
EPiC Series in Computing
Volume 73, 2020, Pages 334–353

LPAR23. LPAR-23: 23rd International
Conference on Logic for Programming,
Artificial Intelligence and Reasoning

The Triguarded Fragment with Transitivity∗

Emanuel Kieroński and Adam Malinowski

University of Wroc law, Poland

Abstract

The triguarded fragment of first-order logic is an extension of the guarded fragment in
which quantification for subformulas with at most two free variables need not be guarded.
Thus, it unifies two prominent decidable logics: the guarded fragment and the two-variable
fragment. Its satisfiability problem is known to be undecidable in the presence of equality,
but becomes decidable when equality is forbidden. We consider an extension of the tri-
guarded fragment without equality by transitive relations, allowing them to be used only
as guards. We show that the satisfiability problem for the obtained formalism is decidable
and 2-ExpTime-complete, that is, it is of the same complexity as for the analogous exten-
sion of the classical guarded fragment. In fact, in our satisfiability test we use a decision
procedure for the latter as a subroutine. We also show how our approach, consisting in
exploiting some existing results on guarded logics, can be used to reprove some known
facts, as well as to derive some other new results on triguarded logics.

1 Introduction

The triguarded fragment, TGF, was introduced by Rudolph and Šimkus [15] in order to unify
two seminal decidable fragments of first-order logic, the guarded fragment, GF, defined by
Andréka, van Benthem and Németi [1], and the two-variable fragment, FO2, first considered
by Scott [16]. TGF is obtained as an extension of GF in which quantification for subformulas
with at most two free variables need not be guarded. Alternatively, one can think about the
equivalent logic GFU, the guarded fragment with the universal role, whose formulas are just the
formulas of GF, but the admissible models interpret the distinguished binary symbol U as the
universally true relation.

Clearly, compared to GF and FO2, TGF brings a new quality as it contains formulas ex-
pressible in neither of them, like (∀xy)

(
P (x) ∧ Q(y) → (∃z)R(x, y, z)

)
. Let us observe that it

also embeds the Gödel class, that is the class of all prenex sentences with the quantifier prefix
∀∀∃∗. Technically, given such a sentence (∀xy)

(
(∃z1 . . . zn)ϕ(x, y, z1, . . . , zn)

)
we may need to

add a dummy guard G(x, y, z1, . . . , zn), with a fresh symbol G, for the block of existential quan-
tifiers, but, what is crucial, the initial pair of the universal quantifiers may be left unguarded
as the subformula following them has only two free variables, x and y. Since the satisfiability
problem for the Gödel class with equality is undecidable, as shown by Goldfarb [6], this em-
bedding implies that also satisfiability of TGF with equality is undecidable. (A more direct

∗Supported by Polish National Science Centre grant No 2016/21/B/ST6/01444.

E. Albert and L. Kovacs (eds.), LPAR23 (EPiC Series in Computing, vol. 73), pp. 334–353

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

proof of this fact was given by Rudolph and Šimkus [15].) However, in the absence of equality,
TGF becomes decidable, which makes it potentially attractive for researchers in various areas
of computer science.

One of the main motivations behind FO2 and GF is that they embed, via the so-called
standard translation, many modal and description logics, e.g., the extension of basic descrip-
tion logic ALC with role hierarchies (H), role inverse (I), nominals (O) and role intersection
(u). Offering an elegant first-order perspective for some standard description logics, FO2 and
GF extend them in two, partially orthogonal directions. In particular, GF, generalizes basic
description logics to settings with relations of arbitrary arity, while FO2 allows one to express
any boolean combination of roles, including their negations. TGF naturally inherits both types
of benefits (though, the absence of equality limits the potential use of nominals).

Another motivation for TGF comes from databases, where an important role is played by
GF. GF was, for example, an inspiration for the fruitful notion of the guarded tuple gen-
erating dependencies; see Cal̀ı, Gottlob and Kifer [3]. Moving to TGF allows us to express
some additional concepts important for database theory, for example we can write the formula
(∀xy)

(
P (x) ∧Q(y)→ R(x, y)

)
saying that R is the cross product of P and Q.

The idea behind TGF is not new and can be traced back already in Kazakov’s PhD thesis,
[11], where the fragment GF|FO2, capturing the spirit of TGF, was defined. What is relevant,
GF|FO2 does not admit constants. Kazakov proved that the satisfiability problem for GF|FO2

without equality is decidable and 2-ExpTime-complete using a resolution method. The idea
of enhancing GF by the already-mentioned binary cross product appears in the later work
by Bourhis, Morak and Pieris [2] who introduced the logic GF×2 , in which equality-free GF
formulas can be conjoined with sentences defining the cross products of pairs of unary relations.
Being motivated by database applications, that work implicitly assumes a separation between
ground facts (a database) and a constant-free theory. Constants in ground facts can be easily
simulated by existentially quantified variables, and thus GF×2 can be seen as a fragment of
GF|FO2. Actually, it is not difficult to perform a reduction also in the opposite direction. The
authors of [2], being unaware of Kazakov’s work, prove the decidability of GF×2 from scratch.
They obtain a tight 2-ExpTime-upper bound using the classical database concept of chase.

The results described in the above paragraph imply that the satisfiability problem for TGF
without equality and constants is decidable in 2-ExpTime. As we already said, the formal
definition of TGF appears in the later work by Rudolph and Šimkus [15]. That paper properly
analyses the case with constants. Interestingly, the presence of constants increases the complex-
ity, making the satisfiability problem 2-NExpTime-complete. The upper bound is obtained
by the mosaic method: to verify satisfiability of a given formula it suffices to produce some
relatively small number of relatively small building blocks meeting some verifiable properties;
a model of the given formula can be then constructed by stitching together a (usually infi-
nite) number of copies of those building blocks. In the same paper it is also observed that
the complexity drops down to NExpTime if there is a constant bound on the arity of relation
symbols.

In this paper we consider an extension of TGF without equality in which some binary
symbols are required to be interpreted as transitive relations. Transitivity of a binary relation is
often a natural requirement in applications (consider, e.g., the relations greater-than, later-than
or part-of). However, this property is not expressible in typical decidable fragments of first-
order logic, including FO2 and GF. Moreover, augmenting FO2 or GF with simple transitivity
statements for binary relations leads to undecidability, as shown respectively by Grädel, Otto
and Rosen [9] and by Grädel [7]; see also [5, 12, 11] for tighter undecidability results. Clearly,
this implies that also TGF with the unrestricted use of transitive relations is undecidable.

335

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

On the other hand modal and description logics cope well with transitivity: Modal logic is
decidable over transitive frames, and adding transitive roles (S) to some expressive description
logics, like ALCOIQ, does not spoil their decidability; see, e.g., the PhD thesis of Tobies [18].
This phenomenon was partially explained by Ganzinger, Meyer and Veanes [5], who considered a
two-variable monadic guarded fragment, in which non-unary relations may occur only as guards,
and show its decidability in the presence of transitive relations. Their variant is sufficiently
strong to embed basic modal logic or some standard description logics, including ALCI. Its
severe restrictions are moderated in a later work by Szwast and Tendera [17] who demonstrate
the decidability of the guarded fragment with transitive guards, GF+TG, the whole guarded
fragment with arbitrarily many variables, relations of arbitrary arity, equality and arbitrarily
many transitive relations, just restricting the use of transitive relations to guards. The latter
variant allows, e.g., to express role hierarchies (H) on non-transitive relations (one can also say
that a transitive relation is contained in one not required to be transitive, but not the opposite).

As our main contribution, we lift Szwast and Tendera’s result to the level of the triguarded
fragment, that is, we prove the decidability and 2-ExpTime-completeness of the triguarded
fragment with transitive guards, TGF+TG. We remark that in our proof we do not admit
constants, as they are not allowed in GF+TG, decidability of which we plan to use (decidability
of GF+TG with constants is, up to our knowledge, an open problem). What we get is quite
a powerful logic, inheriting good motivations of GF, FO2 and TGF and strengthening them
significantly by incorporating transitive relations. For example, in our logic we can embed the
description logic SI extended by role hierarchies on non-transitive roles and arbitrary boolean
combinations of non-transitive roles.

To present our approach in a simple setting we first provide a new decidability proof for TGF
without transitive relations, yielding the optimal upper complexity bound. We concentrate on
the case without constant symbols, but it is possible to include them, as we discuss later.
The proof goes as follows. We first convert a given formula into its Scott-like normal form,
resembling the normal form for GF [8]. We show that to verify satisfiability of a normal form
ϕ it suffices to guess a set of 1-types A which are going to be realized in a model of ϕ, a set
of 2-types B containing, for every pair of 1-types from A a 2-type that completes them, and
check that for any 2-type from B there is a model of a minor modification of ϕ, containing
a realization of this 2-type. This modification of ϕ belongs to GF so in this step we can use
any existing algorithm for GF-satisfiability. Essentially, in the proof of the correctness of our
method, when constructing a model of ϕ we just use (many times) a model construction for GF
as a black box, and interleave it with the completion step reminiscent of the completion step
from the small model construction for FO2 by Grädel, Kolaitis and Vardi [8].

In fact, the resulting decision procedure for TGF is somehow similar to the decision proce-
dure of Rudolph and Šimkus [15]. In some sense, in the proof of its soundness we also apply
the mosaic method, but our building blocks are bigger. We believe that our approach is slightly
simpler conceptually, as it reuses some existing results for GF while Rudolph and Šimkus prove
everything from scratch. We hope that our view is valuable, and helps to better understand
the decidability of TGF. More importantly, as already advertised, our approach generalizes to
the stronger logic TGF+TG. Actually, while the proof of soundness of our decision procedure
for TGF+TG is slightly more involved than for TGF, the procedures themselves are almost
identical, the only real difference being that the former invokes a decision subprocedure for
GF+TG while the latter uses a subprocedure for GF.

After a detailed presentation of our method in case of TGF and TGF+TG (without con-
stants) we discuss its potential applications in some other scenarios, explaining how it allows
us to prove some new results or reprove some existing ones. Most importantly, we argue that

336

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

our method can be extended to cover the case of TGF with constants leading to optimal 2-
NExpTime-upper complexity bound. Moreover, in our approach we can also include a limited
use of equality, namely, admit atoms of the form x = c for a variable x and a constant symbol
c. This additional construct is suggested by Rudolph and Šimkus [15] as a natural mean of
expressing the concept of nominals (O) from description logics. Rudolph and Šimkus suspected
that such use of equality does not spoil the decidability and does not increase the complexity,
which we confirm here. We also consider some limited use of equality in TGF+TG, with which
the decidability is preserved. This will allow us to express that some transitive relations are
equivalences, which extends the potential applicability of the logic.

Following Rudolph and Šimkus [15], we present most of our results in the equivalent setting
of the logic GFU. We organize the paper as follows. Section 2 contains some preliminaries.
In Sections 3 and 4 we present our decidability proof for TGF (GFU) and its extension to
TGF+TG (GFU+TG), respectively. In Section 5 we discuss some other possible applications
of our method. In Section 6 we conclude the paper.

2 Conventions and some model theory

Models are denoted by Gothic letters M,N, . . . while their universes are denoted with the
corresponding Roman letters M,N, If M is a model with domain M , we write a ⊆M when
a = 〈a1, . . . , an〉 is a tuple of elements of M . For such a tuple, |a| = n denotes the length of a.
If a = 〈a1, . . . , an〉 and b = 〈b1, . . . , bm〉 are two such tuples, by ab we mean the concatenation
of those tuples, i.e., ab = 〈a1, . . . , an, b1, . . . , bm〉. (∃x) stands for the usual quantification, but
(∃x) is an abbreviation for (∃x1) . . . (∃xn) where x = 〈x1, . . . , xn〉 is a tuple of variables.

As a general rule, we implicitly allow emptiness. Hence unless explicitly excluded, we allow
the empty tuple and denote it as 〈〉. A predicate can be of arity 0, so it is meaningful to write
M |= P (〈〉), but we can use a shorter form M |= P instead. A finite conjunction can be the
empty conjunction, which is a universally true sentence denoted as >. Similarly, the empty
disjunction is ⊥ which is always a false sentence. When we write (∃x) θ(x, y), we allow that x be
an empty tuple of variables, in which case we call the quantifier vacuous, and such a formula is
notationally equivalent to θ(y). The exception is that, as usual, we don’t allow empty models.

We work in a finite relational first-order language L, using the following sets of formulas:

• F is the set of all formulas in L,

• F 6= is the set of all formulas in L that do not contain the equality symbol,

• Fqf is the set of all quantifier free formulas in L,

• Fqf
6= = Fqf ∩ F 6= is the set of all quantifier free formulas in L without equality.

If there is more than one language at hand, we write F(L), F 6=(L), etc. for disambiguation.

Definition 2.1. Assume N is a model, M is a set and f : M → N is a function. We define the
structure M on the domain M , called the pullback of N through f , such that for any predicate
P (x) of L and tuple a ⊆M , we have M |= P (a) ⇐⇒ N |= P (f(a)).

Remark 2.2. Assume M,N are models and f : M → N is a surjection such that M is the
pullback of N through f . Then for any formula ϕ(x) in F 6= and any tuple a ⊆ M we have
M |= ϕ(a) ⇐⇒ N |= ϕ(f(a)). In particular, M and N satisfy the same sentences in F 6=.

337

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

Proof. We proceed by induction on the complexity of ϕ. W.l.o.g. we assume that ϕ does not
use universal quantification and disjunction.

• If ϕ(x) is a predicate, the statement holds by definition.

• The induction steps involving conjunction and negation are trivial.

• Suppose the statement holds for ψ(x, y) and let ϕ(x) = (∃y)ψ(x, y). Fix a tuple a ⊆M .
If M |= ϕ(a), then there is some b ∈M such that M |= ψ(a, b). By induction hypothesis,
N |= ψ(f(a), f(b)), hence N |= ϕ(f(a)).

Now suppose N |= ϕ(f(a)) and pick b′ ∈ N with N |= ψ(f(a), b′). Since f is surjective,
there is some b ∈ M such that f(b) = b′, so N |= ψ(f(a), f(b)). By induction hypothesis
we have M |= ψ(a, b) so M |= ϕ(a).

Definition 2.3. Let n ∈ N. A complete (atomic) n-type p(x1, . . . , xn) is a maximal logically
consistent set of literals in Fqf in n variables x1, . . . , xn. So a complete n-type p(x1, . . . , xn) is
uniquely determined by the following choices:

• an equivalence relation ∼ on the set {1, . . . , n} such that for each 1 6 i, j 6 n, we have
p(x) |= xi = xj if i ∼ j and p(x) |= xi 6= xj otherwise,

• for every predicate Q(x1, . . . , xk) and function σ : {1, . . . , k} → {1, . . . , n}/∼, either
p(x) |= Q(xi1 , . . . , xik) for all sequences 1 6 i1, . . . , ik 6 n where each ij ∈ σ(j), or
p(x) |= ¬Q(xi1 , . . . , xik) for all such sequences.

Moreover, each choice as above corresponds to some complete n-type. Since every type p(x)
is finite, it may be identified with the formula

∧
p(x) ∈ Fqf which is the conjunction of all

formulas in p(x).

Definition 2.4. Assume M is a model and a = (a1, . . . , an) ⊆ M is a tuple. The type of a
in M, or the type realized by a in M, written tpM(a), is the complete n-type consisting of all
literals ϕ(x) ∈ Fqf such that M |= ϕ(a). When M is clear from the context, we write tp(a)
instead of tpM(a). If a ∈ M is an element whose 1-type is realized in M by no other element
then a is called a king.

Lemma 2.5. Assume ϕ is a satisfiable sentence in F 6=. Then ϕ has a model without kings.

Proof. Let N |= ϕ. Pick a set M and a function f : M → N such that f−1[{n}] has at least
two elements for each n ∈ N . Define M as the pullback of N through f . By Remark 2.2,
M |= ϕ and clearly if a ∈M realizes some 1-type α(x) and b ∈M \ {a} is an element such that
f(b) = f(a), then b also realizes α(x).

3 Decidability of the triguarded fragment

In this section we present our technique by reproving the decidability of the triguarded fragment.
But first, let us recall the definition of the guarded fragment and introduce a normal form for
its formulas similar to that used by Grädel in [7].

Definition 3.1. The family of GF-formulas is the smallest family of formulas such that:

(i) Any formula in Fqf
6= is a GF-formula.

(ii) GF-formulas are closed under logical connectives ¬,∨,∧,→ and ↔.

338

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

(iii) If ϕ(x, y) is a GF-formula and G(x, y) is an atom containing all the free variables of ϕ
then (∃y)

(
G(x, y) ∧ ϕ(x, y)

)
and (∀y)

(
G(x, y)→ ϕ(x, y)

)
are GF-formulas.

An atom G(x, y) relativizing a quantifier as in point (iii) of the above definition is called the
guard of this quantifier. We assume that GF-formulas may not have any occurrence of equality.
This is different from the definition of GF in [7]. The reason to not allow equality here is that
we later define TGF (GFU) in terms of GF, and TGF with equality is undecidable.

Definition 3.2. Assume ϕ is a sentence in GF. We say ϕ is in GF-normal form if it is a finite
conjunction of GF-sentences of the following two forms:

N1. any sentence in Fqf
6= ,

N2. (∀x)
(
G(x)→ (∃y)

(
H(x, y) ∧ θ(x, y)

))
, where G,H are guards and θ ∈ Fqf

6= .

Lemma 3.3. Let ϕ(x) be a GF-formula in L. Then there is L′ extending L by some finite

number of fresh predicates, a formula ϕ′(x) in Fqf
6= (L′) and a sentence ψ in GF-normal form

in L′, such that

• Every model M in L has a unique expansion M′ to L′ satisfying ψ,

• M′ |= (∀x)
(
ϕ(x)↔ ϕ′(x)

)
for each model M′ in L′ satisfying ψ.

In particular, if ϕ is a sentence, then ϕ has a model if and only if the normal form formula
χ = ϕ′ ∧ ψ has a model. Moreover, |χ| is in O(|ϕ|) and is computable in O(|ϕ|) time.

Proof. The idea of the proof is standard: we recursively replace existential subformulas of ϕ
with fresh predicates and attach at the end a GF-normal sentence asserting the equivalence
between the fresh predicate and the replaced subformula. Thus we end up with a conjunction
of a quantifier free sentence ϕ′ and some sentences ψi of the form N2 in the extended language.

Let us turn to the details. The proof is by induction on the complexity of ϕ. We only
demonstrate the existence part, as the computability statement easily follows from the analysis
of the construction.

• If ϕ(x) is in Fqf
6= , we take L′ = L, ϕ′ = ϕ and ψ = >.

• The induction steps involving logical connectives are straightforward.

• Suppose ϕ(x) = (∃y)
(
G(x, y)∧ϕ0(x, y)

)
and find L′0 ⊇ L, ϕ′0(x, y) and ψ0 corresponding

to ϕ0(x, y) as in the statement. Let P (x) be a fresh predicate symbol and L′ = L′0 ∪{P}.
Then put ϕ′(x) = P (x) and

ψ = ψ0 ∧ (∀x)
(
P (x)↔ (∃y)

(
G(x, y) ∧ ϕ′0(x, y)

))
To see that ψ can be equivalently written in GF-normal form, we write the part after ∧
as a conjunction on the following two sentences of the form N2:

(∀x)
(
P (x)→ (∃y)

(
G(x, y) ∧ ϕ′0(x, y)

))
(∀xy)

(
G(x, y)→

(
G(x, y) ∧

(
¬ϕ′0(x, y) ∨ P (x)

)))
(In the second sentence even though the existential quantifier is vacuous, we formally still
need to guard the formula occurring after it, whence the doubled guard G(x, y)).

It is routine to check that the inductive statement holds in that setting.

339

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

We will also make use of the notion of a guarded tuple:

Definition 3.4. Assume M is a model and c ⊆ M is a tuple. We say that c is guarded in M
if the set of elements occurring in c is a singleton or this set is contained in the set of elements
occurring in some tuple d ⊆M for which there exists a predicate G such that M |= G(d).

Now we turn to the triguarded fragment, TGF. It can be thought of as the natural common
extension of GF and FO2. A TGF-formula is obtained in the same manner as a GF-formula,
except that we allow quantifying an unguarded subformula provided that it has no more than
two free variables. TGF also has an equivalent logic GFU, the guarded fragment with the
universal role, introduced in [15], which is more convenient to work with, hence the results in
this section are expressed in terms of GFU.

Definition 3.5. The GFU logic is defined as follows:

• A language L is a GFU-language if it contains a distinguished binary symbol U,

• A model M in a GFU-language is a GFU-model if U is universally true in M,

• A GFU-formula is a GF-formula in a GFU-language.

Fact 3.6 ([15], Proposition 3). TGF and GFU have the same expressive power.

For example the TGF-formula (∀xy)
(
P (x) ∧Q(y)→ (∃z)R(x, y, z)

)
can be transformed to

the equivalent GFU-formula (∀xy)
(
U(x, y)→ (P (x)∧Q(y)→ (∃z)R(x, y, z))

)
. In the opposite

direction, GFU-formulas can be translated to TGF just by appending to them the conjunct
(∀xy)U(x, y).

Now we set to prove the decidability of satisfiability of formulas in GFU.

Lemma 3.7. Assume ϕ is a GFU-sentence in GF-normal form. Then ϕ has a GFU-model if
and only if there exist a set A of complete 1-types and a set B 6= ∅ of complete 2-types such
that the following conditions hold:

(i) α(x) |= U(x, x) for each α ∈ A,

(ii) β(x, y) |= x 6= y ∧ U(x, y) ∧ U(y, x) for each β ∈ B,

(iii) for each α1(x), α2(y) ∈ A the partial 2-type α1(x) ∪ α2(y) extends to some complete type
β(x, y) ∈ B,

(iv) for each β(x, y) ∈ B there exists a (not necessarily GFU-) model M |= ϕ such that

• M contains some a, b with M |= β(a, b),

• each c ∈M realizes some α(x) ∈ A,

• every guarded pair (a, b) ⊆M satisfies M |= U(a, b).

Proof. Write ϕ in GF-normal form as ϕ = ϕ0 ∧
∧
s∈S ϕs where ϕ0 is a sentence in Fqf

6= , S is a
finite set of indices,

ϕs = (∀x)
(
Gs(x)→ (∃y)

(
Hs(x, y) ∧ θs(x, y)

))
=: (∀x)ψs(x) for s ∈ S,

each Gs and Hs is a guard and θs ∈ Fqf
6= .

First we prove the left-to-right implication. Suppose M is a GFU-model satisfying ϕ and let
A be the set of all 1-types realized in M. Applying Lemma 2.5 to the sentence ϕ∧(∀x, y)U(x, y),
we can assume each type in A has at least two realizations in M. To define B, we choose for

340

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

each pair of 1-types α1(x), α2(x) ∈ A two distinct elements a, b ∈ M realizing these types and
insert the 2-type β(x, y) = tp(a, b) into B. Then clearly A and B satisfy (i) – (iv).

Now we prove the implication from right to left. The idea of the construction is as follows.
We use (iv) to build a model M∗1 satisfying ϕ. If it is, by chance, a GFU-model, then we are
done. Otherwise there are some unguarded pairs satisfying ¬U. We use (iii) to fix such pairs
by assigning to each a 2-type from B extending their 1-types. Thus we obtain a model M1

which, by (i) and (ii), is a GFU-model.
Given s ∈ S, we will say that a tuple cd ⊆ M1 such that M1 |= Gs(c) is an s-witness (or

just a witness) for c if M1 |= Hs(c, d) ∧ θs(c, d). Since every witness is guarded and we only
changed types of unguarded tuples, all witnesses are still valid. Also the unchanged type of the
empty tuple 〈〉 ensures that ϕ0 still holds. So the only possible reason for M1 to not be the
desired model is that some pairs (a, b) became guarded by being assigned a type βa,b ∈ B and
might need new witnesses.

For each such pair (a, b) we use (iv) to find a new model Ma,b in which ϕ holds, so in partic-
ular, (a, b) has the required witnesses for all s ∈ S. Then we consider a common superstructure
M∗2 of M1 and all Ma,b defined so that there are no relations across these models. Then again,
M∗2 satisfies everything except it might not be a GFU-model because of some unguarded pairs.
So we fix these pairs obtaining a model M2 and iterate the construction infinitely many times.
The union of all models along the way has the desired properties.

The formal proof begins now. We inductively define an increasing sequence of GFU-models
〈Mn : n < ω〉 which satisfies the following conditions for each n:

(1) if n > 0, Mn−1 is a substructure of Mn,

(2) each element of Mn realizes some 1-type α(x) ∈ A,

(3) if n > 0, for each tuple c ⊆Mn−1 we have Mn |=
∧
s∈S ψs(c)

(4) for each tuple c ⊆ Mn if Mn |= ¬
∧
s∈S ψs(c), then there exist a, b ∈ Mn such that

tpMn(a, b) ∈ B and c ∈ {a, b}k, where k is the length of c.

Pick any β0(x, y) ∈ B and define a GFU-model M0 with domain M0 = {a0, b0} so that
M0 |= β0(a0, b0). It is easy to check that M0 satisfies all the stipulated conditions. In particular,
(iv) indirectly implies that β0�x and β0�y (the restrictions of β0 to atoms containing only the
specified variables) belong to A, which shows (2). Another indirect consequence of (iv) is that
β0(x, y) |= ϕ0, hence M0 |= ϕ0, which we will use later.

Now fix n > 0 and suppose that structures 〈Mi : i < n〉 satisfying the inductive conditions
have already been defined. The scheme of the induction step is as follows. First we will extend
Mn−1 to an auxiliary model M∗n and prove some intermediate properties. Then we will obtain
Mn by modifying the structure of M∗n, without changing the domain. Finally we will check
that Mn has the desired properties.

For any pair a, b ∈Mn−1 realizing some 2-type βa,b(x, y) ∈ B use assumption (iv) to find a
model Ma,b satisfying the conditions stated there with respect to βa,b(x, y). In particular Ma,b

contains a pair of elements realizing βa,b(x, y), so we may assume that Ma,b ∩Mn−1 = {a, b}
and {a, b} is a common substructure of those models. We also assume that for two such pairs
a, b, a′, b′ ∈ Mn−1 the domains of Ma,b and Ma′,b′ have the least possible intersection, i.e.,
Ma,b ∩Ma′,b′ = {a, b} ∩ {a′, b′} ⊆Mn−1.

The domain of M∗n is the union of Mn−1 and Ma,b over all pairs as above.1 Now we define
the structure of M∗n so that Mn−1 and each Ma,b is a substructure of M∗n. Hence for any tuple

1Note that if both Ma,b and Mb,a have been defined for some distinct a, b ∈Mn−1, we include both of them
in the union. We might as well include just one of them and the proof remains valid.

341

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

c ⊆ M∗n contained in a single model M ′ considered in the union, we have tpM∗n(c) = tpM′(c).
Note that if c is contained in two such models, then it is in fact contained in some pair {a, b} ⊆
Mn−1 and the type of c in both models is the same as in Mn−1 so no inconsistency arises. If
c ⊆M∗n is not contained in any single model, we declare M∗n |= ¬P (c) for all predicates of L of
the same arity as the length of c.

We claim M∗n has the following properties:

(a) M∗n |=
∧
s∈S ϕs,

(b) M∗n |= U(a, b) for each guarded pair (a, b) ⊆M∗n,

(c) tp(c) ∈ A for each c ∈M∗n.

To check (a), fix s ∈ S and a tuple c ⊆ M∗n satisfying M∗n |= Gs(c). Since c is guarded
in M∗n, it is contained in a single model from the union defining M∗n. If c ⊆ Ma,b for some
a, b ∈Mn−1, then there is a witness for c in Ma,b because Ma,b |= ϕs. Otherwise c ⊆Mn−1 and
by (4) there are two cases: either c has a witness in Mn−1 or c ∈ {a, b}k for some a, b ∈Mn−1

realizing in Mn−1 a type βa,b(x, y) ∈ B. In the first case we are done, in the second c ⊆ Ma,b

so again c has a witness in Ma,b.
To prove (b), take any guarded pair (a, b) ⊆ M∗n. Then (a, b) is contained in one of the

models from the union defining M∗n. If this model is Mn−1, which is a GFU-model, then the
conclusion is clear. Otherwise it is some Ma,b, which satisfies in particular the last bullet from
(iv), hence the conclusion is clear as well. Finally, (c) follows from (2) and the properties of
each Ma,b listed in (iv).

Now we define a new structure Mn on the domain Mn = M∗n. For each pair a, b ∈M∗n such
that M∗n |= ¬U(a, b), by (c) we can use (iii) to find some βa,b(x, y) ∈ B extending tp(a)(x) ∪
tp(b)(y). Let Mn be the model obtained from M∗n by assigning to each pair (a, b) as above the
new type βa,b(x, y).2 This is possible because if (a, b) is such a pair, then a 6= b by (i) and (c).
It remains to check that Mn is a GFU-model satisfying (1) – (4). We will use the following
observations:

(†1) for each c ⊆ Mn and predicate P , if P (c) has different truth value in M∗n and Mn, then
there are a, b ∈M∗n such that M∗n |= ¬U(a, b) and c ∈ {a, b}k \ {ak, bk},

(†2) for each c ⊆M∗n if M∗n |= U(a, b) for all a, b ∈ c then tpMn(c) = tpM∗n(c),

(†3) for each c ⊆M∗n guarded in M∗n we have tpMn(c) = tpM∗n(c),

where (†1) follows directly from the definition, (†2) is implied by (†1) and (†3) is true by (†2),
(b) and (c) + (i).

To check that Mn is a GFU-model, fix a, b ∈ Mn. If M∗n |= U(a, b), then (a, b) is guarded
in M∗n, so Mn |= U(a, b) by (†3). Otherwise tpMn(a, b) = βa,b or βb,a, either way Mn |= U(a, b)
by (ii).

Finally we check that Mn satisfies properties (3) and (4), as the other two are easy. Let
s ∈ S and fix c ⊆Mn such that Mn |= Gs(c). We consider two cases. If M∗n |= Gs(c), then by
(a) there is d ⊆ M∗n such that M∗n |= Hs(c, d) ∧ θs(c, d). In particular cd is guarded in M∗n, so
(†3) implies Mn |= Hs(c, d) ∧ θs(c, d), as required. In the second case we have M∗n |= ¬Gs(c),
so by (†1) we have c ∈ {a, b}k \ {ak, bk} for some a, b ∈ M∗n such that M∗n |= ¬U(a, b). But
then tpMn(a, b) = βa,b or βb,a, so (4) holds with a and b possibly exchanged. If we additionally
assume that c ⊆ Mn−1, then from (†2) and the fact that Mn−1 is a GFU-model, we have
tpM∗n(c) = tpMn(c). So under that assumption the first of the two cases above must hold,
hence we get (3).

2If M∗
n |= ¬U(a, b) ∧ ¬U(b, a), we assign either βa,b or βb,a arbitrarily.

342

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

This ends the inductive construction. Now consider M =
⋃
n<ωMn. Clearly as a union of

an increasing chain of GFU-models, M is a GFU-model. As marked before, M0 |= ϕ0 hence
M |= ϕ0. Finally, M |=

∧
s∈S ϕs follows from (3), so the proof is complete.

We are now ready to establish the complexity of the satisfiability problem for GFU, and thus
also of TGF. Before formulating the main theorem of this section, we define some complexity
parameters. A formula ϕ is of length n = n(ϕ), has m = m(ϕ) variables in total and r = r(ϕ)
predicates of maximal arity ` = `(ϕ). When x is a parameter, by p(x) we mean any polynomial
in x. We will use the following result by Grädel:

Lemma 3.8 (Theorem 4.3, [7]). The satisfiability problem for GF is in 2-ExpTime. More

precisely, satisfiability of a given formula ϕ can be tested in time O(crm
` · n) for some c > 0.

Strictly speaking, Grädel explicitly formulates only the first part of the above Lemma,
that is, states his theorem in terms of n. However, the second part of the Lemma can be easily
extracted from his proof. Namely, in his paper Grädel presents an alternating procedure running
in space O(r ·m`) with respect to the input formula. We can thus get the desired estimation
using the classical Chandra, Kozen and Stockmeyer’s simulation of alternating space-bounded
Turing machines by deterministic ones [4]. Let us now show the main result of this section.

Theorem 3.9. The satisfiability of GFU (and hence TGF) is in 2-ExpTime.

Proof. We describe a satisfiability test for sentences in GFU: Read a sentence ϕ in GFU and
use Lemma 3.3 to get a formula χ in GF-normal form (in some possibly extended language L′)
such that ϕ has a model if and only if χ has a model. Following the notation of Lemma 3.7,
check if there is a set A of complete 1-types (in L′) and a set B 6= ∅ of complete 2-types of size
6 |A|2 such that the conditions (i) - (iv) from the Lemma hold. If yes then accept; otherwise
reject. Note that we can indeed restrict attention to sets B of size 6 |A|2, since it suffices to
have in B just one 2-type for every pair of 1-types from A.

Given A and B, the verification of conditions (i) - (iii) is straightforward, while checking
(iv) is done by writing for every β ∈ B the following formula

ψβ := χ ∧ (∃xy)β(x, y) ∧ (∀x)
∨
α∈A

α(x) ∧
∧
P∈L′

(∀x)
(
P (x)→

∧
16i,j6|x|

U(xi, xj)
)
,

and verifying its satisfiability by executing a subprocedure referred to by Lemma 3.8.
We now analyse the computational complexity of the procedure and simultaneously fill in

the missing details. The computation of χ takes polynomial time in n. Since |A| = O(2r(χ))
and r(χ) ∈ O(n), the number of possible choices of A and B is doubly exponential in n. We
just exhaustively consider all possibilities. For a fixed pair of sets of types A,B, the verification
of conditions (i) – (iii) clearly can be done in time exponential in n. As we said, to check (iv),
for each β ∈ B we need to verify satisfiability of ψβ . Note that n(ψβ) = O(2p(n(ϕ))) (the size of
A and thus the number of disjuncts in the third conjunct can indeed be exponential in n), but
m(ψβ) ∈ O(n(χ)), r(ψβ) = r(χ) and `(ψβ) = `(χ). So, using the test from Lemma 3.8 we get

the answer in time O(cr(ψβ)m(ψβ)`(ψβ)

· n(ψβ)) = O(cr(χ)n(χ)`(χ) · 2p(n(χ))), which, taking into
account that l(χ) is bounded linearly in n(χ), is doubly exponential in n(χ). Hence the total
time needed for computation is double exponential in n(ϕ).

The correctness of the algorithm follows directly from Lemma 3.7.

We recall that the upper bound from Thm. 3.9 is optimal as the matching lower bound
holds already for GF without equality [7]. We remark that Thm. 3.9 is not new—as we said in

343

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

the Introduction, essentially the same result was already proved, using different techniques, in
[11] and [2]. From the above analysis we also get the following corollary.

Corollary 3.10. The satisfiability problem for GFU (TGF) is NExpTime-complete when the
arity of relation symbols is bounded by a constant.

Proof. We use a modification of the satisfiability test from the proof of Thm. 3.9 in which
instead of considering all possible pairs of sets of types A, B we just nondeterministically guess
one such pair. Since the parameter `(ϕ′) is now bounded by a constant, satisfiability of each ψβ
can be tested in time exponential in n(ϕ′). The upper bound then follows. The corresponding
lower bound is inherited from FO2 without equality [13].

We recall that also Corollary 3.10 is not a new result. Establishing the complexity of TGF
in this case was left as an open problem in [2]. This problem was solved in [15] in a richer
scenario involving constant symbols.

4 The triguarded fragment with transitive guards

In this section we consider the triguarded fragment with transitive guards, TGF+TG. First, let
us recall the guarded fragment with transitive guards, GF+TG from [17]. It is an extension of
GF in which the predicates are divided into two types: free and transitive. Free predicates are
ordinary, while transitive predicates must be interpreted as transitive binary relations, however,
their occurrences in formulas are restricted to guards. Below is a formal definition:

Definition 4.1. The GF+TG logic is defined as follows:

(i) A TG-language is a pair L = (PF ,PT), where PF is a set of predicate symbols, PT is a
set of binary predicate symbols and PF ∩ PT = ∅ (but PF can still contain some binary
predicate symbols). The symbols in PF are called free predicates while the symbols in PT
are transitive predicates.

(ii) Let L be as above. A formula in PF ∪ PT is called a GF+TG-formula in L if it is
constructed as in Definition 3.1 with the following changes:

• in (i) we disallow formulas containing occurrences of transitive predicate symbols,

• in (iii) a vacuous quantifier cannot have a transitive guard.

Also we call such formula free if every predicate that occurs in that formula is free.

(iii) A complete (atomic) type in L is a complete type in PF ∪ PT , while a complete free type
and complete transitive type is a complete type in PF and PT respectively.

(iv) A TG-model in L is a model in L (i.e. in PF ∪ PT) in which every symbol from PT is
interpreted as a transitive binary relation.

(v) A guard P (x) is called transitive if P is transitive, otherwise it is free.

Now TGF+TG could be defined as the natural common extension of TGF and GF+TG.
But as before, we find it easier to work with GFU rather than TGF, so we proceed directly to
defining the GFU+TG logic which has the power of expression equal to that of TGF+TG.

Definition 4.2. The GFU+TG logic is defined as follows:

(i) A TG-language L = (PF ,PT) is a GFU+TG-language if PF contains a distinguished
symbol U of a binary predicate.

344

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

(ii) A GFU+TG-formula is a GF+TG-formula in a GFU-language.

(iii) A GFU+TG-model in L is a TG-model in L which is also a GFU-model.

As in the previous section, the sentences in GFU+TG can be equivalently transformed to a
more convenient normal form. The proof is analogous, but the restriction of transitive guards
to non-vacuous quantifiers makes it necessary to add one type of conjunct:

Definition 4.3. Assume ϕ is a sentence in GF+TG (e.g. in GFU+TG). We say ϕ is in
GF+TG-normal form if it is a conjunction of GF+TG-sentences of the following three forms:

N1. any sentence in Fqf
6= ,

N2. (∀x)
(
G(x)→ (∃y)

(
H(x, y) ∧ θ(x, y)

))
, where G,H are guards and θ ∈ Fqf

6= ,

N3. (∀x)
(
G(x)→ θ(x)

)
, where G is a guard and θ ∈ Fqf

6= .

Lemma 4.4. An analogue of Lemma 3.3 holds for GF+TG-sentences.

We now aim to prove that the satisfiability of GFU+TG is decidable. The key lemma is
similar to Lemma 3.7 and the differences that could be overlooked are emphasized in bold font.

Lemma 4.5. Assume ϕ is a GFU+TG-sentence in GF+TG-normal form. Then ϕ has a
GFU+TG-model if and only if there exist a set A 6= ∅ of complete free 1-types and a set
B 6= ∅ of complete free 2-types such that the following conditions hold:

(i) α(x) |= U(x, x) for each α ∈ A,

(ii) β(x, y) |= x 6= y ∧ U(x, y) ∧ U(y, x) for each β ∈ B,

(iii) for each α1(x), α2(y) ∈ A the partial free 2-type α1(x) ∪ α2(y) extends to some complete
free type β(x, y) ∈ B,

(iv) for each β(x, y) ∈ B there exists a TG-model M |= ϕ such that

• M contains some a, b with M |= β(a, b),

• each c ∈M realizes some α(x) ∈ A,

• every guarded pair (a, b) ⊆M satisfies M |= U(a, b).

Proof. The core of the proof is the same as in that of Lemma 3.7, so we only discuss the parts
which need a nontrivial change.

The argument for the implication from left to right remains valid, except that we apply
Lemma 2.5 to the sentence ϕ∧ (∀x, y)U(x, y)∧

∧
T∈PT (∀x, y, z)

(
T (x, y)∧T (y, z)→ T (x, z)

)
so

that we end up with a GFU+TG-model of ϕ again.
For the other direction, write ϕ in GF+TG-normal form as ϕ = ϕ0 ∧

∧
s∈S ϕs ∧

∧
s∈S′ ϕ

′
s

where ϕ0 is a sentence in Fqf
6= , S, S′ are finite sets of indices,

ϕs = (∀x)
(
Gs(x)→ (∃y)

(
Hs(x, y) ∧ θs(x, y)

))
=: (∀x)ψs(x) for s ∈ S,

ϕ′s = (∀x)
(
G′s(x)→ θ′s(x)

)
=: (∀x)ψ′s(x) for s ∈ S′,

each Gs, G
′
s, Hs is a guard and θs, θ

′
s ∈ F

qf
6= . We will define a sequence 〈Mn : n < ω〉 of

GFU+TG-models satisfying the following conditions for each n:

(1) – (3) as before,

345

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

(4) for each tuple c ⊆ Mn and s ∈ S, if Mn |= ¬ψs(c), then Gs is a free guard and there
exist a, b ∈Mn realizing some free type β(x, y) ∈ B such that c ∈ {a, b}k\{ak, bk}, where
k = |c|.

(5) Mn |=
∧
s∈S′ ϕ

′
s.

We postpone the construction of M0 until the end of the proof. Now fix n > 0 and suppose the
models 〈Mi : i < n〉 have already been defined.

For any pair a, b ∈ Mn−1 realizing some free 2-type βa,b(x, y) ∈ B let Ma,b be a model in
L as in (iv) such that Ma,b ∩Mn−1 = ∅ and the pair in Ma,b realizing βa,b is (a∗, b∗). Put
Na,b = Ma,b ∪ {a, b} and let πa,b : Na,b → Ma,b be such that πa,b�Ma,b is the identity and
π(a, b) = (a∗, b∗). We define the model Na,b in the language PF on the domain Na,b as the
pullback of Ma,b�PF through πa,b.

Let M∗n be the model with the domain Mn−1 ∪
⋃

(a,b)M
a,b and structure defined as follows.

For each T ∈ PT and c, d ∈ M∗n we declare that M∗n |= T (c, d) holds if and only if {c, d} is
contained in Mn−1 or some Ma,b and T (c, d) holds there. So the graph of T in M∗n is the
disjoint union of the graphs of T in Mn−1 and Ma,b over all (a, b). On the other hand, the
‘free’ part of the structure on M∗n comes from the amalgamation of the models Mn−1 and Na,b

over all (a, b) as above. Note that Mn−1 and each Ma,b is a substructure of M∗n and each Na,b

is a substructure of M∗n�PF .
We will prove M∗n is a TG-model with the following properties:

(a) M∗n |=
∧
s∈S ϕs,

(a’) M∗n |=
∧
s∈S′ ϕ

′
s,

(b) M∗n |= U(a, b) for each guarded pair (a, b) ⊆M∗n,

(c) tp(c)�PF ∈ A for each c ∈M∗n.

For (a’), take s ∈ S′ and assume c ⊆M∗n satisfies M∗n |= G′s(c). If G′s is a transitive guard,
then by definition c is contained in a single model, Mn−1 or some Ma,b and G′s(c) holds there.
That model is a substructure of M∗n and it satisfies ψ′s(c), hence M∗n |= θ′s(c), as required. If
G′s is a free guard, then c is contained in a single model, Mn−1 or Na,b, which is a substructure
of M∗n with respect to the free structure. Also in this case ψ′s(c) is a free sentence which holds
in that model, thus M∗n |= θ′s(c).

Now we check (a). Fix s ∈ S and take c ⊆ M∗n satisfying M∗n |= Gs(c). First suppose Gs
or Hs is a transitive guard. We then claim that c is again contained in a single model Mn−1

or some Ma,b. Indeed: if Gs is transitive, it follows directly from the construction of M∗n.
On the other hand, if Hs is transitive, then y in ϕs must be non-empty and |xy| 6 2, hence
|c| = |x| 6 1, so the claim must hold as well. Now the said model is a substructure of M∗n, so
it satisfies Gs(c). If that model is Ma,b, then Ma,b |= ψs(c) and it is easy to get the desired
conclusion. But if it is Mn−1, then Mn−1 |= ψs(c), for otherwise by (4), Hs would be transitive
and |c| > 1, which contradicts the analysis above. The conclusion follows in this case as well.
Finally suppose both Gs and Hs are free. Then ϕs is free and we argue as in the original proof.

The proofs of (b) and (c) do not change and obviously M∗n is a TG-model.
Now we define the structure Mn on the domain Mn = M∗n similarly as before, by assigning

to each pair (a, b) ⊆ Mn with M∗n |= ¬U(a, b) a new free type from B extending their free
1-types, but keeping their transitive types unchanged. The properties (†1) – (†3) from the
previous proof still hold in this situation and moreover, under the assumption of (†1) we have
that P is a free predicate.

Mn is clearly a TG-model and we prove as before that it is a GFU-model. The properties
(1), (2) are again easy to check and (3), (4) are proved the same way as before taking into

346

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

account the strengthening of (†1) mentioned in the previous paragraph. Finally we check (5):
fix s ∈ S′ and a tuple c ⊆ Mn satisfying Mn |= G′s(c). If M∗n |= G′s(c), then (†3) implies
tpMn(c) = tpM∗n(c) and also M∗n |= ϕ′s, hence Mn |= θ′s(c). Otherwise G′s is free, hence so is
ϕ′s, and c ∈ {a, b}k \ {ak, bk} for some a, b ∈ Mn with M∗n |= ¬U(a, b), which again implies
Mn |= β(a, b) for some free type β(x, y) ∈ B. Let z ∈ {x, y}k \{xk, yk} be the tuple of variables
which becomes c under the substitution (x, y) := (a, b). Then β(x, y) |= G′s(z)→ θ′s(z) by (iv),
therefore Mn |= θ′s(c), as required.

To finish the inductive construction we define the model M0. Pick any β(x, y) ∈ B and find
a model M∗0 satisfying (iv) with respect to β. Then define M0 by the same procedure that was
used to obtain Mn from M∗n. Clearly M∗0 |= (a) – (c) and therefore M0 |= (2) – (5).

Finally note that M∗0 |= ϕ0 and by (†1) the type of the empty tuple is the same in M0 as in
M∗0, hence M0 |= ϕ0. The rest of the proof is as before with an additional observation that a
union of a chain of TG-models is a TG-model.

We now turn to establishing the complexity of TGF+TG. As black box we use this time
the following result of Szwast and Tendera:

Lemma 4.6 (Theorem 38, [17]). The satisfiability problem for GF+TG is in 2-ExpTime.
More precisely, the satisfiability of a given GF+TG-sentence ∆ in a specific normal form can

be tested in time cO(r2·m`·(3n)m·2rm) · n for some c > 0.

Again the cited theorem only asserts the general doubly exponential bound with respect
to n(∆), but the more precise estimation can be extracted by reading the proof and using the
Chandra, Kozen and Stockmeyer’s simulation of alternating space-bounded Turing machines
from [4].

The specific normal form mentioned in the Lemma is that from [17], which we recall here
for convenience:

Definition 4.7 (Definition 1, [17]). A GF+TG-sentence ∆ is in normal form if it is a conjunc-
tion of sentences of the following form:

(n1) (∃x)(α(x) ∧ ψ(x)),

(n2) (∀x)
(
α(x)→ (∃y)(β(x, y) ∧ ψ(x, y))

)
,

(n3) (∀x)
(
α(x)→ ψ(x)

)
,

where α and β are atomic formulas (guards) and y /∈ x, all the variables listed in β(x, y) do
occur in β, ψ is quantifier-free and it contains no transitive predicate letter.

The above normal form is similar to ours. A slight difference is that its blocks of existential
quantifiers are always of length 1.

We are ready to show the main theorem.

Theorem 4.8. Satisfiability of GFU+TG (and therefore TGF+TG) is in 2-ExpTime.

Proof. Mostly, repeat the proof of Theorem 3.9. The only part that needs to be changed and
reanalysed is the verification of the condition (iv) for a fixed β ∈ B. The modification to the
algorithm is as follows: assume the program has already computed the sentence

ψβ = χ ∧ (∃xy)β(x, y) ∧ (∀x)
∨
α∈A

α(x) ∧
∧
P∈L′

(∀x)(P (x)→
∧

16i,j6|x|

U(xi, xj)).

347

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

It is then transformed into a sentence ∆ in the normal form from Definition 4.7 using the
standard procedure of recursively replacing single-quantified subformulas with a predicate.3

Using Lemma 4.6 as a subroutine, verify satisfiability of ∆. The rest is as before.
Now we analyse the complexity of the new part of the algorithm. Recall that the input

to our algorithm is the GFU+TG-sentence ϕ and χ is its reduction to our GF+TG-normal
form given by Lemma 4.4. It is enough to show that the time it takes to execute the described
fragment of the satisfiability test is doubly exponential in n(ϕ).

The conversion of ψβ into ∆ takes (possibly nondeterministic) polynomial time in n(ψβ),
which is exponential in n(ϕ). By a routine analysis we get n(∆) = O(n(ψβ)),m(∆) 6 m(ψβ) =
max{m(χ), 2} = O(n(ϕ)), `(∆) = `(ψβ) = O(n(ϕ)). Also r(∆) is exactly r(ψβ) increased
by the number of quantifiers in ψβ , where (∃x) is counted |x| times, so ultimately r(∆) =
O(r(χ) + n(χ)) = O(n(ϕ)). By Lemma 4.6 the verification of satisfiability of ∆ takes

cO(r(∆)2·m(∆)`(∆)·(3n(∆))m(∆)·2r(∆)m(∆)) · n(∆)

time, which is doubly exponential in n(ϕ).
Overall the whole algorithm works in doubly exponential time as required.

We recall that the upper bound in the above theorem is optimal as already GF without
equality is 2-ExpTime-hard [7].

5 Discussion

In this section we briefly discuss some applications of our method in slightly modified/extended
scenarios, deriving some new results on triguarded logics.

5.1 Equality in formulas guarded by transitive atoms

In the proof of our central technical result, Lemma 4.5 (or of its variant for the language
without transitive relations, Lemma 3.7) it is the left-to-right direction in which the absence
of equalities is crucial. Consider for example the GFU conjuncts (∃x)P (x) and (∀xy)(Uxy →
(Px∧Py → x = y)). Any GFU-model M which satisfies them must contain a king (cf. Def. 2.4).
For a formula enforcing kings we would not be able to find appropriate sets A and B. More
specifically, the set A should then contain a 1-type α realized by a king in any model of the
formula and the problem would be to fulfil condition (iii) for the pair (α, α). Recall that every
satisfiable formula without equality has a model without kings (Lemma 2.5), and note that for
a formula (even with equality) having a model without kings there are sets A, B (e.g., the sets
of types realized in this model) fulfilling the conditions of Lemma 4.5.

Interestingly, the absence of equality is not important for the proof of the right-to-left
direction of Lemma 4.5. A routine inspection shows that our model construction works fine
even if the formulas contain equalities. Thus, using the fact that the procedure of Szwast
and Tendera employed as our external subroutine works in the presence of equalities, we can
use our approach to test satisfiability of formulas with equality in models without kings. This
observation is similar to the observation by Gurevich and Shelah [10], concerning their proof of
the decidability of the Gödel class without equality.

3A minor detail is that the work of Szwast and Tendera [17] seems not to admit relations of arity 0. So, to
take this into account we can additionally nondeterministically guess the truth values of all such relations and
replace their occurrences in ψβ by > or ⊥ depending on the guess.

348

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

One may want to try to find some syntactic conditions restricting the use of equality in order
to guarantee that a TGF+TG formula, whenever satisfiable, has a model without kings. Let us
propose one simple such condition, allowing us to subtly increase the expressive power of the
logic. For simplicity, let us consider only formulas in normal form. It turns out that without
sacrificing the decidability we can admit equalities in those conjuncts of the form N3 whose
guards are transitive. Indeed, any satisfiable normal form TGF+TG formula using equalities
only in this way has a model without kings.

Lemma 5.1. Let ϕ be a satisfiable normal form GFU+TG formula in whose conjuncts of type
N3 guarded by transitive atoms (and only in such conjuncts) equalities can be used. Then ϕ has
a model without kings.

Proof. Let N |= ϕ. Let M consists of two disjoint copies of the domain of N, and f : M → N
be the function returning for a ∈M the element of N which a is a copy of. Define the structure
on M in such a way that its free part is the pullback of the free part of N through f and
M |= T (a, b) iff a and b belong to the same copy of N and N |= T (f(a), f(b)). Clearly T is
transitive in M. We show that M |= ϕ. First, note that all conjuncts of ϕ of the form N1

or N2 and those conjuncts of the form N3 whose guard is non-transitive are satisfied in M
by Remark 2.2 (since they do not contain equalities). Consider a conjunct of the form N3,
(∀x)

(
G(x)→ θ(x)

)
, with transitive G (and thus with |x| 6 2), possibly with occurrences of =

in θ. Take a tuple a such that M |= G(a). Since G is transitive, by the definition of M we know
that the elements of a belong to the same copy of N, and thus M�a is isomorphic to N�f(a).
Since N |= θ(f(a)) it follows that M |= θ(a). Obviously, M is without kings, as it contains at
least two copies of every 1-type realized in N and it realizes no other 1-types.

Now, for example, we can use the trick from [12] to express that a transitive relation T is
an equivalence relation: introduce an auxiliary unary predicate PT and say: (∀x)(∃y)(T (x, y)∧
PT (y)), (∀x)(∃y)(T (y, x) ∧ PT (y)), and (∀xy)(T (x, y) → (PT (x) ∧ PT (y) → x = y)). One
easily checks that in any model interpreting T as a transitive relation and satisfying the above
formulas, T is an equivalence, and, in the opposite direction, any model interpreting T as an
equivalence can be expanded to a model of those formulas by setting PT true for precisely one
element of every equivalence class of T . (Note that the formula expressing the symmetry of a
transitive relation in a straightforward way, (∀xy)(T (x, y)→ T (y, x)) is not in TGF+TG.)

We thus have the following strengthening of our main result.

Corollary 5.2. The satisfiability problem for the variant of TGF+TG in which the set of
transitive symbols PT has a distinguished subset PE whose elements must be interpreted as
equivalence relations is decidable and 2 -ExpTime-complete.

The equivalence relations are natural in many applications, e.g., in the field of epistemic
logics, thus the ability of expressing them enhances the potential applicability of our logic.

5.2 Constants in the triguarded fragment

In our main result, the decidability of TGF+TG (GFU+TG), we do not include constants, as
they are not allowed in GF+TG, decidability of which we need. We leave the decidability of
TGF+TG with constants as an open problem, recalling that even the decidability of GF+TG
is open. We also do not include constants when we present our method in the simpler setting
of TGF (GFU). However, in this latter case this is because of the clarity of the presentation,
and in fact our method can be adapted for TGF (GFU) with constants, and used to derive the
optimal 2-NExpTime-upper complexity bound.

349

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

Moreover, in our approach we can also include a limited use of equality, namely, allow to use
atoms of the form x = c for a variable x and a constant symbol c. This additional construct is
suggested by Rudolph and Šimkus [15] as a natural mean of expressing the concept of nominals
(O) from description logics. Rudolph and Šimkus suspect that such use of equality does not
spoil the decidability nor increase the computational complexity, which we confirm here.

Theorem 5.3. The satisfiability problem for TGF+TG with constants and equalities of the
form x = c where x is a variable and c is a constant is decidable and 2 -NExpTime-complete.

Let us sketch the modifications of our decidability proof for GFU covering the above exten-
sion.

First, note that Lemma 3.3, allowing us to restrict attention to normal form formulas, holds
for the extended logic. In fact, no changes in the proof of this lemma are needed.

We will call a complete 1-type α constant-free if for every constant symbol c we have
α(x) |= x 6= c. Collecting all the ground literals of a given 1-type α we obtain a unique 0-
type called the 0-type induced by α. This 0-type fully describes the restriction of any structure
realizing α to the set of elements interpreting the constant symbols. Obviously all 1-types
realized in a given structure induce the same 0-type.

To make the crucial Lemma 3.7 work in the extended scenario we modify (iii) to

(iii) for every pair of constant-free 1-types α1(x), α2(y) ∈ A the partial 2-type α1(x)∪α2(y)
extends to some complete type β(x, y) ∈ B.

and add the following three conditions

(v) all 1-types α ∈ A induce the same 0-type; call this 0-type γ0

(vi) for every α ∈ A and every constant c we have U(x, c),U(c, x) ∈ α

(vii) there is a model M0 |= ϕ ∧ γ0 such that every guarded pair (a, b) ⊆ M0 satisfies M0 |=
U(a, b).

Note that the model M0 from (vii), similarly to models whose existence is postulated by (iv), is
not required to be a GFU-model, that is not necessarily all pairs of its elements are connected
by U. We remark that in the case without constants the notion of 0-types also make sense;
in that case a 0-type just consists of literals built out of relation symbols of arity 0. Observe
that in the case without constants condition (v) is implied by (the original) condition (iii), and
condition (vii) is implied by condition (iv). This may not be the case in the current scenario,
as B may be empty (when no constant-free 1-types are present in A).

To show that for any normal form ϕ satisfiable in a GFU-model appropriate sets of types A
and B exist we observe that there is a GFU-model of ϕ in which every constant-free 1-type is
realized at least two times. To see this one can adapt the notion of the pullback (cf. Def. 2.1)
to the case with constants by requiring that for every constant c the function f maps precisely
one element of M to cN. This unique element is then required to be the interpretation of c
in M. After this adjustment, Remark 2.3 becomes true for the extended language and can be
naturally used to duplicate a realization of every constant-free type in any model of ϕ. One
easily verifies that the sets A, B of, resp., 1-types and 2-types realized in the model obtained
this way satisfy the desired conditions (i)-(vii). We emphasise that this is the fragment of
the proof which would not work for arbitrary equalities (just recall the formula enforcing the
existence of a king from the previous subsection); it however works for equalities x = c.

In the opposite direction, having A and B satisfying the conditions (i)–(vii) we can seam-
lessly build a GFU-model M of ϕ. We start from the model M0 whose existence is postulated

350

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

in (vii) and follow the lines of the proof of Lemma 3.7, with the exception that in the inductive
step, as the interpretations of the constant symbols in Ma,b we use the same elements that
interpret them in Mn−1 (and hence, by induction, the same as in M0), that is, that the in-
tersection Ma,b ∩Mn−1 consists of a, b and the interpretations of constants from Mn−1. The
structure M∗n can be then defined without conflicts because Mn−1 and each of the Ma,b agree
on constants as in all of them the 0-type γ0 is realized.

A natural decision procedure arising from our considerations above, given an input ϕ, again
transforms ϕ into normal form χ, guesses the sets A and B and verifies the required conditions.
In the presence of constants the number of possible 1-types may be larger than without them,
namely doubly exponential in the maximal arity of the relation symbols and hence in the size of
ϕ. Thus, the size of the guess can be also bounded only doubly exponentially, and the procedure
indeed needs nondeterministic doubly exponential time. All the required conditions except (iv)
and (vii) are directly verifiable. To verify conditions (iv) and (vii) we construct GF-formulas
analogous to those constructed for condition (iv) in the case without constants and then pass
them to an external procedure solving their satisfiability.

The formulas constructed are this time of size doubly exponential in the size of χ, since
one of their conjuncts is a big disjunction listing all the 1-types from A. However, the other
complexity parameters we use in our analysis, that is the number of variables, the maximal
arity of relation symbols and the number of relation symbols are linearly bounded in the size
of χ. Thus, if as the external procedure we take Grädel’s procedure from [7], and we repeat
the complexity analysis from the proof of Thm. 3.9, we get that the procedure will return its
answer in deterministic doubly exponential time in the size of χ. (We remark that in Grädel’s
proof constants are first eliminated and simulated by variables which results in increasing the
arity of every relation symbol by the number of constants; still this is linearly bounded in the
size of the input formula). Hence, overall, our procedure works in 2-NExpTime, and the only
source of nondeterminism is the need of guessing the sets A and B of potentially large size.

We comment that in our approach the equalities of the form x = c do not need any special
care. Simply, we assume that the models whose existence is postulated by conditions (iv)
and (vii) respect such equalities. They then just need to be properly handled by the external
procedure; and we recall that Grädel’s procedure admits equalities, in particular those of the
form x = c.

5.3 Two-variable logic with guarded use of transitive closure

In [14] Michaliszyn proves the decidability and 2-ExpTime-completeness of the two-variable
restriction of the guarded fragment in which to some distinguished binary relations one can
apply the transitive closure operator. Analogously to transitive relations in our paper, those
distinguished relations, as well as their transitive closures (call them both special relations),
can be used only as guards. In Michaliszyn’s variant one can simulate transitive relations
(for a distinguished symbol T one can simply use only its transitive closure T ∗ and never
mention T) but, of course, the main advantage of his logic is that it allows to express some
reachability properties. Employing our approach, that is using Michaliszyn’s procedure as
a black box, we can lift his result to full two-variable logic (which is the same as the two-
variable triguarded fragment) without equality with special relations appearing only as guards
of quantifiers. Details of the proof of this fact are similar to those from the case of TGF+TG
and we skip them here. We remark that [14] deals only with the two-variable restriction of GF,
so we cannot easily derive the decidability of full TGF with transitive closure in guards.

351

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

6 Conclusion

We have proposed a new approach to prove the decidability and establish the complexity of
some triguarded logics, consisting in using some existing results on the guarded logics (almost)
as black boxes. We demonstrated usefulness of our method by reproving some known facts,
and deriving some new results, most important of which is the decidability of TGF+TG, the
triguarded fragment with transitive relations in guards.

We remark that our technique works only for the general satisfiability problem and gives no
insight into the finite satisfiability problem, which asks for the existence, for a given formula,
of its finite model. An interesting related open question is if TGF has the finite model property,
i.e., if its every satisfiable formula has a finite model. Obviously, this is certainly not the case
for TGF+TG, since already GF+TG without equality does not have the finite model property:
just recall the typical infinite axiom, with transitive T , (∀x)(∃y)T (x, y) ∧ ¬(∃x)T (x, x).

References

[1] H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragments of predicate
logic. Journal of Philosophical Logic, 27:217–274, 1998.

[2] P. Bourhis, M. Morak, and A. Pieris. Making cross products and guarded ontology languages
compatible. In IJCAI 2017, pages 880–886, 2017.

[3] Andrea Cal̀ı, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering under
expressive relational constraints. J. Artif. Intell. Res., 48:115–174, 2013.

[4] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.

[5] H. Ganzinger, Ch. Meyer, and M. Veanes. The two-variable guarded fragment with transitive
relations. In LICS, pages 24–34, 1999.

[6] W. D. Goldfarb. The unsolvability of the Gödel class with identity. J. Symb. Logic, 49:1237–1252,
1984.

[7] E. Grädel. On the restraining power of guards. J. Symb. Log., 64(4):1719–1742, 1999.

[8] E. Grädel, P. Kolaitis, and M. Y. Vardi. On the decision problem for two-variable first-order logic.
Bulletin of Symbolic Logic, 3(1):53–69, 1997.

[9] E. Grädel, M. Otto, and E. Rosen. Undecidability results on two-variable logics. Archiv für
Mathematische Logik und Grundlagenforschung, 38(4-5):313–354, 1999.

[10] Y. Gurevich and S. Shelah. Random models and the Gödel case of the decision problem. J.
Symbolic Logic, 48(4):1120–1124, 1983.

[11] Y. Kazakov. Saturation-based decision procedures for extensions of the guarded fragment. PhD
thesis, Universität des Saarlandes, Saarbrücken, Germany, 2006.

[12] E. Kieroński. Results on the guarded fragment with equivalence or transitive relations. In CSL,
volume 3634 of LNCS, pages 309–324. Springer, 2005.

[13] H. R. Lewis. Complexity results for classes of quantificational formulas. Journal of Computer and
System Sciences, 21(3):317 – 353, 1980.

[14] J. Michaliszyn. Decidability of the guarded fragment with the transitive closure. In ICALP (2),
volume 5556 of LNCS, pages 261–272. Springer, 2009.

[15] Sebastian Rudolph and Mantas Šimkus. The triguarded fragment of first-order logic. In LPAR,
volume 57 of EPiC Series in Computing, pages 604–619, 2018.

[16] Dana Scott. A decision method for validity of sentences in two variables. Journal Symbolic Logic,
27:477, 1962.

[17] W. Szwast and L. Tendera. The guarded fragment with transitive guards. Annals of Pure and
Applied Logic, 128:227–276, 2004.

352

The Triguarded Fragment with Transitivity E. Kieroński and A. Malinowski

[18] S. Tobies. Complexity results and practical algorithms for logics in knowledge representation. PhD
thesis, RWTH-Aachen, Germany, 2001.

353

	Introduction
	Conventions and some model theory
	Decidability of the triguarded fragment
	The triguarded fragment with transitive guards
	Discussion
	Equality in formulas guarded by transitive atoms
	Constants in the triguarded fragment
	Two-variable logic with guarded use of transitive closure

	Conclusion

