operators. The first argument of loop, compr and the first two arguments of loop2 are called
higher-order arguments (designated by F and G in the previous definition). If a variable (X
or Y ) appears in a higher-order argument it is said to be bounded otherwise it is said to be
free. We say that a program P depends on a variable if this variable appears free in P . The
symbols 0, 1, 2,+,−,×, div ,mod are overloaded and may refer to program operators, Standard
ML functions or SMT functions depending on the context.

Semantics Each program P is interpreted by a function fP : (x, y) ∈ Z2 7→ fP (x, y) ∈ Z. The
interpretation fP is recursively defined for every program P by:
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f0(x, y) := 0, f1(x, y) := 1, fX(x, y) = x, fY (x, y) = y

fA+B(x, y) := fA(x, y) + fB(x, y), fA−B(x, y) := fA(x, y)− fB(x, y)

fA×B(x, y) := fA(x, y)× fB(x, y), fAdivB(x, y) := fA(x, y) div fB(x, y)

fAmodB(x, y) := fA(x, y) mod fB(x, y)

fcond(A,B,C)(x, y) := if fA(x, y) ≤ 0 then fB(x, y) else fC(x, y)

floop(F,A,B)(x, y) = u(fA(x, y), fB(x, y))

where u(x, y) = if x ≤ 0 then y else fF (u(x− 1, y), x)

floop2(F,G,A,B,C)(x, y) := u(fA(x, y), fB(x, y), fC(x, y))

where u(x, y, z) = if x ≤ 0 then y else fF (u(x− 1, y, z), v(x− 1, y, z))

and v(x, y, z) = if x ≤ 0 then z else fG(u(x− 1, y, z), v(x− 1, y, z))

fcompr(F,A)(x, y) := u(fA(x, y))

where t(x) = if fF (x, 0) ≤ 0 then x else t(x+ 1)

and u(x) = if x ≤ 0 then t(0) else t(u(x− 1) + 1)

The constants and functions used (outside program indices) in this recursive definition follow
the semantics of Standard ML [14]. Note that the functions created from mod , div , compr may
not be total.

We now give an intuition for the semantics of the looping operators. In this informal
description, we do not show the trivial behavior of the following auxiliary sequences on negative
indices. The operator loop is constructing a recursive sequence un and returns the value ufA(x,y).
This sequence is defined by:

u0 = fB(x, y)

un = fF (un−1, n)

The operator loop2 is constructing two mutually recursive sequences un and vn. It returns the
value ufA(x,y). These sequences are defined by:

u0 = fB(x, y)

v0 = fC(x, y)

un = fF (un−1, vn−1)

vn = fG(un−1, vn−1)

The operator compr constructs a sequence un and returns the value ufA(x,y). The sequence
un returns the (n+ 1)th smallest non-negative integer x satisfying fF (x, 0) ≤ 0. The auxiliary
function t(x) searches for the next number y ≥ x satisfying fF (y, 0) ≤ 0.

The presence of the compr looping operator is enough to make the programming language
Turing complete. The other two looping operators are included because they can express common
constructs more efficiently and more concisely.

Execution The number of abstract time units consumed by the execution of a program is an
estimate proportional to the number of CPU instructions needed for each operator. It is 5 for
mod and div . It is 1 for all other first-order operators. In case the absolute value of the integer
returned by the operator is bigger than 264, the number of digits in this integer is used as an
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estimate. When generating a sequence, the timeout for the current call is increased by adding
the unused time from the previous calls on smaller indices of that sequence. This gives extra
time to generate longer sequences. On top of this, the execution stops and fails when a number
with absolute value greater than 10285 is produced. Two different abstract time limits per call
are used in this paper: 100 000 during the self-learning experiment (Section 3.1) and during the
cyclicity checks (Section 3.4) and 1 000 000 during equality verification (Section 3.2).

Properties The size of a program is measured by counting with repetition the number of
operators composing it. The speed of a program is measured by the total number of abstract
time units used when generating a sequence. If two programs have the same size (respectively
speed) a fixed total order is used to determine which one is the smallest (respectively fastest).

Definition 1 (Cover). We say that a program covers (or is a solution for) an OEIS sequence
(sx)0≤x≤n if and only if ∀x ∈ Z. 0 ≤ x ≤ n ⇒ fP (x, 0) = sx.

3 Benchmark

Our benchmark consists of problems of the form ∀x ∈ N. fSmall(x) = fFast(x) where fSmall
and fFast are functions created from a small program Small and a fast program Fast. Given
an OEIS sequence s, we choose the smallest (respectively fastest) program discovered by our
self-learning system for Small (respectively Fast). During the checking phase of the self-learning
loop, we only test and select a program if it does not depend on the variable Y (its higher-order
arguments may depend on the variable Y ). This way, we are able to express fSmall and fFast as
unary functions. An explanation of how these functions are defined in our SMT problems is
given in Section 4.

3.1 Short Overview of the Self-Learning System

The programs present in the benchmark were discovered through self-learning. The system
gradually discovers on its own programs for OEIS sequences. The self-learning loop was run for
209 generations instead of 25 generations in [11]. At each generation, we recorded the smallest
and fastest programs discovered so far for each OEIS sequence (instead of only the smallest as
in [11]). Each generation consists of a synthesis phase, a checking phase and a learning phase.
During the synthesis phase, programs are created using a probability distribution on operators
given a target sequence returned by the learning phase. At generation 0, a random probability
distribution is used. During the checking phase, we check that the programs created cover
the target sequence or any other OEIS sequence. During the learning phase, we train a tree
neural network [9] to predict, given a target sequence s, the smallest and the fastest programs
discovered so far generating s. This process repeats finding solutions for more and more OEIS
sequences as depicted in Figure 1.

3.2 Problems in the Benchmark

At the end of the self-learning loop, a program covering an OEIS sequence is found for 45691
sequences. This number is reduced to 34171 when looking for sequences where the smallest
program Small and the fastest program Fast are syntactically different. From each pair of
programs, we construct the problem ∀x ∈ N. fSmall(x) = fFast(x). After regrouping the
sequences that generate the same exact equations (this may happen because some OEIS
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Figure 1: OEIS sequences covered after x-th generation

sequences are prefixes of other OEIS sequences), we get 32124 unique problems. A typical OEIS
sequence may contain anywhere from a few terms to about 200 terms with the most common
number of terms being between 20 and 50. For OEIS sequences with less than 100 terms, we
further check that both programs are indeed equal on the first 100 non-negative integers with a
given time limit. If, when computing, one of the programs exceeds the execution limits, the
equality is still considered potentially correct if all equality checks pass before an error is raised.
Indeed, some interesting equalities occur between long-running programs or fast-increasing
programs. After this last check, our dataset is reduced to 29687 problems. These problems, after
translation to SMT-LIB, constitute the released benchmark available at https://github.com/
ai4reason/oeis-atp-benchmark and grid01.ciirc.cvut.cz/~thibault/oeis-smt.tar.gz.
The code for running the self-learning loop and translating the problems to SMT-LIB is available
at https://github.com/barakeel/oeis-synthesis. After running the following commands
in an interactive HOL4 session will produce the SMT benchmark from the discovered solutions
stored in the file model/itsol209 in the subdirectory oeis-smt:

load "smt"; smt.export_smt2 true "oeis-smt" "model/itsol209";

5435 problems (included in the benchmark) could not be computationally checked on the
first 100 terms because of the execution limits. These 5435 problems are listed in the file
all_nonverified100 for further analysis.

3.3 Examples

Here are a few examples of the benchmark problems derived from famous (and less famous)
sequences in the OEIS. For each of those problems, we first give the OEIS sequence number and
its description and interpret the meaning of the derived equality between the two programs. In
this list, the equality Small = Fast is used as a shorthand for the conjecture ∀x ∈ N. fSmall (x) =
fFast(x)

• A217, triangular numbers:

loop(X + Y,X, 0) = ((X ×X) +X) div 2
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In this example, a loop is used to computes the sum of the first n non-negative integers, thus
the equation can be rewritten in mathematical form as

∑n
i=0 i =

n×n+n
2 .

• A537, sum of first n cubes:

loop((Y × Y )× Y +X,X, 0) = loop(X ×X, 1, ((X ×X) +X) div 2)

The loop on the right-hand side has a bound of 1. So it simply applies the squaring function
X ×X once to the initial value of the loop. In mathematical notation, this conjecture can be
expressed as

∑n
i=0 i

3 = (n×n+n
2 )2

• A45, Fibonacci numbers:

loop2 (X + Y,X,X, 0, 1) = cond(X, 0, loop2 (X + Y,X,X − 2, 1, 1))

On the left-hand side is the expected definition for Fibonacci numbers. On the right-hand
side the fast program seems to be saving some computation by starting the loop two steps
later with higher initial values. Due to the similarity between the loops in the two programs,
this problem may be proven without induction by unrolling the loop twice. However, a proof
using induction might be easier to find.

• A79, powers of 2:

loop(X +X,X, 1) = loop(X +X,X mod 2, loop(X ×X, 1, loop(X +X,X div 2, 1)))

Two bounded loops are used to compose functions in the right-hand side of this equation.
There, the result of loop(X +X,X div 2, 1)) is squared and then multiplied x mod 2 times
by 2. This conjecture can thus be rewritten as 2x = 2(x mod 2) × (2(x div 2))2. The proof will
likely require inductive reasoning to prove the lemma 2x × 2y = 2x+y. The fast program uses
the first step of the fast exponentiation algorithm to speed up the computation.

• A165, double factorial of even numbers, (2n)!! = 2n × n!:

loop(2× (X × Y ), X, 1) = loop(X +X,X, 1)× loop(X × Y,X, 1)

The double factorial of 2n is by definition (2n)!! =
∏n

k=1 2k Thus coincidentally, this equation
gives an implementation on each side of the equation of the two formulas given in the OEIS.
A proof of this statement is expected to require inductive reasoning.

3.4 Problems Requiring Induction
One motivation1 for this benchmark is to test provers on mathematical problems requiring one
or multiple inductions. Since our programs consist of looping constructs, we believe that is the
case for the majority of the problems in our benchmark. However, some of the problems can be
solved without induction. An easily recognizable case is when the programs Small and Fast do
not contain any loop or when all their loops are bounded by a constant. Such problems may
occur in our dataset. Therefore, in the following, we design syntactic and semantic tests to
detect if an equality contains at least one “proper” top-level loop.

Given an equality ∀x ∈ N. fSmall(x) = fFast(x), we select a looping subprogram (a subpro-
gram whose root operator is a looping operator) in Small and Fast if it appears at a position

1There are multiple motivations for this benchmark, some of them being very pragmatic. Our OEIS program
synthesis systems produce thousands of more and more complex programs that may look quite alien [10]. It may
take a nontrivial amount of time to decide if such programs are correct and human mathematicians do not scale
to the number of such problems we are currently generating.
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that is not under another looping subprogram and if its exact formulation does not appear more
than once in the equational problem. We will say that a problem passes a test if there exists at
least one such top-level loop which satisfies this test. From the syntactic and semantic tests,
we carve out two subsets of the released benchmark. Problems that pass all syntactic tests are
listed in the file aind_syn and problems that pass all syntactic and semantic tests are listed
in the file aind_sem. In general, it is a hard problem to determine if a problem will require
induction a priori, and the following tests are trying to achieve a trade-off between ruling out
problems that do not require induction and keeping problems that do.

Syntactic Tests The following syntactic tests are performed on the looping subprograms of
the form loop(F1, A1, B1), loop2 (F2, G2, A2, B2, C2), compr(F3, A3):
• The bounds A1, A2, A3 and the subprogram F1 must depend on X.
• Either F2 or G2 must depend on X and Y .

Semantic Tests The semantic tests will try to detect cases where a prover does not require
induction even though the problem passes the syntactic tests. For instance, top-level looping
subprograms may use X mod 3 or 2−X as a bound or some behavior in F1, F2 or G2 may result
in a proof that unrolls the loop a finite amount of time. Thus, instead of testing for syntactic
dependency on a variable, we will run the subprograms and test for acyclicity in their output.

Definition 2 (Acyclicity of an integer sequence – tailored to our setting). We say that a finite
sequence of integers a0, a1, . . . a39 is acyclic if and only if the sequence a9, . . . , a39 does not
contain a cycle with a period ranging from 1 to 15.

Definition 3 (Acyclicity of a program). A program P is acyclic on x if and only if: ∀y ∈
Z. 0 ≤ y ≤ 9 ⇒ (fP (x, y))0≤x≤39 is acyclic.
A program P is acyclic on y if and only if: ∀x ∈ Z. 0 ≤ x ≤ 9 ⇒ (fP (x, y))0≤y≤39 is acyclic.
In practice, we chose to make the test fail if one of the sequence cannot be produced because of
the execution limits. In such situations, the program P will not be considered acyclic.

The following semantic tests are performed on the top-level looping subprograms of the form
loop(F1, A1, B1), loop2 (F2, G2, A2, B2, C2), compr(F3, A3):
• The bounds A1, A2, A3 and the subprogram F1 must be acyclic on x.

When checking for cyclicity in the bounds, the negative program outputs of A1, A2, A3 are
mapped to 0 before checking for cycles.

• Either F2 or G2 must be acyclic on x and acyclic on y.
• The looping subprogram itself must be acyclic on x.

4 Translation to SMT-LIB
We now translate the 29687 problems in our benchmark (see Section 3) to SMT-LIB. These
SMT problems consist of definitions for fSmall and fFast, and the negated conjecture:

∃c. c ≥ 0 ∧ ¬(fSmall(c) = fFast(c))

The semantic definitions given in Section 2 recursively define fSmall and fFast. In these definitions,
the Standard ML functions are replaced by their SMT counterparts. This process creates a new
definition for each subprogram. In order to simplify the SMT problem we expand definitions for
first-order operators. We also minimize the number of arguments of each function. Indeed, if a
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program P does not depend on Y (respectively X, X and Y ), we can define a function fP with
one argument such that fP (x) := fP (x, y) (respectively fP (y) := fP (x, y), fP () := fP (x, y)).
We illustrate the process of creating SMT definitions on the program Small = loop(X + Y,X, 0):

f1() = 1

fX(x) = x

fX+Y (x, y) = x+ y

u(x, y) = if x ≤ 0 then y else fX+Y (u(x− 1, y), x)

floop(X+Y,X,1)(x) = u(fX(x), f1())

The third equation is derived by expanding definitions of first-order operators until a looping
subprogram is reached. In our example, we have fX+Y (x, y) = fX(x, y) + fY (x, y) = x+ y. In
a more general example where a looping subprogram Q appears under the first-order part, we
would for instance get f2×X+Q(x, y) = 2× x+ fQ(x, y). The in-lining of expanded definitions
inside definitions for loops is left to the provers. In the released SMT problems, program indices
in the definitions are replaced by integer indices.

Totality of the Functions Some of our Standard ML functions may initially be partial because
of the operators div ,mod , compr . These are translated to total SMT functions. Therefore, a
proof of the equality between two functions fSmall, fFast with respective initial domain DSmall,
DFast is only a proof that they are equal on DFast ∩DSmall. Functions from our problems are
expected to be total. This is especially the case if we consider only those that fully passed the
verification test on the first 100 non-negative integers. A few of the programs in our benchmark
may not terminate on large inputs, in which case the derived conjectures as expressed by our
translation will not be provable.

Towards More General Conjectures In our benchmark, all of the conjectures are of the
form ∀x.x ≥ 0 ⇒ fP (x) = fQ(x). In particular, we cannot express conjectures that quantify
over P or Q. To solve this issue, one can use an evaluation function eval(P, x, y) := fP (x, y)
that makes P a proper argument instead of an index. This alternative translation requires to
declare the syntactic constructs as SMT functions on a SMT sort for programs and replace in
the defining equations (semantics) for each operator every instance of fP (x, y) by eval(P, x, y) to
create the SMT axioms. After this transformation, we can, for example, express the conjecture
of finding an increasing function as ∃P. eval(P, x, 0) ≤ eval(P, x + 1, 0). We did not use this
eval encoding in our benchmark since we do not need it for our current conjectures, and also
because we observed that it makes the problems more difficult for the provers.

5 Experiments
In the following experiments, we test the performance of three state-of-the-art provers Vam-
pire [17], CVC5 [18, 1] and Z3 [7] on our benchmark. Vampire is run with an induction
schedule [15, 13] suggested by its developers; CVC5 is run with its induction flag on [20]. The
addition of support for arithmetical induction is recent in these two provers. The prover Z3
has not yet been given such support and therefore can only solve problems that do not require
induction. All provers are run on all the problems with a timeout of 60 seconds for each problem.

Table 1 shows the results of running Z3, Vampire and CVC5 on the benchmark. For CVC5 we
also show the results after strengthening the conjecture to include equality of additional terms.
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System Z V C C1 C2 C3 C4 C5 C6 C8 C2x All
NoFilt 4757 2195 2428 3793 4030 4100 4084 3962 3796 3451 3557 8215
SynFilt 487 278 893 2258 2547 2701 2699 2590 2447 2156 2015 3743
SemFilt 7 83 504 1799 2059 2235 2240 2146 2021 1786 1501 2686
NonCh 2 97 21 22 48 33 76 39 29 8 5 212

Table 1: Problems solved by each of the methods. NoFilt means no filtering (results on the
whole benchmark), SynFilt are results on the 23163 problems that pass the syntactic filtering,
SemFilt are results on the 16197 problems that pass the semantic filtering, and NonCh are
results on the 5435 problems where the extended checking fails.

Noting f=fSmall and g = fFast , the conjecture ∀x. x ≥ 0 ⇒ (f(x) = g(x)) becomes:

∀x. x ≥ 0 ⇒ (f(x) = g(x) ∧ f(x+ 1) = g(x+ 1)) in the column C1,

∀x. x ≥ 0 ⇒ (f(x) = g(x) ∧ f(x+ 1) = g(x+ 1) ∧ f(x+ 2) = g(x+ 2)) in the column C2,

. . .

and ∀x. x ≥ 0 ⇒ (f(2x) = g(2x) ∧ f(2x+ 1) = g(2x+ 1)) in the column C2x.

Although these conjectures are equivalent to the original conjecture, they have a significant
influence on CVC5. By changing the shape of the conjectures, CVC5 will use different instances
of the induction schema due to how induction is implemented in CVC5. These changes do not
benefit Z3 because the problems are strictly harder without induction. The reasons why Vampire
does not benefit from the modified conjectures remain to be investigated. We have also tried
to change the conjecture to strong induction (equality on all previous numbers). However, it
has practically no effect on CVC5. For each method, we also show the results on the 23163
problems that pass the syntactic filtering (Section 3.4), results on the 16197 problems that
pass the semantic filtering (Section 3.4), and results on the 5435 problems where the extended
verification (testing on 100 terms - Section 3.2) fails.

The fact that Z3 solves only 7 problems after the strongest semantic filtering suggests that
induction is very likely to be needed on the 16197 semantically filtered problems. In total, we
can prove 2686 of those problems, which is 16.58% . An interesting result is the 212 problems
(3.90% of the 5435) where we can prove equality of the functions, but our extended equality
verification (testing on 100 terms) procedure fails on them. Most often this means that these
are fast-growing functions where the normal computation of the numerical values overflows
on larger inputs. While 3.90% is not much, it demonstrates a real value added by automated
reasoning compared to just running extended testing. The joint performance of all systems
on the full benchmark is 26.67% (8215 out of 29687) and the performance on the syntactically
filtered problems is 16.16% (3743 out of 23163). Z3 is the best system on the full benchmark,
while CVC5 performs best on the filtered problems where induction is likely often needed. CVC5
is also quite orthogonal to Z3 and Vampire, adding many solutions to both.

From the five examples presented in Section 3.3, the problem derived from the triangular
numbers is solved by CVC5. Strengthening the conjecture (to the successor - method C1) can
also solve the problem induced by the Fibonacci numbers. Vampire is able to solve the problem
about double factorials and Z3 cannot solve any of them. Vampire can also solve the triangular
numbers problem when using its default induction schedule instead of the suggested one.
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6 Conclusion
In this work, we relied on a self-learning system to create small and fast programs for each
OEIS sequence. Subsequently, we created a benchmark of 29,687 SMT problems, asserting that
the two programs produce identical sequences. We then asked automated theorem provers and
SMT solvers to solve these problems and analyzed the results. Ultimately, we discovered a
simple method to enhance the performance of CVC5 on inductive problems. The benchmark is
publicly available, and we also provide bounties on 1000 unsolved problems that can be claimed
by anybody in a decentralized way (Appendix B).

In the future, we aim to use our benchmark to reveal the limitations of inductive theorem
provers available in proof assistants and explore ways to improve them. This will enable us to
assess the impact of various techniques developed over the years, such as term synthesis [5],
rippling [16], template-based conjecturing [19], and also more recent methods such as neural
synthesis [8] and conjecturing [22]. To achieve this, we will need to translate the problems into
the specific format required by each of these inductive theorem provers. Last but not least, we
aim to explore the achieved results in the context of program equivalence [12].
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A Further Examples of Programs and their Encoding
Here we show the SMT encoding of the problem created from A000165 – double factorial of
even numbers2. The numbers grow too fast, making their evaluation-based equality checking
fail. Vampire proves the problem and uses induction in its proof.

;; sequence(s): A165
;; terms: 1 2 8 48 384 3840 46080 645120 10321920 185794560 3715891200
;; 81749606400 1961990553600 51011754393600 1428329123020800 42849873690624000
;; 1371195958099968000 46620662575398912000 1678343852714360832000
;; 63777066403145711616000
;; small program: loop(2 * (x * y), x, 1)
;; fast program: loop(x + x, x, 1) * loop(x * y, x, 1)
(assert (forall ((x Int) (y Int)) (= (f0 x y) (* 2 (* x y)))))
(assert (forall ((x Int)) (= (g0 x) x)))
(assert (= h0 1))
(assert (forall ((x Int) (y Int)) (= (u0 x y) (ite (<= x 0) y (f0 (u0 (- x 1) y) x)))))
(assert (forall ((x Int)) (= (v0 x) (u0 (g0 x) h0))))
(assert (forall ((x Int)) (= (small x) (v0 x))))
(assert (forall ((x Int)) (= (f1 x) (+ x x))))
(assert (forall ((x Int)) (= (g1 x) x)))
(assert (= h1 1))
(assert (forall ((x Int) (y Int)) (= (u1 x y) (ite (<= x 0) y (f1 (u1 (- x 1) y))))))
(assert (forall ((x Int)) (= (v1 x) (u1 (g1 x) h1))))
(assert (forall ((x Int) (y Int)) (= (f2 x y) (* x y))))
(assert (forall ((x Int)) (= (g2 x) x)))
(assert (= h2 1))
(assert (forall ((x Int) (y Int)) (= (u2 x y) (ite (<= x 0) y (f2 (u2 (- x 1) y) x)))))
(assert (forall ((x Int)) (= (v2 x) (u2 (g2 x) h2))))
(assert (forall ((x Int)) (= (fast x) (* (v1 x) (v2 x)))))
(assert (exists ((c Int)) (and (>= c 0) (not (= (small c) (fast c))))))

Next, we show the SMT encoding of the problem created from A45 – the Fibonacci sequence3.
CVC5 proves the problem after strengthening the conjecture to the successor as follows:

;; sequence(s): A45-A77373
;; terms: 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
;; small program: loop2(x + y, x, x, 0, 1)
;; fast program: if x <= 0 then 0 else loop2(x + y, x, x - 2, 1, 1)
(assert (forall ((x Int) (y Int)) (= (f0 x y) (+ x y))))
(assert (forall ((x Int)) (= (g0 x) x)))

2oeis.org/A000165
3oeis.org/A45
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(assert (forall ((x Int)) (= (h0 x) x)))
(assert (= i0 0))
(assert (= j0 1))
(assert (forall ((x Int) (y Int) (z Int)) (= (u0 x y z)

(ite (<= x 0) y (f0 (u0 (- x 1) y z) (v0 (- x 1) y z))))))
(assert (forall ((x Int) (y Int) (z Int)) (= (v0 x y z)

(ite (<= x 0) z (g0 (u0 (- x 1) y z))))))
(assert (forall ((x Int)) (= (w0 x) (u0 (h0 x) i0 j0))))
(assert (forall ((x Int)) (= (small x) (w0 x))))
(assert (forall ((x Int) (y Int)) (= (f1 x y) (+ x y))))
(assert (forall ((x Int)) (= (g1 x) x)))
(assert (forall ((x Int)) (= (h1 x) (- x 2))))
(assert (= i1 1))
(assert (= j1 1))
(assert (forall ((x Int) (y Int) (z Int)) (= (u1 x y z)

(ite (<= x 0) y (f1 (u1 (- x 1) y z) (v1 (- x 1) y z))))))
(assert (forall ((x Int) (y Int) (z Int)) (= (v1 x y z)

(ite (<= x 0) z (g1 (u1 (- x 1) y z))))))
(assert (forall ((x Int)) (= (w1 x) (u1 (h1 x) i1 j1))))
(assert (forall ((x Int)) (= (fast x) (ite (<= x 0) 0 (w1 x)))))
(assert (exists ((c Int)) (and (>= c 0) (or (not (= (small (+ c 1)) (fast (+ c 1))))

(not (= (small c) (fast c)) )))))

Finally, we show the encoding of A1807134 proved by CVC5 only after changing the conjecture
to equality on 2x and 2x+ 1:

;; sequence(s): A180713
;; terms: 0 4 6 11 12 16 18 23 24 28 30 35 36 40 42 47 48 52 54 59
;; small program: ((((((x div 2) * x) mod 2) + (x mod 2)) + x) + x) + x
;; fast program: (loop(loop(1, 2 - (x mod (2 + 2)), 2) + x, x mod 2, x) + x) + x
(assert (forall ((x Int)) (= (small x)

(+ (+ (+ (+ (mod (* (div x 2) x) 2) (mod x 2)) x) x) x))))
(assert (= f1 1))
(assert (forall ((x Int)) (= (g1 x) (- 2 (mod x (+ 2 2))))))
(assert (= h1 2))
(assert (forall ((x Int) (y Int)) (= (u1 x y) (ite (<= x 0) y f1))))
(assert (forall ((x Int)) (= (v1 x) (u1 (g1 x) h1))))
(assert (forall ((x Int)) (= (f0 x) (+ (v1 x) x))))
(assert (forall ((x Int)) (= (g0 x) (mod x 2))))
(assert (forall ((x Int)) (= (h0 x) x)))
(assert (forall ((x Int) (y Int)) (= (u0 x y) (ite (<= x 0) y (f0 (u0 (- x 1) y))))))
(assert (forall ((x Int)) (= (v0 x) (u0 (g0 x) (h0 x)))))
(assert (forall ((x Int)) (= (fast x) (+ (+ (v0 x) x) x))))
(assert (exists ((c Int)) (and (>= c 0) (or (not (= (small (* c 2)) (fast (* c 2))))
(not (= (small (* 2 (+ c 1))) (fast (* 2 (+ c 1))))) ))))

B Bounties on 1000 Examples
We selected 1000 of the unsolved problems from the benchmark and translated the SMT2
representation into a set theoretic representation used by the Megalodon5 system [4]. We then

4oeis.org/A180713
5https://github.com/ai4reason/Megalodon
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placed a bounty of 1 Proofgold6 [3] bar on each of the corresponding formal propositions. As
a consequence anyone can claim 1 Proofgold bar by giving an appropriate proof term for the
corresponding problem.7

6http://proofgold.net/
7The details are available at http://grid01.ciirc.cvut.cz/~chad/oeis-mgpg1000.tgz.
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