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Abstract

The need for runtime verification (RV), and tools that enable RV in practice, is widely
recognized. Systems that need to operate autonomously necessitate on-board RV technolo-
gies, from Mars rovers that need to sustain operation despite delayed communication from
operators on Earth, to Unmanned Aerial Systems (UAS) that must fly without a human
on-board, to robots operating in dynamic or hazardous environments that must take care
to preserve both themselves and their surroundings. Enabling all forms of autonomy, from
tele-operation to automated control to decision-making to learning, requires some ability for
the autonomous system to reason about itself. The broader class of safety-critical systems
require means of runtime self-checking to ensure their critical functions have not degraded
during use.

Runtime verification addresses a vital need for self-referential reasoning and system
health management, but there is not currently a generalized approach that answers the
lower-level questions. What are the inputs to RV? What are the outputs? What level(s)
of the system do we need RV tools to verify, from bits and sensor signals to high-level
architectures, and at what temporal frequency? How do we know our runtime verdicts
are correct? How do the answers to these questions change for software, hardware, or
cyber-physical systems (CPS)? How do we benchmark RV tools to assess their (comparative)
suitability for particular platforms? The goal of this position paper is to fuel the discussion
of ways to improve how we evaluate and compare tools for runtime verification, particularly
for cyber-physical systems.

1 Introduction

Runtime Verification (RV), or the formal analysis of a system requirement for a single run of the
system (the current run), in real-time, is vital to the future of safety-critical, and particularly
autonomous systems. Whether we consider autonomy to be as simple as operating independently,
such as an Unmanned Aerial System (UAS) without a human on-board that depends on a
remote pilot, to being entirely free from external control, such as the same UAS with only
on-board control, we need some way for the system to reason about itself. The UAS must be
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able to notice at least the kinds of faults that would be noticed by a human pilot, were there one
on-board. This type of self-referential reasoning becomes even more important when we consider
more advanced definitions of autonomy, such as decision-making, e.g., the ability to freely choose
from a set of actions while taking into account the current system status, or learning, which we
can broadly define as any nondeterministic behavior. In all of these cases, RV is a fundamental
component of System Health Management (SHM), or the ability for an autonomous system to
evaluate its own status with regard to operational and mission requirements.

Due to their unique ability to accurately pinpoint anomalies not found by other verification
techniques, particularly those of a complex, temporal nature, formal methods have greatly
impacted the design and development processes of real-life, full-scale, safety-critical systems. For
example, in the aerospace industry, design-time model checking of temporal logic formulas [20]
has increased the robustness of the Small Aircraft Transportation System (SATS) [17], verified
the Traffic Alert and Collision Avoidance System (TCAS) flying on-board commercial aircraft [2],
ensured internal aircraft modes followed the A-7E aircraft software requirements [25], robustified
Boeing’s AIR6110 wheel braking system [7], analyzed the Mars Science Laboratory’s flight
software [14], and changed NASA’s design for the NextGen automated air traffic control
system [12,16,26]. Our challenge now is to carry this success from design-time to runtime.

The Competition on Runtime Verification (CRV) [4] marked an important step forward
in evaluation of RV for software; the core idea of software RV is to instrument a program
to emit events during its execution, which are then processed by a monitor. Like CRV, we
consider specification-based trace analysis, where execution traces are verified against formal
specifications written in formal logical systems.

We need to recognize that (a) hardware and cyber-physical (hardware-software
combination) systems cannot be instrumented in the same way that software can be
instrumented; (b) many systems (hardware, software, or cyber-physical) cannot be
instrumented at all. For example, autopilot software represents a safety-critical component of
an aircraft that requires runtime verification yet all autopilots running on commercial aircraft fall
somewhere on the spectrum from unable to be instrumented due to flight certification procedures,
to closed-source, to ITAR1 to some variation of classified. Runtime verification for such systems
needs to avoid instrumentation and operate on external observations. Therefore the focus of
this paper is on verification during system runtime that does not require software
instrumentation. We also consider comparative evaluation in terms of correctness,
timing, and overhead differently from CRV, in the context of hardware and cyber-physical
systems.

We address, in part, each of the six questions itemized by the International Workshop on
Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification
Tools (RV-CUBES).2 We address these important questions from the domain of safety-critical
aerospace systems, focusing on hardware and cyber-physical systems.

1. What should a RV benchmark look like?
2. Can we have a common specification language for RV? If so, what should it

look like?
3. Is execution time the most important performance criteria? What might be

more important?
4. How can we evaluate hardware monitoring tools?
5. What are we doing wrong in evaluation? Can we fix this?

1https://www.pmddtc.state.gov/regulations_laws/itar.html
2http://rv2017.cs.manchester.ac.uk/rv-cubes/
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6. What can be borrowed from other communities?

We frame our discussion in terms of the features unique to verification during system runtime,
also called online verification. We distinguish this from offline verification, or the post-mission
verification of recorded single-run executions.

1.1 Defining Features of RV

Before we can address these six questions, we must first ask the zeroth question: what are we
doing RV for? It is essential to keep in mind the point of doing RV in the first place, and what
we expect the outcome(s) to be. We argue that RV has some unique defining features that pose
particular challenges for benchmarks and evaluation.

Inputs. RV must overate over continuing streams of discrete inputs at regular temporal
intervals. Unlike design-time verification where we may be able to directly reason about
continuous properties of the physical system, RV algorithms must reason about all aspects of
the system, be they inherently discrete or continuous, using discrete signals. This is because
software values are inherently discrete, hardware logic is also discrete, and physical properties of
the system that are inherently continuous can only be measured by discretized sensor signals
with some well-defined maximum frequency.

Tools and Implementations. RV has the unique property that any algorithm for RV must
be able to be implemented as a tool that runs in real time on the actual system being verified.
We note that the word on in this sentence is interpreted rather loosely: RV for an aircraft, for
example, can be performed entirely on-board the aircraft, entirely on some ground system that
is continuously receiving values from the aircraft, or via some distributed combination of these
two. Similarly, in real time requires a precise definition. Unlike design-time verification, where
any execution platform that completes the verification run within machine timeout (usually 24
hours or more) can be helpful, RV algorithms must be implementable as tools that run both in
real time and on the system being verified. Importantly, this places limitations on the execution
platform; for example, a typical supercomputer is not an appropriate test platform for an RV
tool because an actual RV tool would never wait in a queue (perhaps for days or weeks), execute
on the next node available, and have its results sent back all at once. RV tools must be executed
(and therefore benchmarked) on real-time execution platforms that may be constrained by the
operational envelope of the system under test. RV tools that run on-board aircraft, for example,
are subject to different constraints on their execution platforms depending on the particular
aircraft system they aim to verify. Such constraints include power, weight, timing, size, cost,
bandwidth, and interface limitations. We argue that RV tools also require usability sufficient to
enable their installation, configuration, and use by system operators on realistic (embedded)
platforms.

Outputs. RV tools must produce continuing streams of discrete outputs (verdicts) in real
time, in a format that can be utilized by the system being verified. This criteria is arguably
the most ill-defined criteria for RV, and therefore the most in need of standardization. Unlike
design-time verification tools, RV cannot produce a single output; the output must be a stream
corresponding to the stream(s) of inputs as the system runs. The real time constraint considers
both execution time and delays required to amass all of the data required to complete evaluation
of a specification for a particular time window: how soon can we know the verdict given the
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input data, and how fast can we perform any computations necessary to compute it. We must
decide whether the output stream should follow some regular temporal frequency or report
verdicts as soon as they are computed, even if this results in outputs corresponding to different
inputs being reported out-of-order or at irregular intervals. Finally, there is the amorphous
criteria that the output should be in a format that can be utilized by the actual system we are
currently verifying, which is a concept unique to RV. For an aircraft, for example, being able to
utilize the RV outputs could mean that they can be used by another system (like a planner or
autopilot) on-board the craft, that they can be used by an on-ground system (like an air traffic
manager), or that they can be stored for post-accident diagnosis (like in a cockpit black box).

Linear Time Specifications. RV analyzes a single execution of the system; for RV time is
inherently linear. Alternative notions of specifying time, such as branching time, do not apply
during runtime. For design-time reasoning, such as model checking, a temporal logic specification
ϕ is often a Linear Temporal Logic (LTL) formula. For RV, we often define ϕ to be either
LTL or a finitely bounded variation of LTL, such as MTL [1], STL [15], or LTLf [8]. However,
the system under test may dictate that ϕ describe probabilistic, or cyber-physical requirement,
capturing, for example, partial differential equations tied to the physical properties of the system.
For the purpose of generality, in this paper we presume MTL specifications. Systems in our
application domain are usually bounded to a certain finite mission time. For example, a UAS
has a limited air-time, depending on the available battery capacity and predefined waypoints.

Similarly to design-time checking, we can can define runtime verification formally over system
computations. We define a computation π to be a sequence of system states, corresponding to
the behavior of the system under test starting and then running until the end of the mission,
which is usually finite for systems targeted by runtime verification. (While some safety-critical
systems employing runtime verification run indefinitely, such as an automated air traffic control
system, most execute finite missions, such as an aircraft or spacecraft.)

Let ϕ be a temporal formula specifying a requirement of the system that must hold for the
system to be considered “correct” or “healthy.” We satisfy such formulas over computations,
which are functions that assign truth values to the variables of ϕ at each time instant [11].

Definition 1 (Computation). We interpret LTL formulas over computations of the form
π ∶ ω → 2Prop, where ω is used in the standard way to denote the set of non-negative integers;
for MTL formulas we replace ω with the finite mission time for the system under test. We write
π, i ⊧ ϕ to designate that computation π at time instant i ∈ ω satisfies formula ϕ.

For mission time m, the RV question can be formally defined as, ∀i ∶ 0 ≤ i ≤m,π, i ⊧ ϕ. We
answer this question in terms of an execution sequence. Given an input stream of time-stamped
events, collected incrementally from the analyzed system, and an MTL specification ϕ, we define
the outputs of RV in terms of execution sequences.

Definition 2 (Execution Sequence [18]). An execution sequence for an MTL formula ϕ, denoted
by ⟨Tϕ⟩, is a sequence of tuples Tϕ = (v, τe) where τe ∈ N0 is a time stamp and v ∈ {true, false}
is a verdict.

We use a superscript integer to access a particular element in ⟨Tϕ⟩, e.g., ⟨T 0
ϕ⟩ is the first

element in execution sequence ⟨Tϕ⟩. We write Tϕ.τe to access τe and Tϕ.v to access v of such
an element. We say Tϕ holds if Tϕ.v is true and Tϕ does not hold if Tϕ.v is false. For a given
execution sequence ⟨Tϕ⟩ = ⟨T 0

ϕ⟩, ⟨T 1
ϕ⟩, ⟨T 2

ϕ⟩, ⟨T 3
ϕ⟩, . . . , the tuple accessed by ⟨T i

ϕ⟩ corresponds to

a section of an execution e as follows: for all times n ∈ [⟨T i−1
ϕ ⟩.τe + 1, ⟨T i

ϕ⟩.τe], en ⊧ ϕ in case

⟨T i
ϕ⟩.v is true and en ⊭ ϕ in case ⟨T i

ϕ⟩.v is false.
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An RV Benchmark is then an execution sequence for some input specification language (e.g.,
MTL), possibly paired with a purpose, an English description of what the benchmark aims to
assess.

The rest of this paper is organized around the central questions of RV-CUBES. Section
2 breaks down the structure of an RV benchmark and puts forward ideas for standardizing
specification languages for the RV competition. Evaluation criteria, including a discussion on
the question of execution time make up Section 3. Section 4 briefly highlights ideas specific to
evaluating hardware monitoring tools. We consider what best-practices and lessons-learned we
can borrow from other communities in Section 5. Section 6 concludes and offers an outlook on
the future of the RV competition.

2 Structure of a CPS RV Benchmark

In its most basic form, an RV benchmark for hardware or cyber-physical systems3 needs three
components, per Definition 2 (pictured in Figure 1):

1. a discrete-time input stream for each system variable we wish to reason about
2. a requirement to evaluate over that set of input streams
3. an output stream of verdicts: for each time step, did the requirement hold?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 0 0 0 0 0 0 0 0 1 12 13 14 15 16 17 18 19 20 21 22 23

n

en ⊧ altB ≥600ft
en ⊧ (cmd == takeoff)

en ⊧ ϕ
τe

v
resolve future-time formulas

a

b

Figure 1: We exemplify an RV benchmark using Definition 2. For all times n, 0 ≤ n ≤ m for
finite mission time m, the input streams to a runtime observer for future-time MTL formula
ϕ specify the values of the variables in ϕ. For example, the input stream for Boolean variable a
is an execution sequence en ⊧ altB ≥ 600 ft (the barometric altimeter reading is greater than
600 ft [18]). The input stream for b is an execution sequence en ⊧ (cmd == takeoff) (command
to takeoff was received). The requirement is a future-time MTL formula ϕ over variables a
and b. The output steam, ⟨Tϕ⟩, is a sequence of tuples Tϕ = (v, τe) where τe ∈ N0 is a time
stamp and v ∈ {true, false} is a verdict. When the requirement is specified in future-time
logic the output stream may need to aggregate values. Let ti be the first time step where
there is sufficient information to determine a correct verdict for time i here the output stream
is (true,0), where t0 = 0, (false,1), where t1 = 11, (true,12) (indicating ϕ holds at times
2, . . . ,12), where t2 . . . t12 = 12, . . .

3Note that these benchmarks for online monitoring of hardware or cyber-physical systems most closely
resemble in format the benchmarks offline monitoring of software defined in [4] since online monitoring of software
requires instrumented program source code.

127



Evaluation & Comparison of RV Tools for Hardware & CPS K. Y. Rozier

For each of these three basic components, several details need to be standardized. One
option is to create classes of benchmarks, each with a different combination of choices from the
following lists.

Input Stream(s). Each system variable that is utilized needs to be supplied as an input
stream simulating a run of the target system being verified over the length of a mission. For
these input streams, we need to be standardize the frequency and format.

Frequency, or the space between “time steps” in the temporal logic notion of arbitrary
units needs to be tied to some notion of real time as in “once per tick of the system clock” or
other common frequency, given in Hz. For real-life systems, there may be multiple different
frequencies across the set of input streams, realistically representing sensors that sample at
different rates, and a single input stream may change frequencies, like the many spacecraft
subsystems that take increasingly frequent measurements as touch-down approaches.

The format of an input stream can be either Boolean, or non-Boolean paired with Boolean
testers to create Boolean streams to populate the propositions of an MTL specification. Non-
Boolean data may be filtered or may require filtering within the RV tool; for fair benchmarking
purposes, which filter to use should be given to enable benchmarking the inclusion of the
same filter in the RV tool as part of the analysis. For example, a requirement might be
“(a < 5)→ (b > 20) where a and b are given as raw sensor streams; the RV tool would then be
expected to execute the Boolean testers (a < 5) and (b > 20) to evaluate the requirement. We
must decide: where we get the inputs from? Input streams can be randomly generated, come
from software benchmarks, or come from Boolean testers over sensor input signals from real
system executions. For example, real flight data from NASA UAS test flights is available online.4

Requirements. Benchmark requirements may be individually grouped with the set of input
streams they reason over, or organized as a set of requirements over a shared set of input streams.
Either way, requirements should be classified according to their specification language (temporal
logic, probabilistic, or cyber-physical; see Section 2.1), and performance constraints, such as
limits on the resources (e.g., memory, overhead) that may be used or bounds on the time verdicts
may be delivered.

Another important question is: where do we get the requirements from? The answer relates to
what format the requirements are given in: English or formal semantics? If we pull requirements
from requirements documents, such as operational concepts for aerospace systems, then we
could include in the RV competition the act of converting them to an appropriate formalism,
similar to the VerifyThis competition,5. We can also create standardized benchmarks inspired
by real life, and extracted from requirements for previous case studies. We can also populate the
benchmark suite by generating requirements manually, though generating realistic requirements
for a given system is an active area of research [19].

Output Streams. We expect output streams to be tuples, at least containing a verdict
paired with the time for which that verdict holds. Following Definition 2, for example, ⟨Tϕ⟩ =
((false, 0), (false, 1), (false, 2), (true, 3), . . . , (true, 17), (true, 18)) describes en ⊧ ϕ sampled
over n ∈ [0,18] [18]. In addition to Boolean output streams, we may also evaluate over three-
valued (true, false, maybe) or otherwise fuzzy output streams; in the case ⟨T i

ϕ⟩ is maybe,
neither en ⊧ ϕ nor en ⊭ ϕ is defined. Alternative formats include probabilistic, e.g., giving the
probability that requirement holds; tuples, e.g., grouping multiple outputs of different formats;

4http://www.usgs.gov/blogs/surprisevalley/
5http://www.verifythis.org/
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or measured-distance outputs, e.g., specifying how much of the requirement holds or how far the
system status is away from satisfying the requirement in terms of time or difference of measures
such as 200 feet away from the 400 foot altitude requirement.

The question of how we generate the output streams is the most difficult because it involves
solving the RV problem in the first place; it is not easy to check or verify that the outputs are
correct. We can approximate correctness before we have a known, canonically correct output for
a benchmark, by taking a survey of a large number of solutions and figuring that most of them
are correct, or by creating the benchmark by starting with the output and moving backwards to
get a requirement and input that generate that output correctly. One major point to consider
is that for some combinations of inputs and requirements it may not be possible within the
real-time parameters to determine the output correctly due to the computational complexity of
the problem. In this case, a “correct” output would be a timeout or statement that there will
be no output. It is very important to distinguish this from something that resembles an output,
and therefore could be used incorrectly by the system.

Since RV tools are chiefly used in critical applications, it is extremely important that we do
not rank tools that produce incorrect outputs. Even a few incorrect outputs, that are
not decline-to-answer or timeouts, could have seriously detrimental effects if they were used to
modify the behavior of real safety-critical systems during runtime. In the case a tool produces
any incorrect output, the test results should be returned to the tool authors for debugging, but
not included in the competition. Focusing on correctness also motivates making the benchmark
suite publicly available for tool debugging before the competition is held.

2.1 Specification Languages for RV

Ideally, the RV competition should standardize around the minimum number of specification
languages required to express system requirements that need to be verified at runtime. We
define the specification language to be the language of ϕ in the RV question of, for mission time
m, ∀i ∶ 0 ≤ i ≤m,π, i ⊧ ϕ. Wherever possible, translators should be used for all languages with
overlapping expressibility to minimize the number of competition languages. (This is also a
lesson learned from other verification competitions, such as HWMCC.6) Given that RV is used
for Boolean, temporal, and probabilistic analysis and that many of the specification languages
parsed by current RV tools are expressively incomparable, this is a challenge! However, we
argue that a reasonable cyber-physical RV competition could be constructed from temporal
logic specifications with the possibility of future tracks expanding the specification languages.

Temporal Logic. The same temporal logic specifications could be used for the runtime
verification of both hardware and software. Ideally, the RV competition would choose just one
temporal logic for all benchmarks and then offer open-source translators from all other logics
into that one, even if that means choosing a less-expressive common logic. MTL is a reasonable
candidate for the standard benchmark logic; for example, LTL specifications can be translated
via the following definition.

Definition 3 (Mission-Time LTL [18]). For a given LTL formula ξ and a mission time tm ∈ N0,
we denote by ξm the mission-time bounded equivalent of ξ, where ξm is obtained by replacing
every ◻ϕ, ◇ϕ, and ϕ U ψ operator in ξ by the ◻J ϕ, ◇Jϕ, and ϕ UJ ψ operators of MTL, where
the duration J = [0, tm] for mission time bound tm.

6http://fmv.jku.at/hwmcc
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Probabilistic. RV tools may realistically be tasked with answering questions like “what is
the most likely status of the fluxgate magnetometer,” given that the fluxgate magnetometer
can possibly suffer any one of five faults or be healthy [13]. One of the roles RV-CUBES can
play in the future is to help define and standardize the format for such specifications, such as a
common database. There could be a table for each requirement and the table could have a row
for each status, e.g., each type of fault or ’healthy,’ and then columns of symptoms. Symptoms
could be assignments to variables. Then an RV tool should detect, given streams from all of the
variables, the most likely status and the probability of this status.

Cyber-Physical. Cyber-physical specifications combine a cyber (temporal logic formula)
specification with a physical (partial differential equation) specification to describe integrated
hardware-software requirements. The temporal logic components of these specifications may be
able to serve double-duty as benchmarks by themselves. Such specifications may be mined, e.g.,
from robotics verification case studies.

3 Evaluation Criteria

Correctness needs to be the primary evaluation criteria. RV tools are added to systems to check
that the current run satisfies mission-critical requirements; they are expected to sound an alarm
as early as possible if not, in order to enable mitigation actions. The real-time nature of RV
does not allow for double-checking the results and demands immediate actions when a critical
violation is reported. The entire point of RV is to mitigate the faults of other verified systems;
the RV system itself needs to be very careful not to also generate faults. The impact of incorrect
answers is arguably more critical for RV than for any other category of formal verification.

Importantly from a benchmarking perspective, correctness is also very challenging. The RV
question for temporal logic specification ϕ, as defined in Section 1, then boils down to checking
the satisfiability of ϕ at each time step: for every time step i less than mission length m, we
check if the current run of the system, computation π, satisfies formula ϕ. There are currently
no robust, publicly-available tools for MTL satisfiability checking. For the related question of
LTL satisfiability checking, we have seen that creating a tool that correctly evaluates π,0 ⊧ ϕ,
e.g., returns a singular evaluation of satisfied or not satisfied from the first time step in the input
trace, is very difficult [22–24]. For example, all eleven tools benchmarked for LTL satisfiability
via explicit model checking returned at least one wrong answer and some performed worse
than random guessing, as shown in Figure 2. We also found that many tools crashed or died
gracelessly when an input could not be handled, or failed to distinguish between unsatisfiable
verdicts and error cases. Therefore, it is important to learn from this history and emphasize
correct output in RV.

Here is a scheme for scoring tools based on correctness that, differently from [4], addresses
cyber-physical systems (e.g., does not explicitly consider software crashes), evaluates correctness
over execution sequences, and emphasizes the criticality of incorrect verdicts. For an execution
sequence produced by a given RV tool ⟨Tϕ⟩ = ⟨T 0

ϕ⟩, ⟨T 1
ϕ⟩, ⟨T 2

ϕ⟩, ⟨T 3
ϕ⟩, . . . , we define the correctness

score C for a benchmark of mission time tm ∈ N0 as C = Σm
i=0Ci where:

• Ci = 10 for a correct verdict such that ⟨T i
ϕ⟩.v is true if T i

ϕ holds and ⟨T i
ϕ⟩.v is false if T i

ϕ

does not hold.
• Ci = 1 for an “I don’t know” verdict such as ⟨T i

ϕ⟩.v being maybe, because this verdict
shows liveness, and does not adversely affect system operation.

• Ci = 0 for no answer/failure to answer (due to a tool bug, poor responsiveness, or other
reason); this verdict does not cause harm but does not instill confidence that the checker

130



Evaluation & Comparison of RV Tools for Hardware & CPS K. Y. Rozier

Figure 2: Graph from [21,22] showing the degradation of proportion of correct claims for random
LTL formulas where the probability of choosing a temporal operator, P = 0.5 and the number
of variables, N = 3. This graph shows results for random formulas of lengths 5 . . . 65. None of
the tools tested in this benchmark produced all correct answers (which would result in their
lines overlapping the reference black line at 1 on the y-axis) though, notably, this benchmark
inspired corrections. All versions of SPOT released since this test have produced all correct
answers [9, 10].

is still working.
• Ci = −∞; disqualification, or equivalent, such as a very large number of negative points for

a wrong answer.

We propose to weight the tool’s correctness scores using the secondary criteria of execution
time; for each Ci we apply weight wi such that the weighted correctness score W for a benchmark
of mission time tm ∈ N0 is W = Σm

i=0wiCi where:.

• wi = 10 where correct verdict v is reported at time ti ≥ i such that ti is the first time
step where there is sufficient information to determine a correct verdict for time i. Note
that for past-time formulas, ti = i; for future-time formulas calculating ti is much more
complicated.

• wi =max ((10 (1 − j−ti
ti+100

)) ,1) where correct verdict v is reported at time j ≥ ti.
• wi = 1 for no verdict/failure to answer.

An alternative to weighting the correctness scores by execution time is to separately report
correctness and verdict resolution time. Given an execution sequence produced by a given
RV tool ⟨Tϕ⟩ = ⟨T 0

ϕ⟩, ⟨T 1
ϕ⟩, ⟨T 2

ϕ⟩, ⟨T 3
ϕ⟩, . . . , we define the verdict resolution time score V for a

benchmark of mission time tm ∈ N0 as V = Σm
i=0 j − ⟨T i

ϕ⟩.τe where correct verdict v for ⟨T i
ϕ⟩

is reported at time j. For a competition we can then normalize the verdict resolution times,
setting the smallest V any tool achieves for a given benchmark to 0, thus avoiding the problem
of having to calculate time ti for all times i such that ti is the first time step where there is
sufficient information to determine a correct verdict for time i.
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In addition to correctness and execution time, we may evaluate overhead or resource usage.
While [4] provides a compatible memory-utilization score to the evaluation criteria presented
here, differently from [4], we do not consider overhead in terms of execution time, but instead in
terms of other resources used, which may depend on the execution platform (software versus
hardware, runtime environment characteristics). Overhead includes points for unobtrusiveness
in execution, such as minimizing system modifications to retrieve runtime input streams, and the
ability to work within tight resource bounds, such as FPGA gates or power. We add bonus points
to correctness and timing scores for lower overhead/smaller resource footprints. Alternatively,
overall scores could be sorted by classes of overhead and resource usage, so the scores would be
a set of lists, one list for each overhead/resource class ranked by correctness and execution time.

3.1 On Execution Time

Hardware or CPS runtime verification can be performed either online (running during system
execution and performing analysis in real time) or offline (running post-execution); previous
Competitions on Runtime Verification have considered both of these categories for software [4].
For purposes of evaluation and comparison of RV tools that analyze hardware or cyber-physical
systems, the distinction between online and offline monitoring can be made by how execution
time is weighted in benchmarking. Since it may be difficult to impossible to comparatively
evaluate runtime verification tools on their target platforms (such as aircraft or spacecraft),
online verification tool benchmarking equates to simulating a system run using a pre-recorded
(offline) benchmark whilst considering execution time. Figure 3 proposes a scheme for conducting
an online RV competition track for cyber-physical systems.

Benchmarking

φ

〈v, τ 〉e

Monitor/observer
(synthesis)

Option to measure
offline performance}}

OFFLINE

ONLINE

Input stream

Output stream
with delivery time

OFFLINE

ONLINE

Competitive Judging
Compute scores
for timing and

correctness

Figure 3: Online Runtime Verification for Cyber-Physical Systems Track: (1) The requirement
ϕ is provided to the RV tool under test for synthesis of the monitor/observer offline, with an
option to include performance characteristics of this synthesis stage in the competition score.
(2) The input stream is streamed into the running monitor/observer in an online runtime
verification phase, producing in real time the output stream. (3) The competition is scored
utilizing the output stream (stream of verdict/time stamp tuples (v, τe) along with the time
each tuple was reported) and any other measured performance characteristics according to the
evaluation criteria (per Section 3).
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When defining execution time for benchmarking RV tools, we can additionally consider the
following questions:

• How do we time input streams to RV tools? Do we need to run the competition in a
simulator that releases new values from pre-recorded benchmarks at specific time intervals?

• Do we consider asynchronous (event-triggered) verdicts, synchronous (time-triggered)
verdicts, or a combination of both? For example, a synchronous verdict would give the
most accurate answer possible at that time, but an asynchronous verdict would be expected
to be maximally accurate, though necessarily delayed.

• If one purpose of RV, at least for some systems, is to provide predictive information, e.g,
information that could be used to prevent the crash of an aircraft versus information that
can be used to accurately determine the cause of a crash after the fact, then how can this
be measured in competition? Necessarily, to report a probable fault before it happens,
with enough time to enable fault-mitigation actions, requires a probabilistic estimation.
Here we trade time for correctness: we demand tools provide a maximally-likely verdict
before it is possible to evaluate whether that verdict is correct.

4 Evaluating Hardware Monitoring Tools

Realistically, there are two categories of runtime verification: software and hybrid software-
hardware, aka cyber-physical. No modern system requiring RV is totally without software and
there is no reason to limit RV tools that monitor hardware from taking into account software
status received from the same channels, e.g., over the system bus.

It is important to note that temporal logic specifications can be used to monitor hardware
as well as software. Hardware monitoring is most straightforwardly a temporal logic formula
requirement evaluated over a sensor signal sent over the system bus. Hardware monitoring
has the advantage that annotations, like the code instrumentation sometimes required for
software monitoring, are not a possibility. Hardware monitoring also offers the challenge that
specifications can grow much more expressive than for software monitoring, even incorporating
partial differential equations in conjunction with temporal logic to offer a rich description of
total cyber-physical system behavior.

The challenge with evaluating hardware monitoring of temporal logic specifications is chiefly
one of timing: how to filter benchmark sensor data input streams and feed them through Boolean
testers to populate the variables evaluated in the temporal logic specifications. Input streams
with different frequencies will need to be filtered and tested in a way that is comparable. The
correct verdict will depend on the correspondence between temporal logic time steps and the
time divisions of input streams. One solution, which makes the competition more standardized
but less realistic, would be to set up the benchmarks so that every input stream supplies values
at one second intervals and one time step in temporal logic equates to one second.

Eventually, we may pair temporal logic benchmarks with partial differential equations for
the evaluation of more expressive cyber-physical system monitoring tools. However, evaluating
the correctness of verdicts produced for these specifications is an open area of research currently
being pursued in the robotics community.

Differently from software, some platform-based evaluation criteria may serve as informative
classifiers for hardware monitoring tools, with the side-effect of making them more amenable to
technology transfer. Here are a few ideas for expansions of the evaluation of hardware monitoring
tools.

• List tools by their platform constraints. Eventually, we may have different categories for
tools with different constraints, e.g., categories for below a certain level of overhead, power,
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memory, bandwidth, or other constraint common to embedded platforms with limited
on-board resources. Such a list would help classify tools with respect to their suitability
for certain common platforms, such as UAS or CubeSats.

• Evaluate hardware tools on different platforms. Define a test set of embedded systems
and run the competition separately on each of them. Candidate platforms include: FGPA,
Raspberry Pi, COTS flight computer from a toy UAS.

• Test the tools with different input frequencies. Here, we foresee the benchmark being that
the temporal logic requirement ϕ is evaluated over variables populated by Boolean testers
over the input sensor data streams. For example, the altitudes from an altimeter may be
an input sensor stream, filtered through a standard noise-reducing filter, and fed through
the Boolean tester (altitude > 600ft), which sets the value of a variable in ϕ. Varying the
input stream frequencies is particularly challenging because different frequencies could
result in different valuations of ϕ over the same dataset.

5 What Can Be Borrowed From Other Communities?

The many competitions for different aspects of design-time verification provide inspiration for
the evaluation and comparison of runtime verification tools going forward.

• Correctness must be the primary criteria for tool evaluation. This is even more
important for RV than for design-time formal techniques like model checking. During
runtime, a verdict that something is wrong (or right) must be acted on immediately; there
is not time to handle spurious counterexamples that happen during design time. Tools in
RV, like in medicine, must be ruled by primum non nocere (first, do no harm); while the
absence of a verdict may allow a fault to occur, the presence of an incorrect verdict can
fail an otherwise properly operating system. Other competitions consider correctness; the
question of what constitutes a correct answer is more complex, more nuanced, and more
impactful for RV.

• The RV competition should participate in the Federated Logic Conferences
(FLoC) Olympic Games.7 The FLoC Olympic Games were started in 2014 in the hope
of creating a tradition in the spirit of the ancient Olympic Games. Every four years, as
part of the Federated Logic Conference, the Games will gather together all the challenging
disciplines from a variety of computational logics in the form of the solver competitions.

• Software benchmarks for RV could be adapted from SV-COMP. The Compe-
tition on Software Verification8 provides an annual snapshot of the state of the art in
software verification, along with a well-organized selection of software benchmarks that
are available online. A detailed competition report is published each year [5].

• Organization is key! We need a publicly writable central repository of bench-
marks. We can also benefit from lessons learned: other communities and competitions
have struggled to keep up an open, easily accessible, annually-updated repository of
benchmarks that reflect the latest case studies and the current state of the art in terms of
pushing performance boundaries. Examples for benchmark organization can be drawn
from StarExec9, which organizes benchmarks for several logic solver competitions, and
the PRISM Bibliography10, which collects all publicly-available artifacts from previous
case studies using the PRISM model checker. The RV competition needs to design from

7http://vsl2014.at/olympics/
8http://sv-comp.sosy-lab.org/2016/
9https://www.starexec.org

10http://www.prismmodelchecker.org/bib-ext.php#casestudies
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the start for a central cadre of benchmarks where authors can easily add their latest case
studies and most challenging problems throughout the year, as they arise or as new papers
are published.

• Minimize specification languages; maximize freely-available translators. This
idea is mainly borrowed from HWMCC (which is standardized around AIGER [6]) and
SMT-COMP (with SMT-LIB [3]), though all competitions focus on minimizing the
category splitting caused by accepting too many specification languages. The availability
of freely-available parsers and translators is a secondary benefit to the research community.

• Presentation of competition results. The established formal verification competitions
have produced well-organized, extensive reports clearly organizing results in many different
formats, including many different perspectives on the outcomes. The RV competition would
do well to survey the best-practices from SV-COMP, HWMCC, SAT-COMP, SMT-COMP,
and CASC for producing informative websites, slides, and annual reports.

6 Conclusions and Outlook

The necessity of RV will continue to grow sharply in the future; an RV competition would both
help to shape the growth of tools and provide sharply needed standardization for integrating RV
tools into industrial systems. The first step toward a competition should include standardizing
the set of specification languages, and, at the same time, providing from the start a well-organized,
publicly-writable, central repository for benchmark specifications in these formats. Thinking
through the specification languages, and the organization of specifications in those languages
early could have a major influence on the shape of RV on industrial platforms going forward.
If the specifications are written in a language that is so simple that it is hard to make the
argument to industry that the tools can reason about real-life requirements then RV tools could
be hampered in technology transfer out of academia. If the benchmarks and competition are
not thoughtfully constructed to emphasize correctness above all else, they will be considered
too risky to try on realistic applications. Framing the competition secondarily around accurate
assessments of performance, such as timing and resource usage, would provide a useful reference
for transitioning the tools into practice as the best-performing tool that abides by the target
systems’ constraints can then be easily identified.

We are currently working on developing a graph-database of real runtime specifications from
systems we have verified in the Laboratory for Temporal Logic.11 We are constructing this
database using Neo4j,12 a publicly available, performable, NoSQL graph database implemented
in Java and Scala that efficiently implements the property graph model to allow, e.g., constant-
time traversals for relationships in the graph [19]. A property graph database stores Nodes
(graph data records), and Relationships (directional connect nodes), with Properties (named
data values of type string, number, Boolean, or array), on both Nodes and Relationships. Our
current research involves proposing a standardized graph-database schema that intuitively stores
specifications expressing Boolean, temporal, and probabilistic requirements. We plan to release
the database as an open-source resource for those conducting runtime verification in the future.
A similar scheme, with the additional information needed to run a competition, such as the
inputs and the correct verdicts of different specifications on those inputs, could serve as a
foundation for organizing RV benchmarks.

Information on our recent work can be found at: http://laboratory.temporallogic.org.

11http://laboratory.temporallogic.org
12https://neo4j.com
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