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Abstract

In this tool paper we present Harrsh – a tool for unified reasoning about symbolic-heap
separation logic. Harrsh supports the analysis of robustness properties of the symbolic heap
fragment of separation logic with user-defined inductive predicates. Robustness properties,
such as satisfiability, reachability, and acyclicity, are important for a wide range of reasoning
tasks in automated program analysis and verification based on separation logic. Harrsh
makes use of heap automata, which offer a generic approach to reasoning about robustness
properties. We report on experimental results for several robustness properties taken
from the literature and compare against satisfiability checkers participating in a recent
competition. We conclude that a generic approach to checking robustness is feasible and
promising for the extension to further properties of interest.

1 Introduction

Separation logic (SL) [18] is a popular formalism for Hoare-style verification of imperative,
heap-manipulating programs. Its symbolic heap fragment serves as formal basis for a multitude
of automated verification tools, such as SLAyer [1], VeriFast [14], Infer [5], Sleek [8],
VCDryad [16], GRASSHopper [17], Songbird [20], Spen [9] and SLS [19]. These tools are
capable of proving complex properties of a program’s heap, such as memory safety, for large
code bases [6, 7]. Many of these tools rely on systems of inductive predicate definitions (SID)
to specify the shape of data structures employed in a program, such as trees and linked lists.
Originally, separation logic tools implemented highly-specialized procedures for such fixed SIDs.
As this limits their applicability, there is an ongoing trend to support custom SIDs that are
either defined manually [14, 8, 4, 20, 9] or even automatically generated. The latter may, for
example, be obtained from the tool Caber [2].

Robustness properties Allowing for arbitrary SIDs, however, raises various questions about
their robustness. A user-defined or auto-generated SID might, for example, be inconsistent,
introduce unallocated logical variables, specify data structures that contain undesired cycles,
or produce garbage, i.e., parts of the heap that are unreachable from any program variable.
Accidentally introducing such properties into specifications can have a negative impact on
performance, completeness, and even soundness of the employed verification algorithms:
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• Brotherston et al. [4] point out that tools might waste time on inconsistent scenarios due
to unsatisfiability of specifications.

• The absence of unallocated logical variables, also known as establishment, is required by
the approach of Iosif et al. [12, 13] to obtain a decidable fragment of symbolic heaps.

• Other verification approaches, such as the one by Habermehl et al. [10, 11], assume that
no garbage is introduced by data structure specifications.

• During program analysis, questions such as reachability, acyclicity and garbage-freedom
arise depending on the properties of interest. For example, as argued by Zanardini and
Genaim [21], acyclicity of the heap is crucial in automated termination proofs.

Checking robustness properties of custom SIDs is thus crucial (1) in debugging of separation
logic specifications prior to program analysis and (2) in the program analyses themselves.

Heap Automata In [15] we have developed a unified approach to reasoning about robustness
properties of symbolic-heap separation logic. We employ a novel automaton model, so-called
heap automata, which works directly on the structure of symbolic heaps. A heap automaton
examines an SID bottom-up, starting from the non-recursive base case. At each stage of this
analysis, a heap automaton remembers a fixed amount of information. Heap automata enjoy a
variety of closure properties (intersection, union and complementation). We have proposed the
following approach for the analysis of SIDs with heap automata: given a heap automaton and
an SID of interest, we compute the intersection of the heap automaton with the SID (a process
called automatic refinement) and then check for emptiness (see Section 2 for an overview of
the approach). We have shown that several robustness properties from the literature such as
satisfiability, establishment, reachability, garbage-freedom, and acyclicity can be captured by a
heap automaton. For these properties our heap automaton approach allows us to obtain decision
procedures and counterexample generation in a unified framework. Further, we discuss in [15]
that the heap automaton approach is promising for the entailment problem. We construct heap
automata for several interesting SID instances such as trees with linked leaves, which allows us
to obtain decision procedures for the entailment problem with regard to these SIDs.

Harrsh In this paper, we report on experiments with Harrsh—our tool for deciding robustness
properties based on heap automata. Harrsh implements a generic approach which supports
unified reasoning: a user can define a heap automaton for a property of interest. Harrsh then
refines the SID with the automaton. Finally, the resulting SID can be checked for emptiness.

Contributions We have conducted the following experiments in order to evaluate the effec-
tiveness of Harrsh: We have checked all of the aforementioned robustness properties on the
SIDs generated by Caber [2]. Harrsh was able to solve all considered robustness properties
on all of these SIDs in a matter of milliseconds. As the SIDs were derived from code, this
demonstrates the practical feasibility of using heap automata for checking robustness properties.
In a second experiment, we have compared the performance of satisfiability checking by Harrsh
and several satisfiability checkers from the literature. Unlike Harrsh, these checkers implement
dedicated decision procedures for checking the satisfiability problem. This experiment has shown
that the generic heap automaton approach is competitive with state-of-the-art satisfiability
checkers. We conclude that a generic approach to checking robustness properties is feasible and
promising for the extension to further properties.
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Organization of the paper We give an overview on the heap automaton approach in
Section 2. We describe the implementation of Harrsh in Section 3. We discuss our experiments
in Section 4 and conclude in Section 5.

2 Overview of the Approach

We briefly discuss the main ideas underlying our approach to reasoning about robustness
properties. A detailed formalization is found in [15]. Our goal is to reason about symbolic heaps,
i.e. a fragment of separation logic in which every formula is of the form

ϕ(x1, . . . , xn) = ∃z1, . . . , zm . Σ : Π ,

where Σ is a collection of spatial assertions, i.e. the empty heap emp, points-to assertions u 7→ v,
and predicate calls P (u1, . . . , uk), connected by the separating conjunction ∗. Moreover, Π is a
conjunction of finitely many pure formulas, i.e. equalities and disequalities between variables.
For example, the symbolic heap

ϕ(x, y) = ∃z . x 7→ z ∗ z 7→ y : {x = y}

specifies that x = y lies on a cyclic list of length two. In particular, specifications in symbolic-
heap separation logic are tight in the sense that a heap containing anything but a cyclic list of
length two would violate the above formula. The meaning of predicate calls is usually defined
by systems of inductive definitions (SID), i.e. a finite set of rules mapping symbolic heaps to
predicates. Consider, for instance, the following SID Φ:

sll(x, y) ⇐ emp : {x = y}
sll(x, y) ⇐ ∃u . x 7→ u ∗ sll(u, y) : {x 6= y}

The SID Φ specifies a singly-linked list segment between variables x and y by means of two rules:
Either both variables coincide and the list segment is empty or x has a successor u (specified
by the points-to assertion x 7→ u), which in turn is at the head of a (shorter) singly-linked list
segment, sll(u, y). The inequality in the second rule guarantees that there is no cyclic model.

The semantics of a predicate call then corresponds to replacing it by any exhaustive unfolding
according to the SID’s rules. Analogously to context-free grammars known from the theory
of formal languages, we call the set of all such unfoldings the language of an SID for a given
predicate (we adhere to this analogy throughout this section). For example, the language L(Φ)
obtained by unfolding the singly-linked list predicate sll(x, y) consists of the following formulas:

emp : {x = y}
∃u1 . x 7→ u1 ∗ emp : {x 6= y, u1 = y}
∃u1, u2 . x 7→ u1 ∗ u1 7→ u2 ∗ emp : {x 6= y, u1 6= y, u2 = y}
...

In total, L(Φ) consists of all (possibly empty) singly-linked list segments between x and y.
We make use of the analogy between SIDs and context-free grammars to illustrate the

approach we implemented in Harrsh. To this end, recall the following well-known result from
the theory of formal languages:
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Proposition 2.1. Given a context-free grammar G and a finite automaton A, one can effectively
construct a context-free grammar G′ with

L(G′) = L(G) ∩ L(A),

where L(·) denotes the language of finite words generated by the context-free grammar resp.
accepted by the finite automaton.

It is thus possible to “refine” a context-free grammar such that only words satisfying a
property given by automaton A can be derived. Moreover, since the emptiness problem for
context-free grammars can be discharged in polynomial time and finite-state automata are closed
under Boolean operations, the above proposition immediately yields two decision procedures:

1. We can decide whether there exists a word in L(G) that satisfies a property given by
automaton A, i.e. L(G) ∩ L(A) 6= ∅.

2. We can decide whether all words in L(G) satisfy a property given by automaton A, i.e.

L(G) ⊆ L(A) iff L(G) ∩ L(A) = ∅.

Both the refinement of context-free grammars and the decision procedures can be lifted to reason
about SIDs. In our setting, SIDs play the role of context-free grammars. However, instead of
finite-state word automata, we use heap automata. Intuitively, these automata correspond to
a certain class of finite-state tree automata (running on the unfolding trees of an SID) with
additional side conditions to ensure that one can reason compositionally about the symbolic heap
underlying an unfolding. As shown in [15], the above properties required to derive both decision
procedures, i.e. intersection between context-free and regular languages, closure of languages of
finite automata under Boolean operations, and efficient decidability of the emptiness problem,
can be lifted to SIDs and heap automata. Hence, if a robustness property P is given as a
language of a heap automaton, we can, for any SID Φ

1. construct a new SID Φ′ such that Φ′ specifies only the symbolic heaps specified by Φ that
additionally satisfy P ,

2. decide whether there exists an unfolding of Φ for a given predicate that satisfies P , and

3. decide whether all unfoldings of Φ for a given predicate satisfy P .

Let us illustrate this approach for the analysis of the following SID Φ:

sll(x, y) ⇐ emp : {x = y}
sll(x, y) ⇐ ∃u . x 7→ u ∗ sll(u, y) : {x 6= y}
top(x, y) ⇐ sll(x, y) : {x 6= y}

We note that Φ extends the SID for singly-linked lists by a top-level predicate top(x, y) that
unfolds to a singly linked list with x 6= y. We are interested in deciding whether top(x, y) is
satisfiable, i.e., whether there is an unfolding of top(x, y) such that the resulting formula is
satisfiable. All formulas of Φ have free variables in the set {x, y}.

In [15] we showed that there is a heap automaton ASAT that accepts all satisfiable formulas
without predicates calls whose free variables belong to some fixed finite set of variables. Intuitively,
the heap automatonASAT needs to track for each free variable xi whether the variable is definitely
allocated and for each pair of variables xi, xj whether definitely xi 6= xj or xi = xj ; for a precise
definition of ASAT we refer the reader to [15].
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In the above examples, the free variables to track are {x, y}. Applying the refinement
theorem with Φ and ASAT thus results in an SID Φ′ that has the following rules:

sll∅x=y(x, y) ⇐ emp : {x = y}
sll

{x}
x 6=y(x, y) ⇐ ∃u . x 7→ u ∗ sll{x}x 6=y(u, y) : {x 6= y}

sll
{x}
x 6=y(x, y) ⇐ ∃u . x 7→ u ∗ sll∅x=y(u, y) : {x 6= y}

top(x, y)
{x}
x 6=y ⇐ sll

{x}
x6=y(x, y) : {x 6= y}

Note that each predicate has been extended by the information which variable is definitely
allocated (superscript) and which (dis)equality is definitely valid (subscript). This information
becomes part of the predicate identifier, i.e., it is part of the syntax of the refined SID. The
SID Φ′, resulting from the refinement of Φ with ASAT , has the property that every formula in
L(Φ′) is satisfiable. This is not the case for the original SID Φ: L(Φ) contains the unsatisfiable
unfolding emp : {x = y, x 6= y}. The property that every formula in L(Φ′) is satisfiable can be
used to check the satisfiability of top(x, y) (here the fact that there is a refinement top(x, y)xx 6=y

of top(x, y) proves the satisfiability). Moreover, the property that every unrolling is satisfiable
is an important building block in the analysis of further robustness properties.

3 Implementation

We developed a prototype of our framework—called Harrsh1—that implements the refinement
of SIDs with heap automata

Harrsh is licensed under the MIT license and available on GitHub.2 The implementation
currently consists of about 7000 lines of Scala code, excluding tests, comments and blank lines.

Harrsh implements two variants of refinement:

• Full refinement. Given an SID Φ and a heap automaton A, compute a refined SID Φ′

with L(Φ′) = L(Φ) ∩ L(A).

Using this algorithm, any SID can be transformed into a robust SID whose unfoldings are all
in the language of automaton A. Put differently, the algorithm filters out those unfoldings
of the SID that do not satisfy the robustness property specified by the automaton.

• Decision procedures using on-the-fly refinement. Given an SID Φ and a heap
automaton A, decide whether there exists an unfolding ϕ ∈ L(Φ) ∩ L(A) [15, Alg. 1].

We can, for example, pass the automaton ASAT introduced in the previous section to this
algorithm to decide whether Φ is satisfiable.

It is often possible to determine whether an unfolding ϕ ∈ L(Φ) ∩ L(A) exists without
computing the entire refined SID Φ′. While this does not change the worst-case performance,
it often improves performance in practice.

Crucially, both algorithms are parametric in the heap automaton A: Adding a new decision
procedure to Harrsh is as simple as subclassing the HeapAutomaton interface, providing

1. A type State, specifying the state space of the heap automaton.

1Heap Automata for Reasoning about Robustness of Symbolic Heaps
2https://github.com/katelaan/harrsh/
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2. An implementation of def getTargetsFor(src: Seq[State], sh: SymbolicHeap):

Set[State]. Intuitively, this function encodes the transition relation of the heap automa-
ton: It computes the set of all target states that the automaton can reach in a single step
from the sequence of source states src when reading the given symbolic heap sh.

Supported properties. Harrsh currently defines heap automata for the following properties.

1. Satisfiability and unsatisfiability.

2. Establishment checking for proving absence of dangling pointers and

3. Non-establishment checking for detecting the possibility of dangling pointers.

4. Garbage freedom, i.e., absence of unreachable allocated memory locations.

5. Presence of garbage in the heap.

6. Definite reachability between pairs of variables in the heap.

7. Strong cyclicity, i.e., guaranteed presence of a cycle in the heap.

8. Weak acyclicity, i.e., acyclicity of all paths involving only non-dangling pointers.

At first sight, it may seem redundant to have dedicated automata for both satisfiability and
unsatisfiability. Since heap automata are closed under complementation, this is true in theory.
In general, complementation incurs an exponential blow up, however, whereas the complement
automata implemented in Harrsh have the same size as the non-complemented automata.

Having complement automata in Harrsh also enables checking whether all unfoldings of
a symbolic heap have a given property: Recall that to check whether a symbolic heap has
a satisfiable unfolding, the heap automaton for satisfiability can be passed to the on-the-fly
refinement algorithm. Conversely, to check whether all unfoldings of a symbolic heap are
satisfiable, you can use the heap automaton for unsatisfiability and negate the result of on-the-fly
refinement: If there does not exist an unsatisfiable unfolding than all unfoldings are satisfiable.

Harrsh also contains an experimental entailment checker based on heap automata that is
currently unpublished.

Additional features. Harrsh also has support for several features that are useful for or
derived from the refinement algorithm. Notably,

1. Witness generation. Given an SID Φ and an automaton A, generate an unfolding
of Φ that has the property specified by A. This can also be used for counterexample
generation by using the complement automaton: For example, to show that not all
unfoldings of Φ are satisfiable, compute a witness for unsatisfiability of Φ.

2. Model generation. Given a satisfiable formula, Harrsh can compute a model of the
formula, i.e., a stack and heap that satisfy the formula. Models are generated by computing
a witness for satisfiability and converting this witness to a model.

3. Partial target computation. Refinement tends to perform badly for predicates and
symbolic heaps with many recursive calls: Assuming two or more automaton states are
reachable for each predicate, the number of transitions considered in the refinement
algorithm is exponential in the maximum number of predicate calls in the SID (see [15]
for details).
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In many cases, this exponential blowup can be avoided. For example, it is often sufficient
to consider only a subset of the recursive calls in an unsatisfiable symbolic heap to
prove its unsatisfiability. When defining a heap automaton in Harrsh, it is possible to
define a partial target computation. In this approach, the target states are constructed
incrementally, processing the source states src of the automaton transitions one at a time.
This makes it possible to short-circuit the computation of the target states as soon as
the result (e.g. unsatisfiability) is determined. The implementation of this optimization
for (un)satisfiability checking led to a substantial speedup on many instances from the
SL-COMP’18 competition.

Input formats. Harrsh currently supports three different input formats.

• The Cyclist [3] input format.

• The subset of the SL-COMP’18 input format used in the categories qf shls sat and
qf shid sat.

• Our own custom format for specifying SIDs. For example, lasso-shaped singly-linked lists
can be specified as follows using our format.3

# Lasso-shaped list structure with head x1

lasso <= x1 -> y * lasso(y);

lasso <= x1 -> y * sll(y,x1);

# Underlying singly-linked list segments from x1 to x2

sll <= emp : {x1 = x2};

sll <= x1 -> y * sll(y,x2)

Output. When Harrsh performs full refinement, it outputs the refined SID in Harrsh’s
own format. For example, refining the above SID for lasso-shaped lists with the automaton for
satisfiability yields the following result.

lasso <= lasso2(x1) ;

sll1 <= emp : {x1 = x2} ;

sll0 <= x1 -> y1 * sll1(y1,x2) ;

sll0 <= x1 -> y1 * sll0(y1,x2) ;

lasso2 <= x1 -> y1 * sll1(y1,x1) ;

lasso2 <= x1 -> y1 * sll0(y1,x1) ;

lasso2 <= x1 -> y1 * lasso2(y1)

As described in the previous section, the predicate identifiers in the refined SID encode the
reached state of the heap automaton. In this example, three states of the heap automaton were
reached and mapped to the suffixes 0, 1, and 2 in the output.

When asked for a model, Harrsh prints a human-readable representation of a stack–heap
model of the SID that satisfies the property. For example, for the lasso SID and the satisfiability
automaton, Harrsh outputs

3For additional examples see https://github.com/katelaan/harrsh/.
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Stack {

x1 -> 1

}

Heap {

1 -> 1

}

Note that Harrsh currently uses consecutive integers 1, 2, etc. as memory locations, rather
than computing concrete memory addresses. In this example, there is a single heap-allocated
location with a self-loop (1 -> 1) and pointed-to by the variable x1—the shortest possible
lasso-shaped list with head x1.

Ongoing work. Our current efforts are focused on implementing heap automata for entailment
checking of the bounded treewidth fragment of symbolic heaps proposed in [12]. We would
also like to make improvements to the user interface; in particular, making it easier to explore
models and countermodels of robustness properties.

4 Evaluation

We tested Harrsh on a large collection of benchmarks that is distributed with Cyclist as well
as on the benchmarks of this year’s separation-logic competition, SL-COMP’18.

In particular, we evaluated the performance of Harrsh on:

1. 45945 problem instances that were automatically generated by the inference tool Caber [2].

2. A set of particularly hard problem instances that are derived from the SIDs used to prove
lower complexity bounds for satisfiability [4].

3. The benchmarks from the SL-COMP’18 categories qf shid sat and qf shls sat.

The first two experiments were performed on an Intel Core i5-3317U at 1.70GHz with 4GB
of RAM. The third experiment was conducted on the StarExec cluster.4

4.1 Performance on Inferred SIDs

To evaluate the performance of Harrsh on a realistic set of benchmarks, we ran both Harrsh
and Cyclist on all 45945 benchmarks generated by Caber [2]. For Cyclist, we only checked
satisfiability—the only of the robustness properties supported by Cyclist; for Harrsh, we
checked the whole range of the properties it supports.

Both tools were capable of proving (un)satisfiability of all of these problem instances within
a set timeout of 30 seconds. All in all, the cumulative analysis time of Harrsh for these
instances was 12460ms, while Cyclist required 44856ms.5 For a wide range of other properties,
Harrsh also achieved cumulative analysis time below 20 seconds; see Table 1. These numbers
demonstrate the applicability of our tool to problem instances that occur in practice.

4https://www.starexec.org/
5We ran Harrsh in batch mode to avoid the overhead of starting the JVM for each benchmark. For both

tools we added up the analysis times of individual tasks, reported with millisecond precision. Consequently, we
expect that rounding errors influence the accumulated time to a similar degree for both tools.
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Property Analysis Time (ms)
Satisfiability 12460
Complement of Satisfiability 11980
Establishment 18055
Complement of Establishment 17272
Reachability 14897
Garbage-Freedom 18192
Weak Acyclicity 18505

Table 1: Total analysis time for a subset of the properties supported by Harrsh on the 45945
SIDs that were inferred by Caber.

4.2 Performance on Worst-Case Instances

We ran Harrsh and Cyclist on a set of particularly hard benchmarks that were handcrafted
to illustrate exponential-time lower bounds for the satisfiability problem. These benchmarks are
distributed with Cyclist and were also part of the qf shid sat category of SL-COMP’18.

In our evaluation, we chose a timeout of 5 minutes for both tools. The measured runtimes
are found in Table 2. Even though Harrsh has not been optimized for satisfiability checking,
the runtimes of both tools are generally within the same order of magnitude. Both tools exhibit
similar scalability. This further corroborates the feasibility of the unified reasoning approach
implemented in Harrsh.

Note, however, that the runtimes of Cyclist reported here deviate significantly from the
ones observed in SL-COMP’18; we will further comment on this discrepancy below.

Benchmark Harrsh Cyclist
succ-rec01.defs 3 0
succ-rec02.defs 10 8
succ-rec03.defs 24 12
succ-rec04.defs 106 20
succ-rec05.defs 496 128
succ-rec06.defs 2175 792
succ-rec07.defs 9692 4900
succ-rec08.defs 39408 31144
succ-rec09.defs 169129 164464
succ-rec10.defs TO TO
succ-circuit01.defs 80 4
succ-circuit02.defs 142 8
succ-circuit03.defs 699 48
succ-circuit04.defs 4059 832
succ-circuit05.defs 75110 28800
succ-circuit06.defs TO TO

Table 2: Comparison of Harrsh and Cyclist for hard instances of the satisfiability problem.
Provided times are in milliseconds. The timeout (TO) was 5 minutes (300000 milliseconds).
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Solver solved time (s) wrong timeout memout unknown
Cyclist [4] 90 5.1 9 0 0 0
Harrsh 72 246.6 0 27 0 0
S2S 71 706.3 0 28 0 0
Sleek [8] 73 693.2 9 1 16 0
Songbird [20] 63 300.5 0 22 14 0
Spen [9] 3 0.1 2 0 0 94

Table 3: Results for SL-COMP’18 division qf shid sat. TO = 600s, MO = 4GB

4.3 SL-COMP 2018

Harrsh participated in the categories qf shls sat (satisfiability of quantifier-free symbolic
heaps with singly-linked lists) and qf shid sat (satisfiability of quantifier-free symbolic heaps
with arbitrary systems of inductive definitions) of this year’s separation-logic competition.

Table 3 contains an edited version of the SL-COMP results for the category qf shid sat.67

The reported time is the cumulative analysis time on solved instances.

Correctness. Both Sleek and Cyclist returned wrong results on several benchmarks.8 For
example, consider the formula R defined follows.

dll(x1, x2, x3, x4) ⇐ emp : {x1 = x3, x2 = x4}
dll(x1, x2, x3, x4) ⇐ ∃u . x1 → (u, x2) ∗ dll(u, x1, x3, x4) : {x1 6= x3, x2 6= x4}
R(x, y) = dll(x,null,null, y) ∗ (y → (null,null)) : {x 6= y}

R appeared as benchmark dll-019 in the qf shid sat category. Both Sleek and Cyclist
concluded that R is satisfiable. R is unsatisfiable, however:

1. y 6= null is implied by the points-to assertion y → (null,null), whereas applying the
non-recursive rule to unfold dll(x,null,null, y) would enforce y = null. Consequently, we
have to apply the recursive dll rule at least once.

2. In dll unfoldings that contain the recursive rule at least once, the fourth parameter is
always equal to the last location that is allocated within the list. (The parameter that is
allocated in the recursive rule is passed as second argument to the recursive call and the
base rule enforces x2 = x4.)

3. y is the fourth parameter of the predicate call.

4. Hence y is allocated twice, once within the unfolding of dll and once in the points-to
assertion y → (null,null), proving that R is unsatisfiable.

6Adapted from https://www.irif.fr/~sighirea/sl-comp/18/qf_shid_sat.html. Some tools were run with
a timeout of 2400s, some with a timeout of 600s, but no tool solved any benchmark in more than 600s. We can
therefore assume a uniform timeout of 600s.

7At the time of writing, https://www.irif.fr/~sighirea/sl-comp/18/qf_shid_sat.html wrongly reports
the number of instances solved by Songbird to be 60 instead of 63. Additionally, the classification into timeout,
memout and unknown is incorrect for multiple tools. We took the liberty to correct these data for this paper.

8In all these cases, the tools wrongly classified unsatisfiable benchmarks as satisfiable. Sleek: atll-02, atll-03,
dll-01, dll-02, dll-04, dll-06, lss-03-03, lss-04-03, tll-02; Cyclist: atll-02, atll-03, dll-01, inconsistent-ls-of-ls.defs,
lss-03-01, lss-03-02, lss-03-03, lss-04-03, tll-02.

9At the time of writing, this benchmark is available at https://github.com/sl-comp/SL-COMP18/blob/

master/bench/qf_shid_sat/dll-01.smt2 in the official SL-COMP18 repository.
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Figure 1: Cactus plot for SL-COMP’18 division qf shid sat, comparing the three best tools
without wrong results. Timeout = 600s.

Crucially, at least in the case of Cyclist, the soundness issues appear to have had a significant
impact on the performance of the tool. Purportedly, the version of Cyclist participating in
SL-COMP was able to prove the satisfiability of all 40 worst-case instances (the easiest 16
of which are listed in Table 2) in a matter of milliseconds—despite the proof of exponential
lower bounds for these benchmarks in [4] and despite exhibiting exponential behavior on our
machine (cf. Table 2). We thus conjecture that the soundness issues of the Cyclist version that
participated in SL-COMP are the main cause of the difference in number of solved instances
between Cyclist on the one hand and Sleek, S2S, and Harrsh on the other hand.

Performance on symbolic heaps with user-defined SIDs. Because of their unsoundness,
we ignore both Cyclist and Sleek in the evaluation of the SL-COMP results. Figure 1 shows
a cactus plot that compares the performance in the category qf shid sat of the three best tools
that did not return any wrong results. The curves in the plot are to be interpreted as follows. If
the curve for a tool goes through the point (x, y), the tool was able to solve x of the benchmarks
using at most y seconds for each of these x benchmarks.

The plot reveals that the runtime is dominated by the handful of worst-case instances that
the tools were able to solve within the time limit of 600s.

Figure 2 zooms in on the left region of the graph by assuming a timeout of 20s instead of 600s.
Harrsh, as the only tool that runs on the JVM rather than natively, is much slower than the
other tools on simple benchmarks. This is because merely starting the JVM takes approximately
1.2 seconds and thus dominates the runtime on simple benchmarks. This constant overhead can
be easily avoided in practice by running Harrsh as a server rather than running one instance of
Harrsh per benchmark. As the complexity of the benchmarks increases, Harrsh significantly
outperforms Songbird and performs slightly better than S2S.

In summary, Figures 1 and 2 thus demonstrate that Harrsh can compete with other
state-of-the satisfiability checkers on benchmarks with user-defined SIDs.
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Figure 2: Cactus plot for SL-COMP’18 division qf shid sat, comparing the three best tools
without wrong results. Timeout = 20s.

Performance on benchmarks with singly-linked lists. Every tool that participated in
the category qf shls sat was able to correctly solve all 110 benchmarks in that category.

Overall, Harrsh did not perform as well on this category as most other participating
tools. This is not surprising: Unlike most of the other tools, Harrsh does not implement any
list-specific reasoning; additionally, refinement is not optimized for formulas with many recursive
calls, which dominate the qf shls sat category. We are thus not discouraged by the fact that
with the exception of Cyclist (which does not implement list-specific reasoning either), all other
tools completed this category one to two orders of magnitude faster than Harrsh. Because of
the vast differences in performance, we do not present a more detailed comparison to other tools.

The cactus plot in Figure 3 shows in detail the performance of Harrsh in the category
qf shls sat. It demonstrates that Harrsh is able to solve most benchmarks reasonably fast:
79 of 110 instances were solved in less than 2 seconds and 106 of 110 instances were solved in
less than 5 seconds. Performance tends to be much worse on unsatisfiable instances, where
on-the-fly refinement does not have any performance advantages over full refinement. (Only 4 of
the 31 instances that took more than 2 seconds are satisfiable, whereas in total, exactly 50% of
the instances are satisfiable.)

5 Conclusion

We presented Harrsh, a tool that implements refinement of inductive predicate definitions in
symbolic-heap separation logic with a wide range of robustness properties encoded by means of
a novel automaton model, heap automata. Refinement with a robustness property changes the
set of formulas defined by the inductive definitions in such a way that all formulas that violate
the property are filtered out. Supported properties include satisfiability, establishment, garbage
freedom and (a)cyclicity checking. In addition, support for entailment checking using the same
approach is currently under development.

Harrsh also leverages our approach—refinement with heap automata—to obtain decision
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Figure 3: Cactus plot showing the performance of Harrsh in the SL-COMP’18 division
qf shls sat.

procedures for the robustness properties (including satisfiability checking), find counterexamples
to the properties and generate models that exhibit the properties.

The evaluation of Harrsh on both handwritten and generated benchmarks showed good
performance across all implemented robustness properties. In particular, despite using a uniform
approach for solving all robustness properties, Harrsh was able to compete with state-of-
the-art satisfiability checkers for symbolic-heap separation logic in this year’s separation-logic
competition, SL-COMP’18.
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by Erika Ábrahám and Klaus Havelund. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 124–139 (cit. on p. 23).

[18] John C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data Structures”. In:
LICS 2002. IEEE, 2002, pp. 55–74 (cit. on p. 23).

[19] Quang-Trung Ta et al. “Automated Lemma Synthesis in Symbolic-heap Separation Logic”.
In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017), 9:1–9:29. issn: 2475-1421 (cit. on
p. 23).

[20] Quang-Trung Ta et al. “Automated Mutual Explicit Induction Proof in Separation Logic”.
In: FM 2016: Formal Methods. Ed. by John Fitzgerald et al. Cham: Springer International
Publishing, 2016, pp. 659–676 (cit. on pp. 23, 32).

[21] Damiano Zanardini and Samir Genaim. “Inference of Field-Sensitive Reachability and
Cyclicity”. In: ACM Trans. Comput. Log. 15.4 (2014), 33:1–33:41 (cit. on p. 24).

36


	Introduction
	Overview of the Approach
	Implementation
	Evaluation
	Performance on Inferred SIDs
	Performance on Worst-Case Instances
	SL-COMP 2018

	Conclusion

