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Abstract

Halpern-Shoham logic (HS) is a very expressive and elegant formalism for interval temporal
reasoning in which the satisfiability problem is undecidable. One of the methods to obtain
HS-fragments of lower computational complexity is to adopt the softened (reflexive) seman-
tics of the accessibility relations. In the paper we consider disallowing punctual intervals in
reflexive semantics. We show that in this case we gain additional expressive power, which
over discrete orders of time points results in PSpace-hardness of the Horn fragment of HS
without diamond modal operators is and in undecidability of the core fragment of HS.

1 Introduction
The logic of Halpern and Shoham (HS in short) is one of the most well-known interval modal
logics for temporal knowledge representation and reasoning [9, 8]. Its modal operators corre-
spond to the set of binary relations between intervals known as the Allen’s relations, namely
begins (relB), during (relD), ends (relE), overlaps (relO), adjacent to (relA), later than (relL), and
their converses: relB, relD, relE, relO, relA, relL [1]. A model of HS may be seen as consisting of
two layers. The first layer is a time-line, i.e., a set of time points ordered by an ‘earlier-later’
relation, and the second layer is a set of intervals over this time-line and a set of relations
between intervals. In the seminal paper of Halpern and Shoham, the authors assumed that the
order of time points is almost arbitrary (only imposed the so-called linear interval property
is assumed), an interval is any pair of time points 〈x, y〉 such that y is not before x (hence,
the punctual intervals starting and ending in the same time point are allowed), and that the
relations between intervals correspond to the Allen’s relations [9].

Since the satisfiability problem of HS-formulas is undecidable a number of syntactical and
semantical modifications of the logic have been studied [8, 3, 4, 5, 6, 11]. One of the ideas is to
weaken semantics of Allen’s relations, by the so-called softening [10]. The obtained relations are
known as reflexive semantics, as most of them become reflexive. Other modifications related to
this paper consist of imposing additional conditions on the order of time points (e.g., discreteness
or density), disallowing punctual intervals, and syntactically restricting the set of well-formed
formulas [2, 5].

The most relevant results for this paper are depicted in Table 2, where < denotes irreflex-
ive semantics, ≤ reflexive semantics, Non-S (non-strict semantics) allowing punctual intervals,
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S (strict semantics) disallowing punctual intervals, Dis discrete timelines, and Den dense time-
lines. The satisfiability problem of HS-formulas in the Horn form (this fragment is denoted by
HShorn) is undecidable under any combination of the above mentioned distinctions, whereas
the satisfiability of HS-formulas in the core form (HScore) is undecidable under irreflexive se-
mantics and its complexity under reflexive semantics is an open problem. Disallowing diamond
modal operators (i.e., allowing only boxes) in the languages of HShorn and HScore results in
HS2horn and HS2core, respectively. The satisfiability problem in both of them is tractable under
(<,Non-S,Den), (<,S,Den), (≤,Non-S,Dis), (≤,Non-S,Den), and (≤, S,Den).

Table 1: Computational complexity of HS fragments, where ‘undec’, ‘h’, and ‘co’ stand for
undecidable, hard, and complete, respectively. Our results are written in bold.

Irreflexive (<) Reflexive (≤)
Non-Strict (Non-S) Strict (S) Non-Strict (Non-S) Strict (S)

Dis Den Dis Den Dis Den Dis Den
HShorn undec undec undec undec undec undec undec undec
HS2horn undec P-co undec P-co P-co P-co PSpace-h P-co
HScore undec undec undec undecPSpace-hPSpace-h undec PSpace-h
HS2core PSpace-h in P PSpace-h in P in P in P NL-h in P

The main results of this paper are that under (≤, S,Dis) the satisfiability problem in:

• HS2horn is PSpace-hard;

• HScore is undecidable.

Our results show that the combination of a lack of punctual intervals and discreteness of a
time-line gives additional expressive power which was not available in other cases under reflexive
semantics. In particular, we will show that under (≤, S,Dis) the satisfiability problem of HS2horn-
formulas reduces to the PSpace-complete problem of checking whether a Turing machine which
uses a polynomial memory on the empty input diverges on the empty input and the satisfiability
problem for HScore formulas reduces to the undecidable problem of checking whether a given
Turing machine diverges on the empty input.

To obtain the new results we show a trick that enables us to mimic under (≤, S,Dis) proof
techniques used in the irreflexive semantics [5]. We observe that under reflexive semantics the
adjacent relation between intervals is not irreflexive if punctual intervals are allowed. Indeed,
in this case each punctual interval is adjacent to itself. However, if punctual intervals are dis-
allowed, then the adjacent relation becomes irreflexive. This observation allows us to introduce
a formula forcing an alternating placement of two propositional variables over a sequence of
subsequent unit intervals (i.e., intervals of length 1). Then, we show how to use these alternating
propositional variables to pass information from one interval to another, and consequently how
to simulate computation of a Turing machine.

The remaining part of the paper is organized as follows. In Section 2 we introduce syntax
and semantics of HS and its fragments. Afterwards, we show in Section 3 that under (≤, S,Dis)
HS2horn is PSpace-hard and HScore is undecidable. We conclude the paper in Section 4.
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2 Halpern-Shoham logic

The language of Halpern-Shoham logic consists of a set of propositional variables PROP,
classical propositional connectives ¬,∧, and 12 modal operators of the form 〈R〉, where
R ∈ {B,B,D,D,E,E,O,O,A,A, L, L} (in what follows, we denote this set by HSrel). Well-formed
HS-formulas are defined by the following abstract grammar:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | 〈R〉ϕ,

where p ∈ PROP and R ∈ HSrel. >, ⊥, ∨, and → are defined as usual, and [R] is a dual modal
operator to 〈R〉 for any R ∈ HSrel. An HS-frame is a tuple F = (D, I(D), {relR}R∈HSrel

) such that:

• D = (D,≤) is an unbounded linear order;

• I(D) ⊆ D ×D is a set of intervals over D;

• relR ⊆ I(D)×I(D) is a binary relation between distinct intervals over D, for any R ∈ HSrel.

An HS-model is a tuple of the formM = (D, I(D), {relR}R∈HSrel
, V ), where (D, I(D), {relR}R∈HSrel

)
is an HS-frame and V : PROP −→ P(I(D)). The satisfaction relation for an HS-model M =
(D, I(D), {relR}R∈HSrel

, V ) and an interval 〈x, y〉 ∈ I(D) is defined inductively as follows:

M, 〈x, y〉 |= p iff 〈x, y〉 ∈ V (p), for any p ∈ PROP;
M, 〈x, y〉 |= ¬ϕ iff M, 〈x, y〉 6|= ϕ;
M, 〈x, y〉 |= ϕ ∧ ψ iff M, 〈x, y〉 |= ϕ andM, 〈x, y〉 |= ψ;
M, 〈x, y〉 |= 〈R〉ϕ iff there is 〈x′, y′〉 such that 〈x, y〉relR〈x′, y′〉 andM, 〈x′, y′〉 |= ϕ;

for any R ∈ HSrel. A convenient representation of an HS-frame is obtained by treating an interval
〈x, y〉 as a point in a two-dimensional Cartesian space D×D such that the abscissa of this point
has value x and its ordinate has value y [13]. In compass representation non-punctual intervals
correspond to points lying in the north-western half-plane of D×D (the points whose abscissa
is strictly smaller than ordinate). Points lying on the diagonal correspond to punctual intervals.
Let us fix any interval 〈x, y〉. Then, intervals accessible from 〈x, y〉 with HS modal operators
may be determined on the basis of the relative position of the corresponding points in the
two-dimensional Cartesian space as presented in Figure 1.
It is easy to see that any HS-formula can be transformed into an equisatisfiable formula which is
a conjunction of implications (clauses), and vice versa (in the spirit of separation normal form
introduced by [7]), i.e., into a formula generated by the following grammar:

ϕ := λ | ¬λ | [U](λ ∧ . . . ∧ λ→ λ ∨ . . . ∨ λ) | ϕ ∧ ϕ, (1)

where [U] is the universal modality, i.e., [U]ψ is satisfied iff ψ is satisfied in every 〈x, y〉 ∈ I(D)
whereas λ, the so-called positive temporal literal, is a formula defined by the grammar:

λ := > | ⊥ | p | 〈R〉λ | [R]λ, (2)

where p ∈ PROP and R ∈ HSrel.

• HShorn is obtained by restricting (1) to the grammar:

ϕ := λ | [U](λ ∧ . . . ∧ λ→ λ) | ϕ ∧ ϕ.
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Figure 1: Standard (a) and two-dimensional (b) representations of an HS-model, in which 〈a, b〉
is earlier than 〈x, y〉, and 〈x, c〉 is begun by 〈x, y〉.

• HS2horn is obtained by additional limitation imposed on HShorn, namely the grammar of
positive temporal literals (2) is restricted to:

λ := > | ⊥ | p | [R]λ.

• HScore is obtained by restricting (1) to the grammar:

ϕ := λ | [U](λ→ λ) | [U](λ ∨ λ) | [U](λ ∧ λ→ ⊥) | ϕ ∧ ϕ.

In what follows we define restrictions imposed on HS semantics. First, the distinction between
irreflexive and reflexive semantics is obtained by adopting the definitions of relR for R ∈ HSrel
as presented in Table 2.
Second, in the non-strict semantics the set I(D) is defined as:

{〈x, y〉 | x, y ∈ D and x ≤ y},

whereas in strict semantics I(D) is defined as:

{〈x, y〉 | x, y ∈ D and x < y}.

Hence, in non-strict semantics punctual intervals are allowed, whereas in strict semantics they
are forbidden.

3 Computational complexity
In what follows we show that under (≤,S,Dis) the satisfiability problem for HS2horn-formulas
is PSpace-hard and for HScore-formulas the problem is undecidable. The proofs are based on
encodings of a Turing machine computation.
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Table 2: Definitions of irreflexive and reflexive semantics of intervals relations.

Irreflexive semantics: Reflexive semantics:

〈x, y〉relL〈x′, y′〉 iff y′ < x 〈x, y〉relL〈x′, y′〉 iff y′ ≤ x

〈x, y〉relA〈x′, y′〉 iff x′ < y′, y′ = x 〈x, y〉relA〈x′, y′〉 iff x′ ≤ y′, y′ = x

〈x, y〉relO〈x′, y′〉 iff x′ < x < y′ < y 〈x, y〉relO〈x′, y′〉 iff x′ ≤ x ≤ y′ ≤ y

〈x, y〉relB〈x′, y′〉 iff x = x′, y′ < y 〈x, y〉relB〈x′, y′〉 iff x = x′, y′ ≤ y

〈x, y〉relD〈x′, y′〉 iff x < x′, y′ < y 〈x, y〉relD〈x′, y′〉 iff x ≤ x′, y′ ≤ y

〈x, y〉relE〈x′, y′〉 iff x < x′, y = y′ 〈x, y〉relE〈x′, y′〉 iff x ≤ x′, y = y′

〈x, y〉relO〈x′, y′〉 iff x < x′ < y < y′ 〈x, y〉relO〈x′, y′〉 iff x ≤ x′ ≤ y ≤ y′

〈x, y〉relA〈x′, y′〉 iff y = x′, x′ < y′ 〈x, y〉relA〈x′, y′〉 iff y = x′, x′ ≤ y′

〈x, y〉relL〈x′, y′〉 iff y < x′ 〈x, y〉relL〈x′, y′〉 iff y ≤ x′

〈x, y〉relE〈x′, y′〉 iff x′ < x, y = y′ 〈x, y〉relE〈x′, y′〉 iff x′ ≤ x, y = y′

〈x, y〉relD〈x′, y′〉 iff x′ < x, y < y′ 〈x, y〉relD〈x′, y′〉 iff x′ ≤ x, y ≤ y′

〈x, y〉relB〈x′, y′〉 iff x = x′, y < y′ 〈x, y〉relB〈x′, y′〉 iff x = x′, y ≤ y′

Let us fix the notation, in which a deterministic Turing machine isM = (Γ, Q, qstart, qhalt, δ),
where Γ is M ’s alphabet (containing the blank symbol t and the start symbol �), Q is the
set of M ’s states, qstart ∈ Q and qhalt ∈ Q are start and halting states, respectively, and
δ : {Q − qhalt} × Γ −→ Q × {Γ ∪ {L,R}} is a transition function which given a state of the
machine and a symbol read by its head determines a new state and a symbol to be written in
the current position of the head or movement of the head one cell to the left (L) or one cell to
the right (R). We will denote M ’s configuration in the n’th step of computation by an infinite
sequence Cn(1), Cn(2), Cn(3), . . . where Cn(m) ∈ Γ+ and Γ+ = Γ ∪ {Q × Γ} is the content of
the m’th cell in the n’th step such that (q, x) denotes that the cell contains x, the head of M is
above this cell, and M is in the state q. Hence, the initial configuration is (qstart,�),t,t,t, . . ..
If M starts with empty input and with head above the first cell, then in the first n steps the
head may visit only the first n cells. It follows that in the n-th step of computation all cells to
the right of the n-th cell contain the blank symbol t.

3.1 Horn fragment without diamonds

It is well known that given a Turing machine M and a polynomial f such that the computation
of M with empty input uses at most f(|M |) amount of memory, where |M | is the size of M ,
checking whether M diverges on empty input is a PSpace-complete problem [12]. We will
denote this problem by PSpace-Bound BlankNon-Halting and in what follows we will
show that it reduces to the satisfiability problem of HS2horn-formulas under (≤,S,Dis).

The main part of the proof consists of showing that HS2horn under (≤,S,Dis) enables us to
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force an alternating placement of propositional variables unit1 and unit2 in the consecutive unit
intervals (i.e., intervals of length 1) as depicted in Figure 2. Then, we will show that such a
placement of unit1 and unit2 allows us to use a technique know from the literature [5, Theorem
4.1 and Theorem 4.2] to encode PSpace-Bound BlankNon-Halting.
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Figure 2: Placement of propositional variables, which is forced by ϕunit1,2 satisfied in 〈u0, u1〉,
where ‘←− nextk, qk’ for k ∈ {1, 2} denotes a vertical line such that nextk and qk are satisfied
in all points belonging to this line.

Fix a polynomial f such that the Turing machine M starting its computation with empty
input uses at most f(|M |) = N tape cells. Notice that in step i of M ’s computation it suffices
to consider Ci(j) such that j < N since the rest of the cells in i’th step contain the blank
symbol. The formula forcing intended placement of unit1 and unit2 is defined as follows, where
k ∈ {1, 2}:

ϕunit1,2 :=unit1∧ (3)
[U](unitk → [E]pk) ∧ [U](unitk → [B][A]qk)∧ (4)
[U](pk ∧ qk → ⊥)∧ (5)
[U](unit1 → [A]next1) ∧ [U]([E]next1 → unit2)∧ (6)
[U](unit2 → [A]next2) ∧ [U]([E]next2 → unit1)∧ (7)
[U](unit1 ∧ unit2 → ⊥)∧ (8)

[A][B][B]unit ∧ [U](unit ∧ unitk → ⊥). (9)

Lemma 1. Let M be any HS-model under (≤,S,Dis) semantics. Assume that M, 〈u0, u1〉 |=
ϕunit1,2 for some interval 〈u0, u1〉 and let u1 < u2 < . . . be the infinite sequence of immediate <-
successors. Then, u1 is the immediate <-successor of u0 and for any interval 〈x, y〉 the following
conditions are satisfied:
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1) M, 〈x, y〉 |= unit1 iff x = ui and y = ui+1 for some even i ∈ N;

2) M, 〈x, y〉 |= unit2 iff x = ui and y = ui+1 for some odd i ∈ N.

Proof sketch. Let ϕunit1,2 be satisfied in an interval 〈u0, u1〉 and let and u0, u1, u2, . . . be the se-
quence of immediate <-successors. By (3) the propositional variable unit1 is satisfied in 〈u0, u1〉,
and by (4) and (5) each interval which satisfies unit1 or unit2 is punctual, so 〈u0, u1〉 is punctual.
Then, (6) and (7) states that an interval with unit1 is always followed by an interval with unit2,
and vice versa. By (8) propositional variables unit1 and unit2 cannot be satisfied in the same
interval and by (9) all intervals 〈x, y〉 such that x < u0 do not satisfy unit1 nor unit2. It follows
that unit1 is satisfied exactly in intervals 〈ui, ui+1〉 for even i and unit2 in intervals 〈ui, ui+1〉
for odd i.

Next, we will slightly modify formulas from the proofs in [5, Theorem 4.1 and Theorem 4.2] to
encode computation of a Turing machine M . For k ∈ {1, 2} define ϕhornM as the conjunction
of the following formulas, where N = f(|M |):

cell
1,(qstart,�)
1

∧
i<N |i≥1

celli,t1 (10)

[U](unitk ∧ celli,xk → [A]celli,x,auxk ) (11)

[U]([E]celli,x,aux1 → cell
i,x

2 ) ∧ [U]([E]celli,x,aux2 → cell
i,x

1 ) (12)

[U](cell
i,x

k → unitk) (13)∧
i<N,x∈Γ+

[U](cell
i,(qhalt,x)
k → ⊥), (14)

and for any (q, x), (q′, x′) ∈ Γ+ such that δ(q, x) = (q′, x′):

∧
i<N

[U](cell
i,(q,x)

k → cell
i,(q′,x′)
k ) (15)

∧
i,j<N |i6=j

[U](cell
i,(q,x)

k ∧ cell
j,y

k → cellj,yk ), (16)

and for any (q, x) ∈ Γ+, q′ ∈ Q such that δ(q, x) = (q′,R):

∧
i<N

[U](cell
i,(q,x)

k → celli,xk ) (17)

∧
i<N−1

[U](cell
i,(q,x)

k ∧ cell
i+1,y

k → cell
i+1,(q′,y)
k ) (18)

∧
i<N−1,j<N |j 6=i,i+1

[U](cell
i,(q,x)

k ∧ cell
j,y

k → cellj,yk ), (19)
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and for any (q, x) ∈ Γ+, q′ ∈ Q such that δ(q, x) = (q′, L):∧
i<N |i 6=0

[U](cell
i,(q,x)

k → celli,xk ) (20)

∧
i<N |i 6=0

[U](cell
i,(q,x)

k ∧ cell
i−1,y

k → cell
i−1,(q′,y)
k ) (21)

∧
i<N−1,j<N |i6=0j 6=i,i−1

[U](cell
i,(q,x)

k ∧ cell
j,y

k → cellj,yk ). (22)

Lemma 2. Let M be a deterministic Turing machine, which uses a polynomial number of tape
cells when starting computation with empty input. Then, the following conditions are equivalent:

1. ϕunit1,2 ∧ ϕhornM is HS-satisfiable under (≤,S,Dis);

2. M diverges with empty input.

Proof sketch. Intuitively, our aim is to represent that Cn(i) = x (in the n’th step of computation
i’th cell contains x) with celli,xk being satisfied in 〈un, un+1〉, where k = 1 if n is even and k = 2
if n is odd. Formula (10) encodes the content of M in the first step of computation, (11)–(13)
introduce auxiliary variables which pass an information about the content of a cell in a previous
step of computation, and by (14) the halting state is never reached. Then, (15)–(16) encode the
transition function of a Turing machine in the case when a new symbol is to be written on the
tape, (17)–(19) in the case when the head is to be moved one cell to the right, and (20)–(22)
when the head is to be moved one cell to the left. It is straight forward to check that ϕhornM

is satisfiable if an only if the Turing machine diverges.

Hence, PSpace-Bound BlankNon-Halting reduces polynomially to HS2horn-satisfiability un-
der (≤,S,Dis), so we obtain the following complexity result.

Theorem 1. HS2horn-satisfiability under (≤,S,Dis) is PSpace-hard.

3.2 Core fragment

Next, we will show that HScore-satisfiability is undecidable under (≤,S,Dis). We will use the
well known result that the problem of checking whether a Turing machine diverges on an empty
input, denoted by BlankNon-Halting, is undecidable [12]. Given a Turing machine M we
will construct an HScore-formula which is satisfiable under (≤,S,Dis) if and only if M diverges
with empty input, which implies undecidability of HScore under (≤,S,Dis).

We will extensively use the alternating sequence of unit1 and unit2 encoded by the for-
mula ϕunit1,2 (see the previous sub-section). To make a reduction from BlankNon-Halting
we will use a technique known from the literature [5, Theorem 4.4] which was used to prove
undecidability of HScore under irreflexive semantics. The approach is based on (i) encoding a
Cantor-like enumeration of contents of Turing machine cells in consequent steps of computation
(see Figure 3) by means of ‘up-pointers’ whose intended placement is depicted in Figure 4 and
then (ii) using the obtained placement of ‘up-pointers’ to transfer information according to the
transition function of a Turing machine. Under the reflexive we will obtain (ii) by a simple
adaptation of the known technique but (i) will require non-trivial modifications, which make
the proof relatively complex.
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Recall, that by Cn(m) ∈ Γ+ we denote the content of the m’th cell in the n’th step of M ’s
computation when starting with empty input. In order to refer to a particular cell in a given step
of computation we introduce horizontal and vertical axes containing ordered positive natural
numbers – as depicted in Figure 3. Then, a pair of natural numbers, namely x-coordinate and
y-coordinate, enables us to refer to any cell of M in any step of computation, e.g., (1, 1) refers
to C1(1).

C1(1) t t t t · · ·

C2(1) C2(2) t t t · · ·

C3(1) C3(2) C3(3) t t · · ·

t t t t t · · ·

...

N

N

1 2 3 4 5

0line_0 −→

1line_1 −→

2line_2 −→

3line_3 −→

0

1 2

3 4 5

6 7 8 9

w
al
l

dia
g

Figure 3: Horizontal lines depict the subsequent contents of M ’s tape. It suffices to consider
cell’s (x, y) for x ≤ y, which are enumerated and marked with grey background.

To encode the computation of M with empty input it suffices to consider cells denoted by
pairs (x, y) ∈ N+ × N+ such that x ≤ y, where N+ is the set of all positive natural numbers,
i.e., without 0. Let us denote the set of coordinates referring to these cells by S:

S := {(x, y) | x, y ∈ N+, and x ≤ y} ∪ (1, 0),

where (1,0) is an auxiliary element which makes the encoding more convenient. Let enum be
the enumeration of S as depicted with dashed arrows in Figure 3, i.e., enum : N −→ S is a
bijective function defined recursively as follows:

(enum1) enum(0) = (1, 0);

(enum2) If enum(n) = (x, y) for x < y, then enum(n+ 1) = (x+ 1, y);

(enum3) If enum(n) = (x, x) for some x ∈ N, then enum(n+ 1) = (0, x+ 1);

where n is any natural number. We introduce the relations wall, diag, up, and linek’s for k ∈ N
in a similar way as it was done in [5], namely:

• wall ⊆ N× {0, 1} intends to determine numbers lying in the first column of the enumer-
ation enum. Hence, the intended definition of wall is that for any n ∈ N it holds that:

wall(n) = 1 whenever enum(n) = (0, y) for some y ∈ N; (23)
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• diag ⊆ N×{0, 1} intends to determine numbers lying on the diagonal in the enumeration
enum. The intended definition of diag is that for any n ∈ N:

diag(n) = 1 whenever enum(n) = (x, x) for some x ∈ N; (24)

• up ⊆ N× N intends to assign to each natural number its direct neighbour from above in
the enumeration enum. The intended definition of up is such that that for any m,n ∈ N:

up(m) = n whenever enum(m) = (x, y) and enum(n) = (x, y + 1)

for any x, y ∈ N;
(25)

• linek ⊆ N × {0, 1} for any k ∈ N intends to determine numbers lying in the k-th row in
the enumeration enum. The intended meaning of linek is such that for any n ∈ N:

linek(n) = 1 whenever enum(n) = (x, k) for some x ∈ N
such that x ≤ k.

(26)

Next, we show conditions similar to the ones introduced in [5, Theorem 4.4], which imposed on
the relations wall, diag, up, and linek’s force them to obtain the intended meaning. Define:

(c1) line0(0) = 1 and up(0) = 1;

(c2) For each n there is exactly one k such that linek(n) = 1;

(c3) If m < n, linek(m) = 1, and linek(n) = 1, then for all o such that m < o < n it holds
that linek(o) = 1;

(c4) wall(n) = 1 whenever for some k we have linek(n) = 1 and linek(n−1) = 0. diag(n) = 1
whenever for some k we have linek(n) = 1 and linek(n+1) = 0. Moreover, if linek(n) = 1
and diag(n) = 1, then linek+1(n+ 1) = 1;

(c5) If diag(n) = 0, then there is m such that up(m) = n;

(c6) up : N −→ N is an injective function;

(c7) If m < n then up(m) < up(n);

(c8) If linek(m) = 1 and up(m) = n, then linek+1(n) = 1.

where m,n, o, k are any natural numbers. The approach used in [5] can be used to show that
(c1)–(c8) force (23)–(26):

Lemma 3. Let wall ⊆ N× {0, 1}, diag ⊆ N× {0, 1}, up ⊆ N× N, and linek ⊆ N× N for any
k ∈ N be any relations. If they satisfy conditions (c1)–(c8), then it holds that (23)–(26).

In what follows we will use the implication tricks introduced in [5], which occur to work under
(≤,S,Dis) semantics as well. For any HS positive temporal literals λ1, λ2, and λ3, define:

[λ1∧λ2 ⇒H λ3] := [U](λ1 → 〈A〉p1) ∧ [U](λ2 → 〈A〉p2) ∧ [U](p2 → ¬〈B〉p1)

∧ [U](p1 → p3) ∧ [U](p1 → [B]p3) ∧ [U](p2 → p3) ∧ [U](p2 → [B]p3) ∧ [U]([A]p3 → λ3);

[λ1∧λ2 ⇒V λ3] := [U](λ1 → 〈A〉p1) ∧ [U](λ2 → 〈A〉p2) ∧ [U](p2 → ¬〈E〉p1)

∧ [U](p1 → p3) ∧ [U](p1 → [E]p3) ∧ [U](p2 → p3) ∧ [U](p2 → [E]p3) ∧ [U]([A]p3 → λ3).

100



On Disallowing Punctual Intervals in Reflexive Semantics of HS Przemysław Andrzej Wałęga

Lemma 4 ([5, Claim 4.1]). Let M be any HS-model and let λ1, λ2, λ3 be any HS positive
temporal literals. The following hold:

• If M |= [λ1 ∧ λ2 ⇒H λ3], M, 〈x1, y〉 |= λ1, and M, 〈x2, y〉 |= λ2 for any x1, x2, y, then
for all x we haveM, 〈x, y〉 |= λ3.

• If M |= [λ1 ∧ λ2 ⇒V λ3], M, 〈x, y1〉 |= λ1, and M, 〈x, y2〉 |= λ2 for any x, y1, y2, then
for all y we haveM, 〈x, y〉 |= λ3.

Notice that if [λ1 ∧ λ2 ⇒H λ3] forces λ3 to be satisfied in some interval 〈x, y〉, then it forces
λ3 to be satisfied in all intervals 〈x′, y〉 for any x′ (i.e., λ3 is horizontally stable [5]). Similarly,
[λ1 ∧ λ2 ⇒V λ3] forces λ3 to be vertically stable.

The most important and innovative part of the proof is to construct an HScore-formula
which encodes enum, i.e., conditions (c1)–(c8). The formula will force a specific placement of
propositional variables up1 and up2, as depicted in Figure 4. Intuitively, up1∨up2 being satisfied
in 〈um, un〉 represents that up(m) = n−1, i.e., in the enumeration enum the direct up neighbor
of m is n− 1.
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Figure 4: Intended placement of propositional variables, where ‘#’ denotes an interval in which
unit is satisfied, ‘ ’ an interval in which line1 or line2 is satisfied, ‘�’ an interval in which up1 or
up2 is satisfied, whereas ‘above −→’, ‘above −→’, ‘←− up1’, and ‘←− up2’ denote lines in which
above, above, up1, and up2 are true, respectively.

We start encoding enum by forcing placement of alternating propositional variables unit1 and
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unit2 in the consequent unit intervals with ϕunit1,2 (see Lemma 1). Then, we introduce a formula
ϕunit which forces unit to be satisfied exactly in all intervals in which unit1 or unit2 hold:

ϕunit :=[U](unitk → unit)∧ (27)

[U](unit ∧ unit→ ⊥)∧ (28)
[U](unit→ [D]unit)∧ (29)

[unit ∧ 〈B〉unit1 ⇒H [E]unit2] ∧ [U](unit2 ∧ unit2 → ⊥)∧ (30)

[unit ∧ 〈B〉unit2 ⇒H [E]unit1] ∧ [U](unit1 ∧ unit1 → ⊥), (31)

where k ∈ {1, 2}, and unit is a propositional variable. The formula (27) forces unit1 ∨ unit2 to
imply unit, whereas (28)–(31) force unit to imply unit1 ∨ unit2. Hence, we obtain the intended
placement of unit, namely:

Lemma 5. Let M be any HS-model under (≤,S,Dis) semantics. Assume that M, 〈u0, u1〉 |=
ϕunit1,2 ∧ ϕunit for some interval 〈u0, u1〉 and let u1 < u2 < . . . be the infinite sequence of
immediate <-successors. Then, for any interval 〈x, y〉 the following conditions are equivalent:

1. M, 〈x, y〉 |= unit;

2. x = ui and y = ui+1 for some i ∈ N.

Proof sketch. By (27) we have that unit1 ∨ unit2 implies unit. It remains to show the reverse
implication. By (9) and (28) unit cannot be satisfied in any 〈x, y〉 such that x < u0. Then,
(29)–(31) disallows unit to be satisfied in any 〈ui, uj〉 such that i + 1 < j. It follows that unit
implies unit1 ∨ unit2.

Now, we introduce propositional variables line1 and line2 which will enable us to distinguish
horizontal ‘lines’ depicted in Figure 3. The intended placement of these variables is such that
line1 ∨ line2 is satisfied in an interval 〈um, un〉 if all numbers from {m,m+ 1, . . . , n} belong to
the same line_k from Figure 3. Such a placement is forced by the following formula:

ϕline :=[U](line1 → 〈A〉line2) ∧ [U](line2 → 〈A〉line1)∧ (32)

[A][B][B]line ∧ [U](linek ∧ line→ ⊥)∧ (33)
line1∧ (34)

[U](linek ∧ 〈A〉〈B〉linek → ⊥) ∧ [U](linek ∧ 〈A〉〈E〉linek → ⊥)∧ (35)

[U](line1 ∧ 〈B〉〈E〉〈E〉line2 → ⊥)∧ (36)

[U](line2 ∧ 〈B〉〈E〉〈E〉line1 → ⊥), (37)

where k ∈ {1, 2}, and line1, line2, and line are propositional variables.

Lemma 6. Let M be any HS-model under (≤,S,Dis) semantics. Assume that M, 〈u0, u1〉 |=
ϕunit1,2 ∧ ϕunit ∧ ϕline for some interval 〈u0, u1〉. Then, for any interval 〈x, y〉 the following
conditions are satisfied:

1) IfM, 〈x, y〉 |= line1, then there is z such thatM, 〈y, z〉 |= line2;

2) IfM, 〈x, y〉 |= line2, then there is z such thatM, 〈y, z〉 |= line1;

3) If M, 〈x, y〉 |= unit, then there is exactly one interval 〈u,w〉 such that u ≤ x, w ≥ y,
and M, 〈u,w〉 |= line1 ∨ line2. Moreover, 〈u,w〉 is such that either M, 〈u,w〉 |= line1 or
M, 〈u,w〉 |= line2.
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Proof sketch. The conditions 1) and 2) follow directly from (32). Hence, there is a sequence
〈uk0, uk1〉, 〈uk1, uk2〉, 〈uk2, uk3〉, . . . with alternating line1 and line2. By (34) line1 is satisfied in
〈u0, u1〉 and by (33) line1 and line2 are not satisfied in any interval 〈x, y〉 such that x < u0. Then,
by (35)–(37) we obtain that line1 and line2 cannot be satisfied anywhere accept this alternating
sequence, which implies the condition 3).

Finally, we force the intended placement of up1 and up2, i.e., we want to force up1 ∨ up2 to
hold in 〈um, un〉 whenever up(m) = n − 1, i.e., n − 1 is the direct up neighbor of m in the
enumeration enum. The particularly important part is to ensure that these ‘up-pointers’ are
functional and injective in a sense that for each um there is exactly one un pointed by up1 or
up2, and each un is pointed by up1 or up2 from at most one um. We encode this condition by
a quite complex interplay between various propositional variables – mainly between up1, up2,
and line1, line2. We achieve it by means of the following formula:

ϕup :=〈A〉0up ∧ [U](0up→ unit)∧ (38)

[U](0up→ above1) ∧ [U](0up→ [E]above)∧ (39)

[abovek ∧ above⇒H 〈E〉〈E〉upk]∧ (40)

[U](0up→ up1) ∧ [A][B][B]upk ∧ [U](upk ∧ upk → ⊥)∧ (41)

[E][B]above∧ (42)

[U](〈E〉〈E〉linek → above)∧ (43)

[U](above ∧ above→ ⊥)∧ (44)

[〈D〉linek ∧ 〈A〉〈E〉linek ⇒H above]∧ (45)
[U](up1 → 〈A〉above2) ∧ [U](up2 → 〈A〉above1)∧ (46)
[U](abovek → unit)∧ (47)

[abovek ∧ above⇒H 〈A〉abovek]∧ (48)

[U](unitk → 〈B〉upk)∧ (49)

[U](unit1 → [B]up2) ∧ [U](unit2 → [B]up1)∧ (50)

[U](above ∧ upk → ⊥)∧ (51)
[U](up1 ∧ 〈D〉up2 → ⊥) ∧ [U](up2 ∧ 〈D〉up1 → ⊥)∧ (52)

[U](upk ∧ 〈D〉linel → ⊥)∧ (53)

[U](linek → 〈A〉r) ∧ [U](r → unit) ∧ [U](r → [E]above)∧ (54)

[upk ∧ 〈D〉linel ⇒V 〈B〉〈B〉linel], (55)

where k, l ∈ {1, 2}, and up1, up2, up1, up2, above1, above2, above, and above are propositional
variables.

Lemma 7. LetM = (D, I(D), {relR}R∈HSrel
, V ) be an HS-model under (≤,S,Dis) and u0 < u1 <

u2 < . . . an infinite sequence of immediate <-successors in D. Assume that M, 〈u0, u1〉 |=
ϕunit1,2∧ϕunit∧ϕline∧ϕup. Then, for all 〈x, y〉 ∈ I(D) the following conditions are equivalent:

1. M, 〈x, y〉 |= up1 ∨ up2;

2. x = ui and y = uj for i, j ∈ N such that we have enum(i) = (u,w) and enum(j − 1) =
(u,w + 1) for some u,w ∈ N (in other words up(i) = j for up defined by (25)).
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Proof sketch. As already mentioned, the main part of the proof is to show that up1 and up2 are
functional and injective. By (49) each um points with an ‘up-pointer’ to some un and by (51)
each un can be pointed by at most one ‘up-pointer’ . Hence, it remains to show that no um can
‘up-point’ two un’s.

First, for each n which is not on a diagonal in enumeration enum we mark by means of
(45) the interval 〈un, un+1〉 with a propositional variable above. Then, by (40) and a proper
placement of above1 and above2 we force that each non diagonal n is ‘up-pointed’. The condition
that no um can ‘up-point’ two un’s is forced by (53) and (55), which encode the interplay between
linek’s and upk’s.

We have shown the hard part of the proof, i.e., forcing the placement of propositional variables
as presented in Figure 4. Using this placement we can adapt slightly modified formulas from
[5, Theorem 4.4] to encode a computation of a Turing machine with empty input. First, we
represent transition function δ by means of triples to cells function τ . Let:

Σ := Γ− {�,t}; Q− = Q− {qhalt}; LEnd ={�} ∪ {Q− × {�}}.

Then, define:

W :={{Q− × Σ} × Σ× Σ} ∪ {Σ× {Q− × Σ} × Σ} ∪ {Σ× Σ× {Q− × Σ}}∪
{LEnd× Σ× Σ} ∪ {{t} × LEnd× Σ} ∪ {Σ× {t} × LEnd}∪
{((qstart,�),t,�)}.

τ : W −→ Γ+ is such that for any (x, y, z) ∈W we have:

τ(x, y, z) =



(q′, y) if either x ∈ {Q− {qhalt}} × {Σ ∪ {�}} and δ(x) = (q′,R),

or z ∈ {Q− {qhalt}} × {Σ ∪ {t}} and δ(z) = (q′, L);

(q′, y′) if y ∈ {Q− {qhalt}} × Γ and δ(y) = (q′, y′);

y′ if y = (q, y′) and δ(y) = (q′, L) or δ(y) = (q′,R);

y otherwise.

τ determines computation of M in a sense that for any n,m ∈ N+ such that m ≤ n, we have:

Cn(m) =


τ(t, Cn−1(1), Cn−1(2)) if m = 1;

τ(Cn−1(m− 1), Cn−1(m), Cn−1(m+ 1)) if 1 < m < n;

τ(Cn−1(n− 1),t, Cn(1)) if m = n.

For a given Turing machine M = (Γ, Q, qstart, qhalt, δ) we encode M ’s computation with empty
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input as follows:

ϕM :=〈A〉(qstart,�)∧ (56)
[U](linek → 〈E〉t)∧ (57)∧
x∈Γ

[U]((qhalt, x)→ ⊥)∧ (58)∧
x∈Γ+

[U](x→ unit)∧ (59)

∧
x,y∈Γ+|x 6=y

[U](x ∧ y → ⊥)∧ (60)

∧
(x,y,z)∈W

(
[y ∧ 〈A〉z ⇒H 〈E〉(y, z)]∧ (61)

[U]((y, z)→ unit)∧ (62)

[(y, z) ∧ 〈A〉x⇒H 〈E〉(x, y, z)]∧ (63)
[U]((x, y, z)→ unit)∧ (64)

[(x, y, z) ∧ unitk ⇒V 〈B〉〈B〉(x, y, z)k]∧ (65)
[U]((x, y, z)k → upk)∧ (66)

[U]((x, y, z)k → 〈E〉τ(x, y, z))
)
, (67)

where k ∈ {1, 2}. Since the above encoding is a quite straight forward adaptation of the one in
[5, Theorem 4.4] we leave the following lemma without a proof and direct the reader to [5].

Lemma 8. The following conditions are equivalent for any deterministic Turing machine M :

1. ϕunit1,2 ∧ ϕunit ∧ ϕline ∧ ϕup ∧ ϕM is HS-satisfiable under (≤,S,Dis);

2. M diverges with empty input.

Notice that ϕunit1,2 ∧ ϕunit ∧ ϕline ∧ ϕup ∧ ϕhornM is an HScore-formula, so the undecidability
of HScore-satisfiability under (≤,S,Dis) follows.

Theorem 2. HScore-satisfiability under (≤,S,Dis) is undecidable.

4 Conclusions
In the paper we have studied computational complexity of HS-fragments under under reflexive
semantics in which punctual intervals are forbidden, and a time-line is discrete, denoted by
(≤, S,Dis). As we have showed, disallowing punctual intervals in reflexive semantics allows us
to retain some expressive power which was lost by weakening the semantics (i.e., choosing
reflexive rather than irreflexive semantics). The additional expressive power allows us to show
new complexity results, namely we have proved that under (≤, S,Dis) the satisfiability problem
in HS2horn is PSpace-hard and in HScore it is undecidable. In contrast, we recall that if punctual
intervals are allowed or the time-line is dense, then under reflexive semantics the satisfiability
problem in HS2horn is P-complete, and its decidability in HScore is an open problem.

One of the important properties of the semantics (≤, S,Dis) is that the accessibility relations
relA and relA is irreflexive. As a result, we were able to introduce (quite sophisticated) formulas
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simulating a computation of a Turing machine. Among the technical aspects of the proofs a
particularly important idea we have developed is to introduce propositional variables with two
indices and formulas which force these variables to be satisfied alternately (for an example
see Figure 4). This method turned out to be especially important and allowed us to overcome
serious problems caused by low expressive power of reflexive semantics.

Among the interesting open problems concerning complexity of HS-fragments under the
semantics (≤,S,Dis) we plan to study the following:

• Is HS2horn under (≤, S,Dis) decidable? If so, what is its computational complexity?

• What is the computational complexity of HS2core under (≤,S,Dis)? It does not seem that
our proofs may be adapted for HS2core.
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