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Abstract

Genetic algorithms have been applied to various optimization problems in the past. Our library
GeneiAL implements a framework for genetic algorithms specially targeted to the area of hybrid
electric vehicles. In a parallel hybrid electric vehicle (PHEV), an internal combustion engine and an
electrical motor are coupled on the same axis in parallel. In the area of PHEVs, genetic algorithms have
been extensively used for the optimization of parameter tuning of control strategies. We use GeneiAL
to control the torque distribution between the engines directly. The objective function of this control
strategy minimizes the weighted sum of functions that evaluate the fuel consumption, the battery state
of charge, and drivability aspects over a prediction horizon of fixed finite length.
We analyze the influence of these weights and different configurations for the genetic algorithm on
the computation time, the convergence, and the quality of the optimization result. For promising
configurations, we compare the results of our control strategy with common control strategies.

1 Introduction
In recent years, the fuel consumption and emission of vehicles have come into focus of society,
politics, and the automotive industry. As a result, pure electric vehicles have been placed on
the market. However, for these vehicles, there is a trade-off between the possible driving range
and the weight of the battery. Hybrid electric vehicles (HEVs) are equipped with an internal
combustion engine (ICE ) and an electrical motor (EM ) and thus benefit from the advantages of
both propulsion systems. The ICE allows a wider driving range and is efficient for high torque
values. The EM produces no pollutant emission and is efficient for low torque and speed. Thus,
the EM can support the combustion engine for a better efficiency.

Here, we consider parallel hybrid electric vehicles (PHEVs), i.e., the ICE and the EM are
coupled on the same axis in parallel. Thus, the engines produce the requested torque for driving
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either separately or in combination. Moreover, the ICE can be used to recharge the battery by
generating more torque than requested. Alternatively, electric energy can be recuperated while
braking, using the EM as a generator.

A control strategy has to distribute the torque requested by the driver between the engines
within their specified physical limits. This problem is known as the energy management problem
for HEVs [6]. In the past, heuristic control strategies (e.g., rule-based control strategies [11]) as
well as control strategies based on optimal control (e.g., equivalent consumption minimization
strategies [8, 6]) have been proposed. If an estimation on the future driving conditions is
available, predictive control strategies can be applied. An overview of different kinds of control
strategies is given in [9]. Optimal-control-based strategies use, e.g., dynamic programming [1]
or evolutionary programming [10]. Note that an online control strategy has to provide a torque
split within a limited computation time and that the control unit of the vehicle has limited
processing power. This is the reason why we consider here only real-time capable control
strategies, i.e., strategies that provide a new torque distribution every 0.02 seconds.

We introduce a control strategy based on genetic algorithms (GA) [5]. It considers multi-
ple objectives: The overall goal is to minimize the fuel consumption. Secondly, our strategy
maximizes the available electric energy while keeping the state of charge of the battery near
a reference value to ensure a long battery lifetime. Finally, drivability aspects are considered
during the optimization to increase the driving comfort (e.g., to reduce the noise emission of
the internal combustion engine).

Genetic algorithms have already been applied in the context of HEVs. On the one hand, the
sizing of powertrain components has been optimized [2]; on the other hand, the parameters of
control strategies have been tuned using genetic algorithms [9]. In [14], a GA-based optimization
for the scheduling of the electrical generator has been presented for a series hybrid solar vehicle.
However, control strategies that are directly built on genetic algorithms are rare: In [15], a
control strategy based on genetic algorithms has been introduced where the optimization is done
over the complete driving cycle. Usually, even if the final destination is known in advance, it is
difficult to determine a precise prediction for the route to the final destination. Furthermore,
due to the computational overhead of an optimization over the whole driving cycle, such a
strategy is not real-time capable and can only be used as a reference strategy. In contrast
to that, we restrict the optimization to a limited prediction horizon and thus get a real-time
capable control strategy.

We implemented a genetic algorithm library called GeneiAL [3] and used it to build a GA-
based control strategy. Besides some standard genetic operators that are provided by GeneiAL,
the library can easily be extended by customized genetic operators. For our control strategy,
we use this feature to create smoothing variants of standard genetic operators to obtain better
drivability. The GA-based control strategy optimizes the control by starting a genetic algorithm
run for each time step.

We evaluated our control strategy and derived a real-time capable configuration for the
genetic algorithm yielding good optimization results. Our control strategy uses a fitness function
that computes a weighted sum of a set of objectives. Therefore, we evaluate the influence of
various weights on different driving cycles. We show the trade-off between drivability and fuel
consumption minimization. Drivability can be obtained by an additional objective in the fitness
function or by a search space restriction. We examine the convergence of the genetic algorithm
and the influence of the population size and the number of iterations on both the result and
the runtime for a set of configurations.

The paper is organized as follows. In Section 2 the vehicle model, the energy management
problem, and the notation used in the context of genetic algorithms are introduced. Our GA-
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Figure 1: The powertrain configuration of a parallel hybrid electric vehicle.

based strategy is described in Section 3. Experimental results are presented in Section 4 and
in Appendix A. We conclude the paper in Section 5. Lists of the acronyms, variables, and
constants used in this paper are given in Appendix B.

2 Preliminaries

2.1 Vehicle Model
We consider a simplified model of a first generation Toyota Prius, but with a parallel hybrid
vehicle powertrain (Figure 1). This parallel hybrid electric vehicle has an internal combustion
engine (ICE) and an electrical motor (EM). Both engines are directly coupled to the same axis
which is mounted to a manual transmission gearbox. The gearbox is connected to the wheels
using a differential. So, the engines and the gearbox move with the same angular velocity
ωice = ωem = ωgb . We denote the current gear by h and model gear shifts as discrete changes.
The gear ratio that corresponds to gear h is denoted by rh and can be used to convert the
angular velocity at the gearbox into the angular velocity at the wheels ωwh = ωgb/rh. The
correlation between the speed of the vehicle and the angular velocity at the wheels is given by
v = rwhωwh , where rwh is the wheel radius. If an acceleration/deceleration a is requested by
the driver, the necessary torque Twh at the wheels can be computed by

Twh = rwh

(
1

2
ρCdAv

2 + (m+mr)a+mgfr cos(θ) +mg sin(θ)

)
,

where ρ is the density of air, Cd the air drag resistance, A the vehicle frontal area, m the mass
of the vehicle, mr the equivalent mass of the rotating parts of the vehicle, g the acceleration of
gravity, fr the rolling resistance, and θ the road slope. The torque Tgb that has to be generated
by the engines can be obtained by

Tgb =
Twh + Tbr

ηgbrh
= Tice + Tem ,

where Tice is the torque at the ICE, Tem is the torque at the EM, Tbr is the torque applied to
the brakes, and ηgb is the mechanical transmission efficiency which we assume to be constant.
We ignore the dynamics of the internal combustion engine and the electrical motor and assume
immediate torque responses.

The instantaneous fuel consumption ṁf is given by a function depending on the current
angular velocity and the torque produced by the internal combustion engine. We approximate
this function by interpolation on a discrete map.
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The battery state of charge (SoC ) can be computed from the input power Pem of the
electrical motor, the maximum cell capacity Qbatt,max, the battery current I and the open
circuit voltage Uoc . The change of the SoC is given by

˙SoC = − I

Qbatt,max
= − Pem

UocQbatt,max
.

The input power of the electrical motor depends on the current angular velocity and torque of
the motor. It is obtained by interpolation on a discrete map. We assume that the battery is
given by an equivalent circuit where the battery cells are connected in series and we neglect
internal losses. To guarantee a long battery lifetime, a control strategy has to keep the SoC
near a reference value SoC ref .

For a smooth and safe operation of the hybrid powertrain, the following limits are given for
the angular velocities and torques of the engines as well as for the battery state of charge:

ωice,min ≤ ωice ≤ ωice,max

ωem,min ≤ ωem ≤ ωem,max

0 ≤ Tice ≤ Tice,max(ωice) (1)
Tem,min(ωem) ≤ Tem ≤ Tem,max(ωem)

SoCmin ≤ SoC ≤ SoCmax

The bounds Tice,max, Tem,min and Tem,max are functions of the respective angular velocities and
are represented by static maps. Note that Tice and Tbr are always non-negative. However, Tem

can have a negative value, in which case the battery is charged. Another way to charge the
battery is recuperation of braking energy by opening the clutch at the ICE and using the EM
as a generator.

2.2 Energy Management and Drivability

In PHEVs, both the torque of the internal combustion engine Tice and the torque of the electrical
motor Tem sum up to the torque at the gearbox Tgb . At each time step t ∈ {0, . . . , T}, a control
strategy gets an input speed v(t), a road slope θ(t), and a gear h(t). A speed function v(t)
together with a road slope function θ(t) and a gear function h(t) is called a driving cycle. The
control strategy computes for the given input a split u(t) ∈ Q≥0 that specifies the amount of
torque that is produced by the internal combustion engine. The remaining torque is generated
by the electrical motor.

Tice(t) = u(t) · Tgb(t)

Tem(t) = (1− u(t)) · Tgb(t)

In the following, we use Tuice(t) and Tuem(t) when we explicitly refer to the split u(t) under which
the torques are determined. For a given driving cycle, the quality of a split function u(t) is
evaluated using an evaluation function J(u(t),SoC (t), t). Common aspects that are considered
are the fuel consumption, the battery state of charge, and the drivability of the split function.
The aim in the discretized energy management problem is to find a cost-minimal split function
u∗(t) with value

J∗ = min
u(·)

T∑
t=0

J(u(t), SoC(t), t) .
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Figure 2: Schematic work flow of a genetic algorithm.

In general, the split of the optimal solution u∗(t) for the energy management problem may
fluctuate arbitrarily. Due to the noise emission of the ICE for varying torques, this results in
bad drivability and reduces the driving comfort. To prevent this, on the one hand, an additional
constraint can be added to the optimization that keeps the difference of consecutive splits in a
predefined range. On the other hand, an evaluation function can be implemented that prefers
consecutive splits with a small deviation.

2.3 Genetic Algorithms

Genetic algorithms [5, 7] belong to the class of stochastic local search algorithms [12]. Instead
of performing a systematical search, genetic algorithms evolve a set of individual search paths.
In general, this class of algorithms does not guarantee optimal solutions. However, for problems
with a huge search space, they are fast in computing suitable solutions. In the area of the energy
management problem for PHEVs, where a split has to be computed within a limited time frame,
local search algorithms are a reasonable choice since they can terminate the computation any
time and provide the best solution they have computed so far.

Genetic algorithms are inspired from evolution by natural selection. Figure 2 gives a
schematic overview of a genetic algorithm. In each iteration (generation) of the optimization,
a genetic algorithm uses a set of solutions (population). Initially, the set of solutions (initial
population) is arbitrary, often randomly generated. Each solution is called a chromosome and
can represent a single value (gene) or a sequence of values (genes). For each chromosome in
the population, a value (fitness) is computed using an evaluation function (fitness function).
The solutions with the highest values (fittest chromosomes) are selected for generating new
solutions by adding them to the mating pool. A chromosome ci is selected with a probability
fi /

∑K
j=1 fj (fitness-proportional selection), where fi is the fitness of chromosome ci and K is

the population size.
New solutions are generated by crossover and mutation. For crossover at least two chromo-

somes from the mating pool are selected (coupled) and their solutions are combined. These new
chromosomes (children) are put to the offspring pool. The size of the offspring pool is ρ · K,
where ρ is called crossover rate. Note that children can be far away from the original solutions
(parents) in the search space. However, in the course of evolution, the solutions converge and
the effect of the crossover becomes smaller (decreasing diversity in the population). Further
randomness is added to the search by mutation, where the solutions of the offspring pool are
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randomly changed with a probability µ (mutation rate).
The next generation is built from the chromosomes of the current generation, the offspring

pool, and a new set of randomly generated solutions. Usually, the fittest chromosomes, the
elite, survive in the next generation. Note that this elitism guarantees that the best solutions
so far are used in the next generation and thus the fitness of the best chromosome cannot
decrease. The other chromosomes of the current generation are replaced by chromosomes of
the offspring pool either randomly or depending on the fitness. If the size of the offspring pool
is not sufficient to replace the chromosomes, additional randomly generated chromosomes are
added to the next generation.

When the stopping criterion has been reached, the optimization terminates and the genetic
algorithm outputs the best solution, i.e., the fittest chromosome of the last generation. Different
operators and methods for selection, crossover, mutation, elitism and replacement have been
proposed in the literature [5].

3 Genetic Algorithm based Control Strategy

3.1 Genetic Algorithm Library

We implemented an extensible genetic algorithms library called GeneiAL, which is published
under the MIT License [3]. Being the building block of our control strategy, the library was
designed to encapsulate the work flow of a genetic algorithm. GeneiAL provides a framework
to maximize the fitness value of chromosomes in a population over the course of generations
using a custom fitness function for a user-defined optimization problem. The library offers the
user high flexibility and extensibility while simultaneously featuring good scalability for the
core functionality, e.g., through multi-threading support for evaluating the fitness function. For
this purpose, GeneiAL supports user-defined chromosome types. Specifically, it is possible to
optimize sequences of genes, i.e., the result is a sequence of optimized values.

The library facilitates the user to specify how initial chromosomes are generated: By default
the initial population is filled with chromosomes that have random values within a specified
interval. However, for chromosomes with a gene sequence, it is also possible to specify the
maximal difference between two consecutive genes. Furthermore, instead of generating a random
initial population, GeneiAL also supports the partial or full reuse of a previous population from
a prior optimization run.

Additionally, GeneiAL allows the implementation of customized genetic operators. Apart
from commonly known genetic operators (e.g., roulette-wheel selection, N -point crossover, and
uniform mutation [5]), we implemented problem-specific genetic operations for crossover and
mutation of chromosomes with a gene sequence (smoothed crossover, smoothed mutation).

The optimization evolves until a stopping criterion is reached. GeneiAL provides the fol-
lowing basic stopping criteria: The fitness value criterion is triggered when the best fitness
value of the current generation is greater or equal a specified value. Alternatively, the com-
putation can be terminated when a maximal number Gmax of generations has been produced.
The fixed-point criterion compares the best fitness value of the current generation with the
best fitness value in previous generations within a specified window size. The computation is
stopped when the difference between the fitness values is smaller than a given threshold value.
GeneiAL allows to create advanced user-defined stopping criteria as well as combining (AND,
OR, XOR, negation) multiple stopping criteria.

A set of diagnostic tools enables analyzing the genetic algorithm’s behavior, i.e. to measure
its runtime and to analyze the behavior of single genetic operators. Additionally, GeneiAL can
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be easily extended by user-specified observers with customized pre- and post-processing logic,
e.g., before a new generation is evolved.

3.2 Control Strategy

Our control strategy is a predictive control strategy based on optimal control. In contrast
to control strategies based on dynamic programming (DP) [1], our strategy stores a feasible
solution in each optimization step. Thus, it can provide a solution even if the optimization is
stopped early.

In each time step, the strategy gets predictions on the speed of the vehicle, the slope of the
road, and the gear used by the driver for all time steps within the prediction horizon, i.e., for
the current time step and the following Tp time steps. It optimizes a split sequence of length
Tp + 1 and returns only the first value of this sequence as the split for the current time step.

The chromosomes represent split sequences with a split for each time step within the pre-
diction horizon. We use split values u(i) from the set {0, 0.01, . . . , 1} for i ∈ {t, . . . , t + Tp}.

u(t) u(t+ 1) u(t+ 2) . . . u(t+ Tp)

The population is a set C of K chromosomes, where K is fixed for all generations. The initial
population is generated uniformly at random, i.e., each chromosome is a sequence of randomly
generated splits ck = uk(t) ◦uk(t+ 1) ◦ . . . ◦uk(t+Tp) for k ∈ C. Alternatively, we can generate
the initial population for a time step t+ 1 by reusing the optimized population of time step t.
For this, the split sequence of each chromosome is shifted by one and a random split value is
appended for time step t + Tp + 1, i.e. c′k = uk(t + 1) ◦ uk(t + 2) ◦ . . . ◦ uk(t + Tp + 1), where
uk(t+ Tp + 1) is randomly generated.

The fitness function is used to evaluate the chromosomes. In the area of HEVs, multiple
objectives have to be considered: the fuel consumption, the battery state of charge (SoC ) at
the end of the prediction horizon, the difference between SoC and SoC ref , and the difference
between consecutive splits. We implemented the following fitness functions that compute values
within the interval [0, 1] for a prediction horizon of length Tp+1. Each of these fitness functions
computes a high fitness value for good chromosomes and a low value for bad ones.

• Fuel consumption minimization ef : We estimate a lower bound (ṁf,min) and an upper
bound (ṁf,max ) for the instantaneous fuel consumption within the prediction horizon
[t, t+ Tp] and set

ef := 1 −

 1

Tp + 1
·
t+Tp∑
τ=t

ṁf (ωice(τ), Tuice(τ)) − ṁf,min

 / (ṁf,max − ṁf,min) .

Note that this equation scales the average fuel consumption to the interval [0, 1] and
that GeneiAL maximizes the fitness function, whereas the fuel consumption has to be
minimized.
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• SoC level maximization esl: We estimate a lower bound (SoC loc
min) and an upper bound

(SoC loc
max ) for the battery state of charge at time step t+ Tp and set

esl :=
(
SoC (t+ Tp) − SoC loc

min

)
/
(
SoC loc

max − SoC loc
min

)
.

• SoC deviation minimization esd: The idea behind this evaluation function is to keep the
battery state of charge near SoC ref using a normal distribution function (Figure 3). Let
Nν,σ be the normal distribution function with expected value ν and standard deviation σ.
We set

esd := Nν,σ(SoC (t+ Tp)) / Nν,σ(ν) ,

where ν and σ depend on the estimates of SoC loc
min , SoC

loc
max , and on the reference value

SoC ref . With SoC diff := max (|SoC loc
min − SoC ref |, |SoC loc

max − SoC ref |), we use

(ν, σ) :=


(SoC loc

max , (SoC loc
max − SoC loc

min) / 2) for SoC loc
max < SoC ref

(SoC ref , SoC diff / 2) for SoC loc
min ≤ SoC ref ≤ SoC loc

max

(SoC loc
min , (SoC loc

max − SoC loc
min) / 2) for SoC loc

min > SoC ref

.

Thereby, we shift the normal distribution function such that the battery state of charge
SoC ∈ [SoC loc

min ,SoC
loc
max ] that minimizes |SoC − SoC ref | is mapped to the highest value.

Furthermore, the normal distribution function is scaled such that the battery state of
charge SoC ∈ [SoC loc

min ,SoC
loc
max ] that maximizes |SoC − SoC ref | is mapped to a value

near 0.
• Split difference minimization eud: Let [umin , umax ] be the allowed split range. With
u(−1) = 0, we set

eud := 1 −

 1

Tp + 1
·
t+Tp∑
τ=t

(u(τ)− u(τ − 1))2

 / (umax − umin)2 .

• Split difference transgression eut: Let ∆umax be the maximal allowed difference between
consecutive splits and [umin , umax ] be the allowed split range. We set

eut := 1 −

 1

Tp + 1
·
t+Tp∑
τ=t

iτ · (∆umax − |u(τ)− u(τ − 1)|)2
 / (∆umax − (umax − umin))2 ,

where iτ :=

{
0 if |u(τ)− u(τ − 1)| < ∆umax

1 else
.
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p1: up1(t) up1(t+ 1) up1(t+ 2) . . . up1(t+ i) . . . up1(t+ Tp)

p2: up2(t) up2(t+ 1) up2(t+ 2) . . . up2(t+ i) . . . up2(t+ Tp)

o1: up1(t) up1(t+ 1) up2(t+ 2) . . . up2(t+ i) . . . up1(t+ Tp)

o2: up2(t) up2(t+ 1) up1(t+ 2) . . . up1(t+ i) . . . up2(t+ Tp)

Figure 4: 2-point crossover for the points (t+ 1, t+ i)

The fitness function is a weighted sum of these evaluation functions, i.e., wfef + wslesl +
wsdesd+wudeud+wuteut. The fitness configuration of a GA-based control strategy is the tuple
(wf , wsl, wsd, wud, wut). Note that the weights are positive numbers that sum up to one. So,
the fitness value is in the interval [0, 1].

The genetic operators (selection, coupling, crossover, mutation, elitism, replacement) are
used to build a new generation. For selection, we chose roulette wheel selection [5] that selects
chromosomes based on the idea of spinning a roulette wheel. The space that a chromosome
occupies on the wheel corresponds to its probability, i.e., we use a fitness-proportional selection.

The coupling of the chromosomes in the mating pool is done randomly. This means that
two chromosomes are chosen uniformly at random for mating.

For crossover, we use different strategies that generate two children for each chromosome
couple. N -point crossover swaps between the parents’ genes at N randomly selected points
(Figure 4). Smoothed crossover is a variant of N -point crossover, where the split differences
between neighboring genes of the offspring are kept within ±∆umax for better drivability.

The offspring is mutated using uniform mutation, i.e., a gene is selected uniformly at random
for mutation. A set of k randomly selected genes of a chosen chromosome are mutated. This
means that the split is replaced by a random value. Smoothed mutation is a variant of uniform
mutation. After a uniform mutation, the ε-neighborhood of each of the k mutated genes is
increased/decreased in the same direction than the mutated gene for better drivability. Thereby,
we assure that the split differences of consecutive genes are kept within ±∆umax .

For the new generation, an elite of the chromosomes with the highest fitness is selected
and these chromosomes are added to the next generation. Furthermore, we replace the worst
chromosomes by new offspring from the offspring pool. If the number of offspring is smaller than
the number of chromosomes that should be replaced, we add randomly generated chromosomes
to the next generation.

As stopping criterion, the algorithm terminates after Gmax generations in order to ensure a
fixed computation time.

The GA-configuration of a GA-based control strategy is a tuple CGA = (K, ρ, µ,Gmax ) that
contains the population size, the crossover rate, the mutation rate, and the maximal number of
generations. In our implementation, the number of elite chromosomes is given by (1− ρ)K.
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4 Experimental Results
We tested our GA-based control strategy using 2-point-crossover and uniform mutation and
compared it with other control strategies using a MATLAB/Simulink model with the vehicle
dynamics from Section 2.1. For this purpose, we chose the following commonly used driving
cycles as benchmarks: the NEDC (New European Driving Cycle) is the standard driving cycle
used in Europe and is composed of a city and a highway part. The city program FTP-75 and
the highway program HWFET of the EPA Federal Test Procedure are the standard driving
cycles used in the US.

For real-time capability, the current torque Tgb is distributed between the engines every 0.02
seconds based on a given torque split. However, we allow that the torque split computed by
a control strategy can stay fixed for at most one second. The GA-based strategy is real-time
capable, e.g., for CGA = (50, 0.75, 0.1, 100). In our benchmarks, we use a prediction horizon of
length Tp = 20 seconds for all predictive control strategies. For this length, a navigation system
can provide a sufficiently good approximation on the future driving conditions.

Table 1 gives the fuel consumption in gram and the battery state of charge (SoC ) at the
end of the driving cycle for a set of common control strategies. All strategies that are presented
in this section use SoC ref = 0.6 and keep the state of charge of the battery in the interval
[0.5, 0.7].

NEDC FTP-75 HWFET
Strategy Fuel cons. SoC Fuel cons. SoC Fuel cons. SoC
ICE 428.101 0.7000 727.606 0.7000 379.841 0.7000
EM 392.686 0.6246 593.519 0.5336 360.903 0.5805
RDP 387.081 0.6246 591.783 0.5614 350.621 0.5807
ADP 388.726 0.6245 589.266 0.5336 352.513 0.5805
A-ECMS 390.239 0.6246 592.168 0.5442 356.356 0.5806
T-ECMS 391.641 0.6246 592.514 0.5335 358.858 0.5805
GAbest 380.123 0.6263 581.001 0.5398 347.776 0.5789

Table 1: Fuel consumption in gram and SoC at the end of the driving cycle for various control
strategies. GAbest uses the GA-configuration CGA = (50, 0.75, 0.1, 100) and the fitness config-
uration (0.5, 0.0, 0.5, 0.0, 0.0) (NEDC, HWFET) or (0.5, 0.5, 0.0, 0.0, 0.0) (FTP-75). The lowest
and highest fuel consumption values are typed in black and blue bold print, respectively.

The strategy ICE drives purely with the internal combustion engine, unless ωice < ωice,min.
Analogously, the strategy EM uses the electrical motor whenever this is feasible according to (1).
In particular, if SoC < SoCmin, EM uses the internal combustion engine. Table 1 shows that
the highest fuel consumption is obtained by the strategy ICE followed by the EM strategy.

However, the control strategies based on optimal control (RDP, ADP, A-ECMS, T-ECMS,
GA) that optimize when to use the electrical motor achieve better results. The control strategies
RDP and ADP [4] are based on receding dynamic programming [1], where the fuel consumption
is minimized using an objective function that calculates the weighted sum of the fuel mass
flow and the deviation of the battery state of charge from SoC ref for a prediction horizon.
Additionally, ADP uses a cost-to-go approximation in the objective function to estimate the
costs that are needed for the rest of the driving cycle. The equivalent consumption minimization
strategy (ECMS) [6] minimizes the equivalent fuel consumption, i.e., the sum of the current fuel
consumption and the input power of the electrical motor times a time-dependent equivalence
factor. In adaptive ECMS (A-ECMS) [6], the equivalence factor is adapted using, e.g., a PI-
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controller. The telemetry ECMS (T-ECMS) [13] adapts the equivalence factor over time using
an estimation for the energy needed for the rest of the driving cycle (energy horizon). T-
ECMS uses two equivalence factors, one for charging and one for discharging. These factors
are weighted using the estimated energy horizon. Note that both ECMS does not need a priori
knowledge of the driving cycle.

Finally, the results of the best GA-configuration for the respective driving cycles are pre-
sented in Table 1. The fuel consumption of our GA-based strategy is up to 1.8% lower than
the results for the other control strategies on all driving cycles.

Fitness evaluation and drivability. In this section, we present the results of our GA-
based control strategy for different fitness weights. First, we searched for a configuration of
fitness weights with optimal results for various driving cycles. For this benchmark (Table 2),
we chose the real-time capable GA-configuration CGA = (50, 0.75, 0.1, 100) and used fitness
configurations (wf , wsl, wsd, wud, wut) that neglect the drivability (wud = wut = 0).

Fitness weights NEDC FTP-75 HWFET
wf wsl wsd wud wut Fuel cons. SoC Fuel cons. SoC Fuel cons. SoC
0.0 0.0 1.0 0.0 0.0 397.632 0.7000 598.475 0.6325 362.076 0.6768
0.0 0.2 0.8 0.0 0.0 397.722 0.7000 598.507 0.6327 362.080 0.6770
0.0 0.4 0.6 0.0 0.0 397.848 0.7000 599.146 0.6348 362.171 0.6777
0.0 0.6 0.4 0.0 0.0 423.424 0.7000 711.675 0.7000 373.724 0.7000
0.0 0.8 0.2 0.0 0.0 424.079 0.7000 713.216 0.7000 374.075 0.7000
0.0 1.0 0.0 0.0 0.0 424.075 0.7000 713.247 0.7000 374.041 0.7000
0.2 0.0 0.8 0.0 0.0 397.058 0.7000 597.775 0.6316 361.880 0.6760
0.2 0.2 0.6 0.0 0.0 397.550 0.7000 597.730 0.6323 361.929 0.6770
0.2 0.4 0.4 0.0 0.0 397.585 0.7000 597.956 0.6330 361.980 0.6775
0.2 0.6 0.2 0.0 0.0 423.832 0.7000 708.784 0.7000 374.160 0.7000
0.2 0.8 0.0 0.0 0.0 424.009 0.7000 711.952 0.7000 374.158 0.7000
0.4 0.0 0.6 0.0 0.0 391.080 0.6820 597.439 0.6307 354.816 0.6410
0.4 0.2 0.4 0.0 0.0 393.618 0.6943 597.439 0.6313 358.780 0.6608
0.4 0.4 0.2 0.0 0.0 397.530 0.7000 597.226 0.6321 361.718 0.6772
0.4 0.6 0.0 0.0 0.0 423.632 0.7000 705.355 0.7000 374.402 0.7000
0.6 0.0 0.4 0.0 0.0 386.894 0.6260 584.393 0.5331 353.313 0.5789
0.6 0.2 0.2 0.0 0.0 386.462 0.6260 583.841 0.5330 351.940 0.5789
0.6 0.4 0.0 0.0 0.0 384.365 0.6260 582.048 0.5330 350.275 0.5789
0.8 0.0 0.2 0.0 0.0 386.914 0.6260 584.897 0.5330 354.080 0.5789
0.8 0.2 0.0 0.0 0.0 384.917 0.6260 582.834 0.5330 352.463 0.5789
1.0 0.0 0.0 0.0 0.0 384.806 0.6260 583.413 0.5330 353.265 0.5789
0.5 0.0 0.5 0.0 0.0 380.123 0.6263 595.223 0.6205 347.776 0.5789
0.5 0.5 0.0 0.0 0.0 382.325 0.6260 581.001 0.5398 349.560 0.5789

Table 2: Fuel consumption in gram and SoC at the end of the driving cycle for different fitness
weights and the real-time capable GA-configuration CGA = (50, 0.75, 0.1, 100). The lowest and
highest fuel consumption values are typed in black and blue bold print, respectively.

In Table 5 in Appendix A, the results for a broader range of fitness weights are presented.
The quality of the optimization (fuel consumption) depends on the fitness configuration. For
bad configurations, the GA-based strategy performs only slightly better than the ICE strategy;
for good configurations, the fuel consumption is within the range of the best control strategies.

206



GA-based Control for the Energy Management in PHEVs Nellen, Wolters, Netz, Geulen and Ábrahám

Good results are achieved for wf ∈ [0.5, 1.0]. The fitness configuration (0.5, 0.5, 0.0, 0.0, 0.0)
yields good results on all driving cycles.

In a second approach (Table 3), we considered the drivability evaluation in the fitness
function (i.e., wud > 0 or wut > 0). First, we neglected the battery state of charge in the
optimization, i.e., we set wsl = wsd = 0 (upper part of Table 3). However, we considered
also the optimization of the fuel consumption, the battery state of charge, and the drivability
simultaneously (lower part of Table 3).

We use
∑
|.| :=

∑T
t=0 |u(t)− u(t− 1)| with u(−1) := 0 to measure the drivability of the

computed split sequences. The best drivability (low
∑
|.|) is achieved for high wud values.

However, we observe that additional drivability constraints impose a fuel consumption that is
only up to 1.7% higher (fitness configuration (0.0, 0.0, 0.0, 1.0, 0.0) on HWFET) than for the
fitness configuration (1.0, 0.0, 0.0, 0.0, 0.0) that neglects drivability. Table 6 in Appendix A gives
the results for further fitness configurations.

Fitness weights NEDC FTP-75 HWFET
wf wsl wsd wud wut Fuel cons. SoC

∑
|.| Fuel cons. SoC

∑
|.| Fuel cons. SoC

∑
|.|

0.0 0.0 0.0 0.0 1.0 386.822 0.6259 111.23 589.103 0.5585 149.91 356.827 0.5789 92.64
0.0 0.0 0.0 0.2 0.8 389.248 0.6259 53.93 587.981 0.5366 73.09 359.213 0.5789 45.51
0.0 0.0 0.0 0.4 0.6 389.291 0.6259 52.31 588.118 0.5369 72.50 359.264 0.5789 44.06
0.0 0.0 0.0 0.6 0.4 389.298 0.6259 51.55 588.075 0.5365 71.04 359.266 0.5789 43.54
0.0 0.0 0.0 0.8 0.2 389.317 0.6259 51.31 587.937 0.5358 70.17 359.288 0.5789 43.16
0.0 0.0 0.0 1.0 0.0 389.325 0.6259 51.13 587.916 0.5357 69.70 359.271 0.5790 42.98
0.2 0.0 0.0 0.0 0.8 387.969 0.6260 71.42 586.399 0.5330 121.31 357.231 0.5789 91.44
0.2 0.0 0.0 0.2 0.6 389.050 0.6259 54.38 587.686 0.5330 83.00 358.585 0.5789 71.68
0.2 0.0 0.0 0.4 0.4 389.223 0.6260 50.53 587.848 0.5330 77.53 358.785 0.5789 63.59
0.2 0.0 0.0 0.6 0.2 389.300 0.6259 50.66 587.853 0.5330 76.23 358.950 0.5789 59.55
0.2 0.0 0.0 0.8 0.0 389.361 0.6260 48.85 587.958 0.5330 74.11 359.032 0.5789 57.23
0.4 0.0 0.0 0.0 0.6 387.847 0.6260 69.67 586.394 0.5330 122.72 357.121 0.5789 96.17
0.4 0.0 0.0 0.2 0.4 388.772 0.6260 57.94 587.560 0.5330 90.06 358.265 0.5789 79.69
0.4 0.0 0.0 0.4 0.2 388.998 0.6259 55.09 587.719 0.5330 84.64 358.511 0.5789 72.74
0.4 0.0 0.0 0.6 0.0 389.134 0.6260 52.98 587.746 0.5330 83.94 358.600 0.5789 70.47
0.6 0.0 0.0 0.0 0.4 387.719 0.6260 72.51 586.156 0.5330 126.73 356.879 0.5789 102.95
0.6 0.0 0.0 0.2 0.2 388.545 0.6260 59.99 587.340 0.5330 97.64 357.843 0.5789 91.72
0.6 0.0 0.0 0.4 0.0 388.717 0.6260 58.88 587.438 0.5330 96.18 358.001 0.5789 88.45
0.8 0.0 0.0 0.0 0.2 387.146 0.6259 74.71 585.949 0.5330 136.32 356.095 0.5789 116.63
0.8 0.0 0.0 0.2 0.0 387.960 0.6260 65.64 586.937 0.5330 109.79 357.015 0.5789 107.37
1.0 0.0 0.0 0.0 0.0 384.845 0.6260 116.64 583.357 0.5330 213.93 353.186 0.5789 168.29
0.05 0.05 0.00 0.90 0.00 389.268 0.6259 53.50 587.579 0.5332 73.97 359.145 0.5789 52.66
0.05 0.00 0.05 0.90 0.00 389.228 0.6259 54.26 587.588 0.5338 76.29 359.025 0.5789 52.11
0.05 0.00 0.05 0.80 0.10 389.207 0.6259 52.37 587.481 0.5333 77.73 358.992 0.5789 53.30

Table 3: Fuel consumption in gram, SoC at the end of the driving cycle, and the sum of
the split differences of consecutive time steps (

∑
|.|) for different fitness weights and the GA-

configuration CGA = (50, 0.75, 0.1, 100). The lowest and highest values for
∑
|.| are typed in

black and blue bold print, respectively.

In Table 4, we restricted the search space to drivable split sequences, i.e., two consecutive
splits differ by at most ∆umax . Small ∆umax values improve drivability whereas the fuel
consumption is only slightly worse than the results in Table 3.

Real-time capability. We examined the convergence behavior of our strategy for K ∈
{30, 50, 100, 200, 500, 1000}. We used the fitness configuration (1.0, 0.0, 0.0, 0.0, 0.0), ρ = 0.75,
µ = 0.1, an elite of size (1− ρ)K, and we terminated the optimization after 100 generations.

Figure 5 shows the increase of the fitness values over 100 generations of a genetic algorithm
run for different population sizes. The population size influences the maximal fitness value of
the initial population and the convergence rate, which influences the quality of the optimization
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NEDC FTP-75 HWFET
∆umax Fuel cons. SoC

∑
|.| Fuel cons. SoC

∑
|.| Fuel cons. SoC

∑
|.|

0.1 388.471 0.6259 35.19 588.044 0.5330 64.68 358.312 0.5792 74.11
0.2 386.700 0.6259 46.06 586.411 0.5330 90.35 352.408 0.5791 99.52
0.3 386.155 0.6259 50.45 585.729 0.5330 109.33 351.386 0.5791 107.31
0.4 386.030 0.6259 55.59 585.263 0.5330 125.73 351.748 0.5791 116.15
0.5 385.980 0.6260 63.01 584.897 0.5330 138.25 352.386 0.5791 127.76
0.6 385.753 0.6259 67.13 584.682 0.5330 153.52 352.851 0.5791 138.66
0.7 385.520 0.6259 76.05 584.370 0.5330 168.72 353.286 0.5791 148.26
0.8 385.385 0.6260 84.87 584.272 0.5330 184.91 353.571 0.5791 161.16
0.9 385.289 0.6260 93.57 584.088 0.5330 199.62 353.777 0.5791 169.61
1.0 385.400 0.6260 109.26 584.038 0.5330 210.10 353.985 0.5791 177.49

Table 4: Fuel consumption in gram, SoC and (
∑
|.|) at the end of the driving cycle. The fitness

configuration (1, 0, 0, 0, 0), the GA-configuration CGA = (50, 0.75, 0.1, 100), and the smoothing
variants of N -point crossover and uniform mutation have been used. The lowest and highest
values for

∑
|.| are typed in black and blue bold print, respectively.
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Figure 5: Fitness values of the best chromosome in the population over the generations of a
genetic algorithm run with ρ = 0.75 and µ = 0.1 for different population sizes.

result. However, as a compromise between the quality of the optimization result and the real-
time capability of our control strategy, we use a population size of K = 50.

5 Conclusion

Our GA-based control strategy shows promising results for the energy management problem
of hybrid electric vehicles. The fuel consumption of our strategy is comparable to the results
of common control strategies. On the NEDC, the GA-based strategy performs about 1.8%
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better than the best considered reference strategy. Furthermore, adding an evaluation of the
drivability to the fitness function or restricting the search space to drivable split sequences has
little effect on the fuel consumption at the end of a driving cycle. However, the driving comfort
can be improved by both. Nevertheless, the choice of the fitness configuration is important to
achieve a low fuel consumption. By adjusting the population size, we get a real-time capable
control strategy. As future work, we plan to extend the GA-based control strategy such that
the first x torque splits of a chromosome are used instead of only the first one. By this, we can
spend more time on the optimization.
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Fitness weights NEDC FTP-75 HWFET
wf wsl wsd wud wut Fuel cons. SoC Fuel cons. SoC Fuel cons. SoC
0.0 0.0 1.0 0.0 0.0 397.632 0.7000 598.475 0.6325 362.076 0.6768
0.0 0.1 0.9 0.0 0.0 397.602 0.7000 598.501 0.6326 362.082 0.6770
0.0 0.2 0.8 0.0 0.0 397.722 0.7000 598.507 0.6327 362.080 0.6770
0.0 0.3 0.7 0.0 0.0 397.778 0.7000 598.563 0.6328 362.180 0.6775
0.0 0.4 0.6 0.0 0.0 397.848 0.7000 599.146 0.6348 362.171 0.6777
0.0 0.5 0.5 0.0 0.0 397.913 0.7000 602.638 0.6503 362.287 0.6779
0.0 0.6 0.4 0.0 0.0 423.424 0.7000 711.675 0.7000 373.724 0.7000
0.0 0.7 0.3 0.0 0.0 423.960 0.7000 713.061 0.7000 374.179 0.7000
0.0 0.8 0.2 0.0 0.0 424.079 0.7000 713.216 0.7000 374.075 0.7000
0.0 0.9 0.1 0.0 0.0 424.095 0.7000 713.536 0.7000 374.127 0.7000
0.0 1.0 0.0 0.0 0.0 424.075 0.7000 713.247 0.7000 374.041 0.7000
0.1 0.0 0.9 0.0 0.0 397.503 0.7000 597.966 0.6321 361.922 0.6765
0.1 0.1 0.8 0.0 0.0 397.510 0.7000 597.935 0.6325 361.967 0.6769
0.1 0.2 0.7 0.0 0.0 397.617 0.7000 597.938 0.6326 362.019 0.6772
0.1 0.3 0.6 0.0 0.0 397.674 0.7000 597.966 0.6327 362.045 0.6774
0.1 0.4 0.5 0.0 0.0 397.693 0.7000 598.630 0.6350 362.076 0.6776
0.1 0.5 0.4 0.0 0.0 397.575 0.7000 601.398 0.6492 362.139 0.6780
0.1 0.6 0.3 0.0 0.0 423.336 0.7000 710.972 0.7000 374.164 0.7000
0.1 0.7 0.2 0.0 0.0 423.973 0.7000 712.094 0.7000 374.085 0.7000
0.1 0.8 0.1 0.0 0.0 424.021 0.7000 712.537 0.7000 374.066 0.7000
0.1 0.9 0.0 0.0 0.0 424.004 0.7000 712.784 0.7000 374.079 0.7000
0.2 0.0 0.8 0.0 0.0 397.058 0.7000 597.775 0.6316 361.880 0.6760
0.2 0.2 0.6 0.0 0.0 397.550 0.7000 597.730 0.6323 361.929 0.6770
0.2 0.3 0.5 0.0 0.0 397.524 0.7000 597.769 0.6326 361.987 0.6774
0.2 0.4 0.4 0.0 0.0 397.585 0.7000 597.956 0.6330 361.980 0.6775
0.2 0.5 0.3 0.0 0.0 397.431 0.7000 600.889 0.6480 362.034 0.6780
0.2 0.6 0.2 0.0 0.0 423.832 0.7000 708.784 0.7000 374.160 0.7000
0.2 0.7 0.1 0.0 0.0 424.005 0.7000 711.451 0.7000 374.138 0.7000
0.2 0.8 0.0 0.0 0.0 424.009 0.7000 711.952 0.7000 374.158 0.7000
0.3 0.0 0.7 0.0 0.0 395.194 0.6991 597.731 0.6314 360.014 0.6655
0.3 0.2 0.5 0.0 0.0 397.432 0.7000 597.556 0.6317 361.778 0.6765
0.3 0.3 0.4 0.0 0.0 397.567 0.7000 597.554 0.6322 361.847 0.6771
0.3 0.4 0.3 0.0 0.0 397.522 0.7000 597.525 0.6327 361.904 0.6776
0.3 0.5 0.2 0.0 0.0 397.268 0.7000 600.564 0.6477 361.952 0.6781
0.3 0.6 0.1 0.0 0.0 423.819 0.7000 707.124 0.7000 374.420 0.7000
0.3 0.7 0.0 0.0 0.0 423.920 0.7000 710.770 0.7000 374.246 0.7000
0.4 0.0 0.6 0.0 0.0 391.080 0.6820 597.439 0.6307 354.816 0.6410
0.4 0.1 0.5 0.0 0.0 392.559 0.6892 597.411 0.6309 356.519 0.6495
0.4 0.2 0.4 0.0 0.0 393.618 0.6943 597.439 0.6313 358.780 0.6608
0.4 0.3 0.3 0.0 0.0 396.531 0.7000 597.308 0.6314 361.552 0.6757
0.4 0.4 0.2 0.0 0.0 397.530 0.7000 597.226 0.6321 361.718 0.6772
0.4 0.5 0.1 0.0 0.0 397.015 0.7000 599.433 0.6439 361.883 0.6784
0.4 0.6 0.0 0.0 0.0 423.632 0.7000 705.355 0.7000 374.402 0.7000
0.5 0.0 0.5 0.0 0.0 380.123 0.6263 595.223 0.6205 347.776 0.5789
0.5 0.1 0.4 0.0 0.0 380.227 0.6260 594.459 0.6173 348.343 0.5789
0.5 0.2 0.3 0.0 0.0 380.691 0.6260 593.793 0.6149 348.588 0.5789
0.5 0.3 0.2 0.0 0.0 381.075 0.6260 591.353 0.6035 348.982 0.5789
0.5 0.4 0.1 0.0 0.0 381.596 0.6260 588.705 0.5836 349.515 0.5789
0.5 0.5 0.0 0.0 0.0 382.325 0.6260 581.001 0.5398 349.560 0.5789
0.6 0.0 0.4 0.0 0.0 386.894 0.6260 584.393 0.5331 353.313 0.5789
0.6 0.2 0.2 0.0 0.0 386.462 0.6260 583.841 0.5330 351.940 0.5789
0.6 0.3 0.1 0.0 0.0 385.770 0.6260 583.494 0.5330 351.131 0.5789
0.6 0.4 0.0 0.0 0.0 384.365 0.6260 582.048 0.5330 350.275 0.5789
0.7 0.0 0.3 0.0 0.0 386.958 0.6260 584.762 0.5330 353.671 0.5789
0.7 0.2 0.1 0.0 0.0 386.092 0.6260 584.013 0.5330 352.182 0.5789
0.7 0.3 0.0 0.0 0.0 384.492 0.6260 582.259 0.5330 350.888 0.5789
0.8 0.0 0.2 0.0 0.0 386.914 0.6260 584.897 0.5330 354.080 0.5789
0.8 0.1 0.1 0.0 0.0 386.399 0.6260 584.785 0.5330 354.148 0.5789
0.8 0.2 0.0 0.0 0.0 384.917 0.6260 582.834 0.5330 352.463 0.5789
0.9 0.0 0.1 0.0 0.0 386.501 0.6260 584.914 0.5330 354.107 0.5789
0.9 0.1 0.0 0.0 0.0 384.963 0.6260 583.341 0.5330 353.280 0.5789
1.0 0.0 0.0 0.0 0.0 384.806 0.6260 583.413 0.5330 353.265 0.5789

Table 5: Fuel consumption in gram and SoC at the end of the driving cycle for different
fitness weights and the GA-configuration CGA = (50, 0.75, 0.1, 100). The lowest and highest
fuel consumption values are typed in black and blue bold print, respectively.

211



GA-based Control for the Energy Management in PHEVs Nellen, Wolters, Netz, Geulen and Ábrahám

Fitness weights NEDC FTP-75 HWFET
wf wsl wsd wud wut Fuel cons. SoC

∑
|.| Fuel cons. SoC

∑
|.| Fuel cons. SoC

∑
|.|

0.0 0.0 0.0 0.1 0.9 389.202 0.6259 50.89 588.098 0.5373 70.71 359.170 0.5789 42.86
0.0 0.0 0.0 0.2 0.8 389.245 0.6259 50.08 588.042 0.5368 67.92 359.214 0.5789 42.37
0.0 0.0 0.0 0.3 0.7 389.283 0.6259 49.00 588.075 0.5368 67.12 359.222 0.5789 41.40
0.0 0.0 0.0 0.4 0.6 389.294 0.6259 48.58 588.015 0.5364 66.68 359.277 0.5789 40.61
0.0 0.0 0.0 0.5 0.5 389.296 0.6259 47.43 588.122 0.5367 66.06 359.259 0.5789 40.58
0.0 0.0 0.0 0.6 0.4 389.299 0.6259 47.87 588.071 0.5364 65.53 359.265 0.5789 40.34
0.0 0.0 0.0 0.7 0.3 389.324 0.6260 47.80 588.092 0.5364 65.60 359.264 0.5789 40.76
0.0 0.0 0.0 0.8 0.2 389.319 0.6259 47.65 587.988 0.5361 65.48 359.296 0.5789 40.29
0.0 0.0 0.0 0.9 0.1 389.303 0.6259 47.07 588.086 0.5363 64.27 359.293 0.5789 40.24
0.1 0.0 0.0 0.0 0.9 388.022 0.6259 66.00 586.463 0.5330 109.28 357.307 0.5789 82.76
0.1 0.0 0.0 0.1 0.8 389.061 0.6259 51.32 587.709 0.5330 78.36 358.573 0.5789 65.41
0.1 0.0 0.0 0.2 0.7 389.187 0.6260 48.02 587.806 0.5330 74.71 358.816 0.5789 59.02
0.1 0.0 0.0 0.3 0.6 389.285 0.6259 47.70 587.864 0.5330 71.01 358.928 0.5789 55.63
0.1 0.0 0.0 0.4 0.5 389.336 0.6259 46.72 587.914 0.5330 68.96 359.016 0.5789 53.18
0.1 0.0 0.0 0.5 0.4 389.339 0.6260 46.54 587.931 0.5330 68.10 359.066 0.5789 51.10
0.1 0.0 0.0 0.6 0.3 389.386 0.6260 45.65 587.935 0.5330 67.00 359.148 0.5789 49.33
0.1 0.0 0.0 0.7 0.2 389.395 0.6259 45.95 587.955 0.5330 67.51 359.195 0.5789 47.79
0.1 0.0 0.0 0.8 0.1 389.409 0.6260 45.64 587.912 0.5330 66.88 359.194 0.5789 47.49
0.1 0.0 0.0 0.9 0.0 389.407 0.6260 45.61 587.927 0.5330 65.32 359.219 0.5789 47.29
0.2 0.0 0.0 0.0 0.8 387.964 0.6260 66.32 586.394 0.5330 111.69 357.233 0.5789 84.82
0.2 0.0 0.0 0.1 0.7 388.862 0.6260 52.86 587.596 0.5330 79.50 358.407 0.5789 70.83
0.2 0.0 0.0 0.2 0.6 389.053 0.6260 50.50 587.697 0.5330 77.70 358.579 0.5789 66.48
0.2 0.0 0.0 0.3 0.5 389.192 0.6260 48.16 587.805 0.5330 74.88 358.683 0.5789 63.11
0.2 0.0 0.0 0.4 0.4 389.222 0.6260 46.92 587.846 0.5330 71.91 358.780 0.5789 58.98
0.2 0.0 0.0 0.5 0.3 389.245 0.6259 46.58 587.853 0.5330 71.56 358.903 0.5789 57.45
0.2 0.0 0.0 0.6 0.2 389.303 0.6259 47.04 587.864 0.5330 70.93 358.947 0.5789 55.67
0.2 0.0 0.0 0.8 0.0 389.361 0.6260 45.36 587.941 0.5330 68.62 359.035 0.5789 52.93
0.3 0.0 0.0 0.0 0.7 387.915 0.6259 65.65 586.404 0.5330 112.00 357.190 0.5789 85.71
0.3 0.0 0.0 0.1 0.6 388.695 0.6260 54.04 587.558 0.5330 83.64 358.241 0.5789 75.00
0.3 0.0 0.0 0.2 0.5 388.960 0.6260 52.08 587.664 0.5330 80.11 358.401 0.5789 71.63
0.3 0.0 0.0 0.3 0.4 389.074 0.6259 50.04 587.739 0.5330 76.94 358.537 0.5789 67.78
0.3 0.0 0.0 0.4 0.3 389.124 0.6260 48.78 587.772 0.5330 76.76 358.646 0.5789 64.23
0.3 0.0 0.0 0.5 0.2 389.203 0.6260 48.79 587.851 0.5330 73.89 358.666 0.5789 62.98
0.3 0.0 0.0 0.7 0.0 389.255 0.6260 47.25 587.863 0.5330 72.80 358.830 0.5789 59.14
0.4 0.0 0.0 0.0 0.6 387.839 0.6260 64.69 586.393 0.5330 114.49 357.106 0.5789 89.87
0.4 0.0 0.0 0.1 0.5 388.560 0.6260 56.37 587.460 0.5330 88.13 358.105 0.5789 77.07
0.4 0.0 0.0 0.2 0.4 388.776 0.6260 53.80 587.593 0.5330 82.92 358.249 0.5789 74.00
0.4 0.0 0.0 0.3 0.3 388.936 0.6260 51.48 587.661 0.5330 82.13 358.379 0.5789 71.49
0.4 0.0 0.0 0.4 0.2 388.999 0.6259 51.16 587.699 0.5330 78.77 358.498 0.5789 67.62
0.4 0.0 0.0 0.5 0.1 389.047 0.6260 49.91 587.715 0.5330 78.16 358.548 0.5789 67.66
0.4 0.0 0.0 0.6 0.0 389.140 0.6259 49.20 587.751 0.5330 78.33 358.598 0.5789 65.91
0.5 0.0 0.0 0.0 0.5 387.807 0.6259 66.77 586.308 0.5330 115.22 357.013 0.5789 90.68
0.5 0.0 0.0 0.1 0.4 388.416 0.6259 56.60 587.374 0.5330 90.79 357.952 0.5789 84.21
0.5 0.0 0.0 0.2 0.3 388.672 0.6259 54.75 587.478 0.5330 87.42 358.078 0.5789 78.95
0.5 0.0 0.0 0.3 0.2 388.833 0.6260 53.78 587.512 0.5330 84.97 358.210 0.5789 76.78
0.5 0.0 0.0 0.4 0.1 388.945 0.6260 52.13 587.591 0.5330 84.09 358.264 0.5789 75.49
0.5 0.0 0.0 0.5 0.0 388.949 0.6259 51.92 587.587 0.5330 83.42 358.310 0.5789 72.33
0.6 0.0 0.0 0.0 0.4 387.718 0.6260 67.33 586.136 0.5330 117.69 356.878 0.5789 95.80
0.6 0.0 0.0 0.1 0.3 388.282 0.6260 57.48 587.250 0.5330 93.53 357.718 0.5789 87.96
0.6 0.0 0.0 0.2 0.2 388.551 0.6260 55.71 587.328 0.5330 91.77 357.866 0.5789 84.35
0.6 0.0 0.0 0.4 0.0 388.721 0.6260 54.67 587.417 0.5330 89.16 358.006 0.5789 81.57
0.7 0.0 0.0 0.0 0.3 387.467 0.6260 67.99 586.081 0.5330 122.30 356.574 0.5789 101.55
0.7 0.0 0.0 0.1 0.2 388.060 0.6260 59.81 587.105 0.5330 97.50 357.329 0.5789 94.22
0.7 0.0 0.0 0.3 0.0 388.384 0.6260 58.78 587.194 0.5330 93.46 357.505 0.5789 91.58
0.8 0.0 0.0 0.0 0.2 387.138 0.6259 69.37 585.938 0.5330 125.40 356.116 0.5789 108.92
0.8 0.0 0.0 0.1 0.1 387.756 0.6260 62.32 586.937 0.5330 101.95 356.990 0.5789 100.50
0.8 0.0 0.0 0.2 0.0 387.971 0.6260 60.95 586.956 0.5330 101.28 357.032 0.5789 99.35
0.9 0.0 0.0 0.0 0.1 386.840 0.6260 73.54 585.669 0.5330 132.71 355.722 0.5789 116.67
0.9 0.0 0.0 0.1 0.0 387.282 0.6260 67.19 586.622 0.5330 109.64 356.235 0.5789 107.99
1.0 0.0 0.0 0.0 0.0 384.848 0.6260 108.31 583.384 0.5330 199.01 353.271 0.5789 156.03

Table 6: Fuel consumption in gram, SoC , and
∑
|.| at the end of the driving cycle for different

fitness weights and the GA-configuration CGA = (50, 0.75, 0.1, 100). The lowest and highest
values for

∑
|.| are typed in black and blue bold print, respectively.
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B Glossary

Acronym Description
HEV Hybrid electric vehicle
PHEV Parallel hybrid electric vehicle
ICE Internal combustion engine
EM Electrical motor
SoC Battery state of charge
GA Genetic algorithm
GeneiAL Genetic algorithm library
NEDC New European Driving Cycle
EPA United States Environmental Protection Agency
FTP Federal Test Procedure
FTP-75 City program of the EPA FTP
HWFET Highway program of the EPA FTP
DP Dynamic programming
RDP Receding dynamic programming
ADP RDP with cost-to-go approximation
ECMS Equivalent consumption minimization strategy
A-ECMS Adaptive ECMS
T-ECMS Telemetry ECMS

Table 7: List of acronyms used in this paper.
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Variable/Constant Description
ωice , ωem , ωwh Angular velocity at ICE/EM/wheels
Twh , Tgb Torque at the wheels/gear box
Tice , Tem , Tbr Torque applied to the ICE/EM/brakes
h Current gear
rh Gear ratio of gear h
ηgb Mechanical transmission efficiency
v Speed of the vehicle
a Acceleration of the vehicle
rwh Wheel radius
m Mass of the vehicle
mr Equivalent mass of the rotating parts of the vehicle
A Frontal area of the vehicle
ρ Density of air
Cd Air drag resistance
g Acceleration of gravity
fr Rolling resistance
θ Road slope
ṁf Instantaneous fuel consumption
ṁf,min , ṁf,max Lower and upper limit of the instantaneous fuel consumption over a

given prediction horizon
Pem Input power of the electrical motor
Qbatt,max Maximum cell capacity
I Battery current
Uoc Open circuit voltage
SoC Battery state of charge
SoC ref Reference value for the SoC
SoCmin , SoCmax Global lower and upper limit of the SoC
SoC loc

min , SoC
loc
max Lower and upper limit of the SoC for the end of the prediction horizon

t Current time step
T Total duration of the chosen driving cycle
Tp Duration of prediction horizon
u(t) Torque split at time t
umin , umax Lower and upper limit for the torque split u
∆umax Maximal allowed difference between consecutive splits
J(u(t),SoC (t), t) Evaluation function
K Population size
P0, Pi Initial population, population in generation i
ck k-th chromosome of a given population
Gmax Maximal number of generations
ρ Crossover rate
µ Mutation rate
wf , ef Weight and fitness function for minimizing the fuel consumption
wsl, esl Weight and fitness function for maximizing the SoC level
wsd, esd Weight and fitness function for minimizing the SoC deviation from

SoC ref

wud, eud Weight and fitness function for minimizing the difference of consecu-
tive splits

wut, eut Weight and fitness function for minimizing the transgression of
∆umax

Nν,σ Normal distribution with expected value ν and standard deviation σ

Table 8: List of variables and constants used in this paper.

214


	Introduction
	Preliminaries
	Vehicle Model
	Energy Management and Drivability
	Genetic Algorithms

	Genetic Algorithm based Control Strategy
	Genetic Algorithm Library
	Control Strategy

	Experimental Results
	Conclusion
	Appendix
	Glossary

