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Abstract

Significant advances in the performance of deep neural networks, such as Convolutional
Neural Networks (CNNs) for image classification, have created a drive for understanding
how they work. Different techniques have been proposed to determine which features (e.g.,
image pixels) are most important for a CNN’s classification. However, the important fea-
tures output by these techniques have typically been judged subjectively by a human to
assess whether the important features capture the features relevant to the classification and
not whether the features were actually important to classifier itself. We address the need
for an objective measure to assess the quality of different feature importance measures. In
particular, we propose measuring the ratio of a CNN’s accuracy on the whole image com-
pared to an image containing only the important features. We also consider scaling this
ratio by the relative size of the important region in order to measure the conciseness. We
demonstrate that our measures correlate well with prior subjective comparisons of impor-
tant features, but importantly do not require their human studies. We also demonstrate
that the features on which multiple techniques agree are important have a higher impact
on accuracy than those features that only one technique finds.

1 Introduction

There has been tremendous advancement in the performance of deep neural networks (DNNs),
specifically in the task of image recognition using Convolutional Neural Networks (CNNs) [6].
As their popularity increases, there is much interest in understanding and explaining how these
complex networks work. A variety of techniques have been proposed to indicate which pixel
features are most discriminative for CNNs in determining their classification prediction on a
given image (i.e., which pixels are most helpful in determining which class the image belongs
to) [9, 10, 20]. For example, Simonyan et al. [10] use the gradients of the CNN’s classification
probability with respect to the input pixels to determine which pixels are important. Zint-
graf et al. [20] propose that the pixels which are most discriminative are the ones that, when
occluded, most reduce the classification probability.

With such different algorithms to determine pixel “importance”, we are interested in com-
paring and analyzing the regions that each one finds (e.g., to determine which algorithm is best
and under what conditions). Most current techniques to evaluate the algorithms are qualitative
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[9, 15, 20] and use human studies to determine which regions people believe are most discrim-
inative for their own classification. However, people’s opinions of important features may be
different from what the CNN actually uses to determine its classification.

In contrast to subjective measures, one recent objective method was proposed to evaluate
pixel importance by perturbing one random pixel at a time and then reclassifying the per-
turbed images to observe how much the CNN prediction probability decreases [8]. The more
the probability decreases, the higher the importance. However, the non-determinism in the
perturbations could introduce new artifacts in the image which might affect classification in
unknown ways. For example, if a perturbation in a pixel changes the CNN classification from
dog to cat, it is unclear whether the change is because the classifier can no longer see the dog
in the picture (i.e., its probability decreased) or because it suddenly starts seeing a cat as well
(i.e., the probability of cat increases).

In this work, we also propose that feature importance should be measured objectively with
respect to the predicting CNN. Like Samek et al. [8], our goal is to evaluate different techniques
based on their capability to capture the features in the image that most affect the accuracy of
the CNN. However, unlike the prior work that measured the decrease in accuracy caused by
perturbing pixels in the image, we contribute metrics that begin with an uninformative baseline
image and measure the increase in accuracy (confidence) caused by adding the important pixels.
We call this metric Simple Confidence Gain (SCG).

SCG only considers the accuracy difference caused by adding features, but it does not
consider several other measures of the important feature regions. First, we note that the
maximal value of SCG occurs when all of the images pixels are labeled as important. A
measure of the conciseness of the important features may help differentiate different importance
algorithms. Similarly, the important features may increase the classifier accuracy but the CNN
may still classify the important features incorrectly. Our second metric - Concise Confidence
Gain (CCG) - builds upon SCG by also taking into account the conciseness of the region of
pixels required to classify the image correctly. The smaller the region of important pixels that
results in a correct classification, the higher the CCG score.

Using our metrics, we contribute objective comparisons of three different algorithms for
finding important pixels on two different image datasets - Place365 [19] and our own dataset
containing images of various floors in our building. The results from our metrics are internally
consistent and correlate well with prior subjective comparisons of important features. However,
we note that this may not always be a good check on the performance of the important features
for the classification because people may not know what pixels are important to the classifier.

Additionally, we noticed that there is very little overlap in the important regions found by
different algorithms. Given this finding, we contribute a technique to find more concise impor-
tant pixel regions by identifying the pixels that are in agreement between different algorithms
(i.e., the intersection regions). We demonstrate that these intersecting regions trade-off CNN
accuracy with conciseness and represent an alternative approach to increasing the conciseness,
compared to developing a new algorithm specifically to finding concise important features or
reducing the size of another algorithm’s important features.

We conclude that our metrics can be used to objectively evaluate and compare different
algorithms for finding important pixels with respect to the classifier accuracy. They can be
used in conjunction with, or even to replace, qualitative evaluation, which uses human studies
to evaluate new importance regions and visualization techniques.
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2 Related Work

A variety of deep network techniques have been developed to understand CNNs. We roughly
divide these techniques into two categories - class model visualization and image specific vi-
sualization. Class model algorithms such as Simonyan et al. [10], Yosinski et al. [14], aim to
understand how the neurons in the network contribute to the classification. This is similar to
the prior work identifying important features for classical machine learning algorithms in which
the important features are the same for all data points [2, 3, 13]. In contrast, image specific
techniques aim to find which features (pixels) the CNNs find most informative for the given
image [7, 9, 10, 15, 16, 20]. In this work, we focus on evaluating image specific techniques for the
important features that they highlight. We refer to the feature-finding algorithms as importance
functions. For example, Simonyan et al. [10] have developed techniques to backpropagate the
gradients of the CNN’s classification probability with respect to the input pixels to determine
which pixels are important. The work has been extended to infer the important pixels from the
activations of particular neurons in the CNN rather using gradients of the images directly [16].
Zeiler and Fergus [15] have developed a technique that occludes patches in the image and infer
the important pixels in the image based on how much different patches decrease the CNN clas-
sification accuracy. Zintgraf et al. [20] builds upon that procedure by using variable occluding
patches – varying the size and the color. All of these importance functions have demonstrated
an ability to determine the important pixels in an image.

With so many different algorithms, one major open question is which ones perform better
than others and under what conditions. We are particularly interested in systematically com-
paring these algorithms with respect to how well they identify the pixels that the CNN uses
to classify them. There are relatively few evaluation techniques for analyzing or comparing
importance functions. Both Selvaraju et al. [9] and Zhang et al. [16] evaluate their importance
functions based on data collected from “pointing game” studies in which a person highlights the
ground-truth pixels that contain the object to be detected. The importance functions are then
evaluated based on where their outputted most important pixel lies relative– inside or outside,
to the human annotated ground-truths. Better important functions have higher score in this
pointing game evaluation. Similarly, Zeiler and Fergus [15] and Zintgraf et al. [20] depend on
the reader’s inspection of different important regions to determine which importance function
is better. Selvaraju et al. [9] use direct human studies in which a person is asked to determine
which CNNs are more accurate based on how well each CNN’s important region reflects the
classification object. This metric serves as an indirect measure of the importance function, as
it assumes that better classifiers also find better important regions. To summarize, all of these
evaluations use people to subjectively determine whether the important region contains object
being classified.

Interestingly however, the evaluation techniques do not evaluate whether those pixels in the
identified importance regions contributed most to the CNN’s classification and therefore may
not necessarily result in a better understanding of the CNN’s actual functionality. For example,
an image of a polar bear may not be classified as polar bear due to the bear itself (as a person
may determine) but instead due to the wintry background around the bear. Additionally, it is
challenging to extend the prior evaluation techniques to other classification tasks beyond object
recognition which aims to localize an object in the image. For example, in the case of location
recognition for robots, it would be challenging to ask a person what parts of an image identify
it as the 3rd floor.

We are interested in using the classification accuracy as an objective criteria rather than
human studies, similar to how classical machine learning techniques have identified important
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features. Samek et al. [8] proposes an algorithm that randomly perturbs a small region around
the most important 100 pixels– proposed by the importance function being evaluated, of the
image sequentially in the order of their importance and then uses the profile of the changes
in classifier confidence scores to compare different importance functions. However, since the
work randomly perturbs the pixels of the images, it could introduce new unintended artifacts–
because of the non-determinism in the approach, in the image which might confuse the classifier.
Also, the approach is time-consuming as it requires the classifier to be run 1000 times to evaluate
an importance function with a single image.

We contribute new metrics for objectively evaluating importance functions that overcome
the drawbacks to Samek et al. [8] discussed above. Our proposed metrics are 100 times faster
than the prior approach and are deterministic. While we evaluate our new metrics on the
three importance functions in this work, our metrics can be applied to any techniques that
find features that are important to classifiers. We demonstrate the working of our metrics by
ranking the importance functions on two scene recognition datasets, and we show that our
ranking is consistent and correlates with prior subjective evaluations.

3 Importance Functions

We first formalize the definition of an importance function before proposing metrics for evaluat-
ing them. We assume that a CNN classifier C outputs p(I = y|w), the probability of an image
I ∈ [0, 1]c∗N with c channels (i.e., 3 for RGB) and N pixels having classification y given the
trained weights w. For clarity, we will refer to the ith pixel in the image as I[i]. Given C and
I, an importance function importance(I, C, y) outputs a heat map H ∈ [0, 1]N that contains a
measure of relevance or importance of each pixel I[i] to the class y. A variety of importance
functions, each with their own heat map, have been proposed for explaining the classification
predictions of CNNs. In this section, we briefly summarize the three algorithms that will be
used for evaluating our metrics.

Occluding Patches (occ)[10]. The idea behind this approach is if a important feature in
an image gets occluded, then the classifier’s prediction probability p(I = y|w) will fall. Specif-
ically, a gray square patch of a fixed size, called the occlusion patch, is used to systematically
occlude parts of the input image, and the prediction probability of the classifier is noted. The
heat map rates the pixels in the regions that cause large drops in accuracy as more important
than surrounding pixels.

The occ algorithm first creates a visibility mask V as the inverse of the occluded patch:
V [i] = 0 if I[i] is occluded and 1 otherwise. As the algorithm systematically occludes parts of
I to generate Ij a total of J times, it notes the new classification probability p(Ij = y|w) and
scales the visibility mask by that value Vj ∗p(Ij = y|w). The algorithm then generates the heat
map H (high confidence regions in the image contains higher values in H), by inverting the
weighted average of V s about 0.5, as defined below.

H = 1−
∑J

j=1 p(Ij = y|w) ∗ Vj
J

(1)

In the above definition H[i] ≥ 0, since the weighted average of V s ≤ 1. Note that the heat map
H is a function of the size of the occluding patch, so we can evaluate different sized patches to
understand how their resulting heat maps change our importance measures.

Gradients (grad)[15]. For the gradient visualization technique, H represents the mag-
nitude m of the derivative of the classification confidence with respect to the image. The
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magnitude of ith pixel mi represents the sensitivity of the network’s prediction to the change
in that pixel’s value and is equal to the derivative of the classification probability p(I = y|w)
with respect to I[i]. We expect the classifier accuracy to be more sensitive to the change in
values of the important features than the change in values of the other ones. Note that since
the gradients are pixel-wise importance values for the image, the heat map is generally of high
entropy, and thus lacks continuous important image regions.

Contrastive Marginal Winning Probability (C-MWP)[16]. For a CNN acting
on I, C-MWP models H using probabilistic Winner-Take-All(WTA) formulation [12]. The
WTA identifies the neurons that are relevant to the task in a particular layer using Excitation
Backpropagation that computes the Marginal Winning Probabilities (MWP). After identifying
the relevant neurons, the heat map is generated using the most relevant neurons’ receptive
field– pixels the neuron acts on. The MWP heat map’s discriminative ability can be improved
by backpropagating contrastive signals to produce C-MWP heat maps. Contrasting signals for
an image belonging to class A, is the difference in the gradients of A and not A classifier.

4 Analyzing Important Features

Given an image and a classifier that determines what the image contains, our goal is to un-
derstand which pixels of the image are most important to its classification. Because different
algorithms may identify different pixels as important, we are interested in a measure of good-
ness to compare important regions generated by different methods. Prior work has focused on
allowing users to rate visualizations overlayed on the image. In contrast, we propose to reduce
variability and eliminate the limitations in subjective preferences by contributing measures that
utilize the classifier itself. This proposal also captures the relevance of the important regions
to the classifier which is not captured in the human studies.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 1: (a) an original image, (b) base image obtained from using Gaussian kernel Gk, (c) heat
map obtained using C-MWP where red and blue represents the most and the least important
pixels respectively, (d) binary mask obtained after thresholding the heat map for top ρ=5%
pixels, (e) mask obtained after growing the regions of the mask in (d) using the dilate operation.
(f) and (g) are the hybrid images created using mask in (d) and (e) respectively, using base
image (b). (h) is the hybrid image obtained using mask in (d) and a base image obtained using
zeros kernel Zk.

4.1 Problem Formulation

Rather than visualizing heat maps for use by humans to judge whether the importance function
has found important parts of the image (e.g., Heat map Figure 1(c) for Figure 1(a)), we use
those heat maps to identify a subset of pixels that, when added to a baseline image, closely
matches the accuracy of the CNN classification compared to the original image.
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We compute a binary mask M as shown in Figure 1(d), that signifies whether each pixel is
included in the important region or not. A mask M ∈ {0, 1}N is created such that each pixel
i takes value: M [i] = 1 if important and 0 otherwise. In this work, we threshold the top ρ
highest value pixels of the heat map as our mask but other techniques such as graph cut [1]
could also be used.

Our goal is to add those top ρ highest value pixels to a base image to capture the classification
accuracy of the important region compared to the original image. We define a base image IK
which represents the image I altered using a kernel function K. The kernel is chosen such that
it renders the pixels comparatively less informative for classification. In this work, we have
explored two such kernels: a Gaussian kernel Gk, which blurs the image refer Figure 1(b), and
a zeros kernel Zk, with zeros in all its element values. A hybrid image IM,K as shown in Figures
1(f) and 1(h) contains important pixels from the mask M and less informative base image pixels
using kernel K for the non-important pixels.

Next, we propose two measures of confidence gain to reflect the proportion of confidence
that can be attributed to the identified important regions compared to the original image.
Our metrics yield high values when the important regions are responsible for a majority of the
confidence in the original image.

4.2 Metric: Simple Confidence Gain (SCG)

Simple Confidence Gain (SCG) measures the ratio of the improvement in accuracy of the
base image to the hybrid image– containing only the important features, compared to the
improvement in accuracy of the base image to the original image. Note that we assume that
the kernel is predefined and the same for all compared masks M .

SCG(I,K,M) =
p(IM,K = y|w)− p(IK = y|w)

p(I = y|w)− p(IK = y|w)
(2)

We calibrate p(I = y|w) with respect to p(IK = y|w) to measure only the relative increase in the
classification accuracy due to the important features and not the transformed non-important
regions. SCG outputs values from 0 to 1. A value of SCG close to 1 indicates that the masked
pixels contribute highly to the classifier accuracy. Values close to 0 indicate that the masked
pixels have little contribution.

4.3 Metric: Concise Confidence Gain (CCG)

The Concise Confidence Gain (CCG) builds upon SCG in two ways. First, it requires the
important region to produce an accurate classification. Second, it measures the conciseness of
the important region necessary to classify the image correctly. The idea of CCG is to increase
the region under M to form a new accurate mask AM as shown in Figure 1(e), such that the
classifier predicts the class y of the hybrid image IAM,K correctly as shown in Figure 1(g).
There are many ways of increasing the size of the mask. For example, we can simply construct
a new mask from the heat map with an increased threshold ρ. In this work, we have chosen to
grow the mask using the dilate operation which enlarges the boundary regions of the foreground
pixels. With the new hybrid image, the CCG metric is calculated as:

CCG(I,K,AM) =

(
p(IAM,K = y|w)− p(IK = y|w)

)
∗N(

p(I = y|w)− p(IK = y|w)
)
∗AAM

(3)

where AAM is the area of the image masked by AM . Note that two different masks that are
originally the same size need not be the same after dilation, as the resultant mask size depend
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Algorithm 1 Procedure for calculating CCG

Input: H, I, K, ρ, w, y
M ← GetBitMask(H, ρ) /* Creating the mask */
IK ← TransformImage(I, K) /* Creating the base image */
/* Loop until prediction matches the correct class */
repeat
IM,K ← CreateHybrid(M, I)
y’ = Classify(IM,k, w) /* Predict for the hybrid image */
/* Break if predicted the correct class */
if y’ == y then
IAM,k ← IM,k

AAM ← TotalElements(M) /* Area of the mask */
break

end if
M ← DilateGrow(M) /* Grow the mask */

until
CCG ← Compute with Equation 3

on the geometry of the mask. We divide the relative confidence by the ratio AAM to image size
N . The complete algorithm for finding CCG is shown in Algorithm 1.

Unlike SCG, CCG values can range from 0 to N . High values of CCG reflect both 1) high
accuracy of the hybrid image IAM,K compared to the original image, and 2) conciseness of the
mask AM compared to the size of the whole image. Unlike SCG, it can be used to compare
features of different sizes. In a sense, CCG measures the density of information in a region that
can sufficiently determine the class, while SCG measures the total information in a feature set.

4.4 Agreement Between Importance Functions

In practice, many importance functions find very dissimilar important regions, which raises the
question of whether regions that are in agreement between algorithms are more informative
than those that are not. In other words, the pixels several different importance functions can
agree on are important more likely to be the most discriminative and have higher values of our
CCG metric compared to the regions in individual importance functions. Note that, we do not
use SCG metric for the comparisons in this case, as the size of the mask changes.

There are many different ways to find the intersection of important regions. For example,
it is possible to add two heat maps and then segment the resulting heat map to generate a new
mask. In this work, we take the intersection of the binary-masked regions. We will compare
the accuracy of the individual importance functions to the sets of features that the functions
have in common.

Applications Beyond Visual Domains. Our metrics make it possible to compare dif-
ferent algorithms more directly without user studies. The metrics could be used to analyze
measures other than classification accuracy by substituting its value - p(I = y|w) - with a term
that captures the new measure. Additionally, unlike the visualization techniques, our metrics
apply not only to visual domains but also to non-visual domains as long as an importance
function exists. Finally, we note that SCG and CCG could be used to evaluate which pixels are
important in an incorrect classification as well, i.e., by analyzing the important regions in the
image with respect to the incorrect label rather than the ground truth.
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ρ = 25%
SGC*100 CCG*100

Floor Places365 Floor Places365
Config Gk Zk Gk Zk Gk Zk Gk Zk

10 43 34 31 23 114 98 93 77
occ 50 28 38 22 21 103 96 85 82

100 36 27 18 18 105 94 81 80
0 46 24 39 19 113 70 110 82

grad 2 61 31 43 20 107 74 112 88
5 57 30 44 25 116 88 116 90

C-MWP 71 39 50 37 120 113 137 115

grad+occ 25 30 20 15 223 139 122 89
C-MWP+grad 43 32 28 16 239 169 155 122
C-MWP+occ 29 30 17 13 225 171 154 114

ρ = 5%
10 25 22 20 16 161 132 103 88

occ 50 16 19 14 13 135 136 96 86
100 20 22 11 12 119 113 91 84
0 18 22 26 14 163 70 128 83

grad 2 35 28 29 15 237 98 128 94
5 31 22 28 18 189 122 130 96

C-MWP 40 22 27 21 208 162 162 125

grad+occ 6 18 7 9 209 166 133 103
C-MWP+grad 16 22 11 9 330 230 186 137
C-MWP+occ 7 15 4 5 249 269 179 133

Table 1: Average SCG and CCG (*100) for individual masks with ρ = 25% and 5%. C-MWP
performs best (bold) in almost all datasets, base image kernels, and ρ values. The intersection
of all pairs of importance functions were also tested. Bold values show that CCG is higher for
the pairs than for the best single most important region. For the pairs of functions, patch size
for occ is 10 and dilation for grad is 5.

5 Experiments

We performed experiments on two different datasets and the three importance functions. We
first describe our datasets and the corresponding CNNs. Then, we present our experiments for
evaluating the different important functions using our proposed metrics. Finally, we use our
metrics and the datasets to compare the accuracy of the individual importance functions, and
to the sets of features those importance functions agree on.

5.1 Datasets and Classifiers

We chose a scene recognition task because it is challenging for a person to identify which part
of an image is most important to classification, compared to object detection tasks in which
the object within the image should be most important. We expect subjective analysis of scene
recognition visualizations to be less consistent because there are many areas or other aspects
of the image that may affect scene classification.

Building-Floor. When a robot navigates across many floors of a building, it can be
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challenging to determine which floor it is currently on. We collected the Building-Floor dataset
in one of our buildings. Each image contains the scene just outside the elevator from six different
floors of the building. The goal of the classifier trained on this dataset is to recognize the floor
the image belongs to.

For each of the floors in the building, ten images were taken at specific locations outside the
elevators where our robot stops, with slight variation in position. To simplify the analysis, all
the images were taken at the same time of the day, and the effects of people moving around in
the building are not considered. The training data consists of three images, and the remaining
seven images form the testing dataset.

In order to classify the floor for each image, we chose to use a CNN based on Siamese
architecture [4], because it has been shown to perform well in one-shot learning problems [5].
Our training network of nine layers followed AlexNet [6] with an input size of N=227x227, in
a modified Siamese architecture proposed in Sun et al. [11], Zheng et al. [17], which combined
the identification– Softmax, and the verification loss– Contrastive, for better performance. We
combined identification and verification loss with a pre-trained network to reduce overfitting
which could happen when the complexity of network is higher than that of the data. During
training, the first seven layers of our network were initialized from Places205-AlexNet which was
trained in the Places205-Standard dataset and provided by the authors [18]. The remaining two
layers were trained from scratch. During training, the contrastive loss was utilized in the eighth
layer which is a dense layer of 1000 units, while the softmax loss was employed in the ninth
layer. During testing, our network was able to classify all the images in the dataset correctly.

Places365-Standard. The Places365-Standard dataset [19] contains indoor and outdoor
images from 365 categories. We used the Places365-AlexNet model with an input size of
N=227x227, provided by the authors, which was trained using ∼1.8 million images. For testing,
200 random images were selected from the dataset without any other consideration like ground
truth label.

5.2 Experimental Procedure

The three importance functions each required chosen parameters. For occ, the heat map is
a function of the size of the occluding patches. For our evaluation, we varied the size of the
occluding patches ∈ {10, 50, 100} pixels. grad ’s heat map H is of high entropy, so we dilate
the raw heat map 0, 2, and 5 times with a 3x3 kernel. Dilating smoothens the heat map and
improves the continuity of important regions as shown in Figure 2(a). For C-MWP, we use H
from the pool2 layer for both of the networks as we lose the spatial accuracy at higher layers.
For our C-MWP implementation, we used the source code provided by the authors.

Given the heat maps generated by each importance function, we then created the binary
masks using simple thresholding to ensure that ρ% (ρ = 5 and 25) of the top features are
consistent across tests. To create the base images, we used two different techniques - a Gaussian
kernel Gk of size 17x17 for creating the blurred base images and a zero kernel Zk to substitute
black for the non-important pixels. In order to create the accurate hybrid image, we grow
the regions of the mask using a 3x3 dilate operation. When testing the common features
in agreement between importance functions, we evaluated all pairs on both datasets, namely
grad+occ, C-MWP+grad, and C-MWP+occ. For the experiments in agreement with occ, we
have fixed the patch size to be 10, and for grad, the number of dilating operations is 5.

During the experiments, the images where p(I = y|w)− p(IK = y|w) and p(IM,k = y|w)−
p(Ik = y|w) are less than zero are not considered, as it violates our assumption that K renders
the pixels less informative for the classifier. An example for such a case could be an image
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(a) (b)

Figure 2: (a) The image masks for the (top) occ importance function and (bottom) grad
importance function generated with the parameters ρ=25% and with dilation = {0, 2, 5}
respectively for one image from the Building-Floor dataset (left three images) and one image
from the Places365 dataset belonging to the class amusement station (right three images). (b)
A side by side comparison of occ(patch size = 10), grad(dilation = 5), and C-MWP respectively
on an image from the Building-Floor and the Place365 dataset (ρ=25%).

belonging to the class night, using a zero kernel Zk will make it the best image for the class.
In both datasets less than 5% of the images violates this assumption. Although in our dataset
and for the kernels we used, the number of images not obeying this assumption is small, there
might be a dataset for which our kernel could result in a greater number of violations. In those
cases we can opt to use a different kernel. Additionally, some images were omitted to fulfill a
specific test condition. During CCG calculation, for example, we ignored the images where the
M had to be grown more than 50 times in order to avoid growing the mask too much beyond
the original mask. In practice, this was an issue for some test images with ρ=5%, about 5% of
the test images were omitted from each dataset with this condition.

6 Results And Discussion

Evaluating Importance Functions. In total, 38 and 180 images were used for testing in
Building-Floor and Place-365 dataset respectively. The quantitative results of the evaluation
of the individual importance function’s masks are shown in Table 1. The masks obtained from
varying the respective parameters for occ and grad on one image from each dataset are shown in
Figure 2(a)(top) and 2(a)(bottom). For occ, we find that the patch size of 10 on average performs
better than that of 50 which is better than 100. occ rates all pixels covered by large occlusion
patches as important when only a small area under the occlusion may actually be important. A
patch size of 10 occludes smaller regions of important features and is more concise, and hence
better captures what the network has learned. For grad, dilating the important region 2 or 5
times performs as well or better than not dilating the heat map. When the important regions
have high entropy (e.g., 0 dilations), the hybrid image is not informative for the classifier.

A side by side comparison of the mask obtained for occ with patch size=10, grad with
number of dilations=5, and C-MWP are shown in Figure 2(b). Among the three, on average
C-MWP performs the best, followed by grad according to both metrics, which can also be
qualitatively seen in Figure 2(b) with the bus station example. In the figure, C-MWP captures
the more discriminative features like the bus wheel and the floor for the image belonging to
the bus station while the other techniques capture non-relevant regions like the buildings. Our
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Figure 3: A side by side comparison of the three pairs of importance functions (grad+occ, C-
MWP+grad, and C-MWP+occ respectively) on an image from the Building-Floor dataset (top)
and the Place365 dataset (ρ=25%) (bottom).

metrics consistently find that the C-MWP importance function outperforms the others across
a random sample of scenes, demonstrating the robustness of our metrics to accommodate for
large variations in features and image labels.

Effect Of Varying Parameters. We varied ρ = 5% and 25% as the size of the mask.
We found that SCG metric was higher for larger masks and CCG was higher for smaller ones.
This indicates that when the percentage of the image retained decreases so does the size of
important regions leaving a more concise area. However, the larger mask size does not increase
the mask proportionately. CCG finds that the smaller area is sufficient for achieving “high
enough” accuracy while SCG values the higher accuracy achieved with more pixels. Selecting
values of ρ for future evaluations of importance functions should take this trade-off into account.
CCG on average dilates the accurate mask for 10 (ρ = 5%) and 6 iterations (25%) respectively.
Although we did not analyze kernel parameters extensively, our initial experiments showed that
changing the kernel parameter did not significantly affect the metrics nor the relative ranking
among the three importance functions.

Agreement Between Importance Functions. We then analyzed the features that were
in agreement or in common between different importance functions (results shown in Table 1
and the masks are visualized in Figure 3). The in-common features resulted in higher average
CCG values than those computed using individual important features, as predicted. However,
the in-common average SCG values are lower than the individual ones, because SCG considers
only the amount of information gained and not the density or conciseness of the features like
CCG.

There are far fewer discriminative features that pairs of importance functions have in com-
mon (Figure 3) compared to those found by individual functions (Figure 2(b)). This result
is most apparent in the Building-Floor dataset, where the in-common importance masks have
captured the glass door and the hallway behind it while the individual masks have captured
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other features as well. Subjectively, we agree that the glass door is the most discriminative
feature of that image and of the floor because it is the only floor with a glass door. Similarly,
in the image from the Places365 dataset, in-common importance masks capture only the bus
while the individual functions capture additional features.

Among all combinations of importance functions that we tested for agreement, C-
MWP+grad performs best, beating C-MWP+occ by a small margin. Both C-MWP+grad
and C-MWP+occ outperform grad+occ by a large margin. Because C-MWP performs the best
individually followed by grad, it makes sense that comparing the features in agreement would
also result in better performance. We also conducted experiments to find the intersection of all
three importance masks and observed that the CCG scores were on average higher and SCG
scores were on average lower than the ones of common importance masks for the other two
importance functions.

We conclude that finding common features from different importance functions result in a
more concise region of important features, which can be beneficial for preventing information
overload to humans for visualization as well as determining the most discriminative pixels for
classification.

Quantitative vs Qualitative Evaluation. Finally, we compared our metrics to those
referred in prior findings based on subjective results on object recognition tasks. Our metrics
found that C-MWP outperforms the other two by a significant margin, followed by grad and
then occ. This result matches the conclusion in Zhang et al. [16] which compares C-MWP and
grad qualitatively (based on subjective human evaluation) and shows that the former is able to
produce better localization of objects.

However, this may not necessarily always be the case that our objective metrics match the
subjective results. For example, if the classifier uses pixels that are different from those that a
human would find important, then the objective metrics will reveal different important regions
as the best compared with those found using subjective metrics. We emphasize that our metrics
capture the features that the DNN actually uses to classify, and therefore the direct correlation
or comparison to subjective approaches is not necessarily possible for all situations.

7 Conclusion

Prior work to evaluate regions of images that are most discriminative for classification has been
largely subjective, depending on humans to rate visualizations. In this work, we contribute two
metrics – SCG and CCG – to address the need for an objective measure to assess the quality
of different feature importance measures. The principle behind both metrics is to compare the
proportion of the classifier accuracy that is attributed to the important features identified by the
corresponding importance functions. Our CCG metric also takes into account the conciseness
of the region and requires the classifier to classify the image accurately.

We have used the metrics to compare three visualization techniques on two scene recognition
datasets and demonstrated the differences between the metrics and importance functions with
different parameters. In our case, for the two datasets we chose, our results correlate with
prior subjective evaluations, although this result is not guaranteed. We demonstrated that the
features that appear in multiple importance functions (”in-common” features) result in higher
CCG scores- i.e., these features make up a more concise set of better discriminative features than
a single importance function. We conclude that our metrics can be used either in conjunction
with or in lieu of subjective human studies, depending on the classification nature of the case
at hand, to objectively evaluate importance functions and move towards understanding and
explaining CNN classification.
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