
EPiC Series in Computing
Volume 73, 2020, Pages 279–297

LPAR23. LPAR-23: 23rd International
Conference on Logic for Programming,
Artificial Intelligence and Reasoning

Polynomial Loops: Beyond Termination∗

Marcel Hark1, Florian Frohn2, and Jürgen Giesl1

1 LuFG Informatik 2, RWTH Aachen University, Germany
2 Max Planck Institute for Informatics and Saarland Informatics Campus, Saarbrücken, Germany

Abstract

In the last years, several works were concerned with identifying classes of programs
where termination is decidable. We consider triangular weakly non-linear loops (twn-loops)
over a ring Z ≤ S ≤ RA, where RA is the set of all real algebraic numbers. Essentially,

the body of such a loop is a single assignment
(x1

...
xd

)
←

(
c1·x1+pol1

...
cd·xd+pold

)
where each xi is a

variable, ci ∈ S, and each pol i is a (possibly non-linear) polynomial over S and the variables
xi+1, . . . , xd. Recently, we showed that termination of such loops is decidable for S = RA
and non-termination is semi-decidable for S = Z and S = Q [19].

In this paper, we show that the halting problem is decidable for twn-loops over any ring
Z ≤ S ≤ RA. In contrast to the termination problem, where termination on all inputs
is considered, the halting problem is concerned with termination on a given input. This
allows us to compute witnesses for non-termination.

Moreover, we present the first computability results on the runtime complexity of such
loops. More precisely, we show that for twn-loops over Z one can always compute a
polynomial f such that the length of all terminating runs is bounded by f(‖(x1, . . . , xd)‖),
where ‖ · ‖ denotes the 1-norm. As a corollary, we obtain that the runtime of a terminating
triangular linear loop over Z is at most linear.

1 Introduction

We consider loops of the form

while ϕ do ~x← ~u. (1)

Here, ~x is a vector1 of pairwise different variables x1, . . . , xd that range over a ring Z ≤ S ≤ RA,
where ≤ denotes the subring relation and RA is the set of real algebraic numbers. The reason
for the restriction to algebraic numbers is that it is unclear how to represent transcendental
numbers in programs and formal languages (i.e., decision problems). Moreover, ~u ∈ (S[~x])

d

where S[~x] is the set of all polynomials over ~x with coefficients from S. The condition ϕ is a
propositional formula over the atoms {pol . 0 | pol ∈ S[~x], . ∈ {≥, >}}.2

∗funded by DFG grant 389792660 as part of TRR 248, by the DFG Research Training Group 2236 UnRAVeL,
and by DFG grant GI 274/6-2

1We use row- and column-vectors interchangeably to improve readability.
2One may also use other relations like “=” and atoms of the form “α . β” with β ∈ S[~x] as syntactic sugar.

Negation is also syntactic sugar in our setting, as, e.g., ¬(pol > 0) is equivalent to −pol ≥ 0. So w.l.o.g. ϕ is
built from atoms, ∧, and ∨, where the empty conjunction (resp. disjunction) represents “true” (resp. “false”).

E. Albert and L. Kovacs (eds.), LPAR23 (EPiC Series in Computing, vol. 73), pp. 279–297

https://perspicuous-computing.science

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

We often represent a loop (1) by the tuple (ϕ, ~u) of the loop condition ϕ and the update
~u = (u1, . . . , ud). Unless stated otherwise, (ϕ, ~u) is always a loop on Sd using the variables
~x = (x1, . . . , xd) where Z ≤ S ≤ RA throughout the paper. A loop (ϕ, ~u) is linear if it only uses

linear polynomial arithmetic, i.e., ~u = A · ~x +~b for some A ∈ Sd×d and some ~b ∈ Sd, and in
addition, ϕ is linear (i.e., it only contains linear inequations).

There exist several decidability results for the termination of linear [9, 10, 18, 24, 30, 32,
38, 43] and non-linear loops [19, 31, 45]. However, a (non-)termination proof alone is often of
limited use.

In particular, non-termination proofs should be accompanied by a witness of non-termination,
i.e., a non-terminating input that can, e.g., be used for debugging. However, most existing
(semi-)decision procedures for (non-)termination do not yield such witnesses [10, 18, 19, 24, 38,
43, 45]. To close this gap, we prove the novel result that the halting problem for twn-loops is
decidable (cf. Sect. 3), i.e., we show how to decide whether a loop terminates on any fixed input.
Thus, we obtain a technique to enumerate all witnesses for non-termination of a loop.

For terminating inputs, the question how fast the loop in question terminates is of high
interest. Thus, many automated techniques to derive bounds on the runtime complexity of
programs have been proposed [2, 3, 12, 13, 16, 17, 23, 41, 42]. However, these techniques are
usually incomplete. In contrast, we present a complete technique to derive polynomial upper
bounds on the runtime complexity of twn-loops over Z (cf. Sect. 4). In particular, this implies
that triangular linear loops have at most linear runtime complexity.

2 Preliminaries

In this section, we recapitulate previous results about twn-loops [18, 19, 27]. For any entity s, let
V(s) be the set of all variables that occur in s. Moreover, for any variable y, let s[y/t] result from
s by replacing all free occurrences of y by t. Similarly, if ~y = (y1, . . . , yd) and ~t = (t1, . . . , td),
then s[~y/~t] = s[y1/t1, . . . , yd/td] results from s by replacing all free occurrences of each yi by ti.
If V(s) ⊆ {x1, . . . , xd} for the specific variables ~x = (x1, . . . , xd), then we often abbreviate s[~x/~t]
by s(~t). Def. 1 formalizes the intuitive notion of termination for a loop (ϕ, ~u). For all n ∈ N, ~un

denotes the n-fold application of ~u, i.e., for ~e ∈ Sd we have ~u0(~e) = ~e and ~un+1(~e) = ~u(~un(~e)).

Definition 1 (Witness for Non-Termination). Let ~e ∈ Sd. If

∀n ∈ N. ϕ(~un(~e)),

then ~e is a witness for non-termination. Otherwise, (ϕ, ~u) terminates on ~e. A loop is terminating
if it does not have any witnesses for non-termination.

If ~un0(~e) is a witness for non-termination for some n0 ∈ N, then ~e is called a witness
for eventual non-termination. (E)NT(ϕ,~u) denotes the set of witnesses for (eventual) non-

termination of (ϕ, ~u) and we define T(ϕ,~u) = Sd \NT(ϕ,~u).

Given an assignment ~x← ~u, the relation �~u ∈ V(~u)× V(~u) is the transitive closure of

{(xi, xj) | i, j ∈ {1, . . . , d}, i 6= j, xj ∈ V(ui)},
i.e., xi �~u xj means that xi depends on xj . A loop (ϕ, ~u) is triangular if �~u is well founded.
So the restriction to triangular loops prohibits “cyclic dependencies” of variables (e.g., where
the new values of x1 and x2 both depend on the old values of x1 and x2). For example, a loop

whose body consists of the assignment (x1
x2

) ←
(
x1+x2

2
x2+1

)
is triangular since � = {(x1, x2)} is

well founded, whereas a loop with the body (x1
x2

)←
(
x1+x2

2
x1+1

)
is not triangular. Triangularity is

280

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

used to compute a closed form for the n-fold application of the update ~u, i.e., a vector ~q of d
expressions over the variables ~x and n with ~q = ~un, by handling one variable after the other.
From a practical point of view, the restriction to triangular loops seems quite natural. For
example, in [20], 1511 polynomial loops were extracted from the Termination Problems Data
Base [44], the benchmark collection which is used at the annual Termination and Complexity
Competition [21], and only 26 of them were non-triangular.

Furthermore, (ϕ, ~u) is weakly non-linear if there is no 1 ≤ i ≤ d such that xi occurs in a

non-linear monomial of ui. So for example, a loop with the body (x1
x2

) ←
(
x1+x2

2
x2+1

)
is weakly

non-linear, whereas a loop with the body (x1
x2

)←
(x1·x2
x2+1

)
is not. Together with triangularity,

weak non-linearity allows us to compute a closed form for the n-fold application of the update.
A twn-loop is triangular and weakly non-linear. So in other words, by permuting variables

every twn-loop can be transformed to the form(
x1
...
xd

)
←
(
c1·x1+pol1

...
cd·xd+pold

)
where ci ∈ S and pol i ∈ S[xi+1, . . . , xd]. If (ϕ, ~u) is weakly non-linear and each ci is non-negative,
then (ϕ, ~u) is non-negative. A tnn-loop is triangular and non-negative (and thus, also weakly
non-linear).

In [18, 19] it was shown that when analyzing the termination behavior of twn-loops, it is
enough to only consider tnn-loops. The reason is that chaining transforms twn- into tnn-loops
and preserves witnesses for (eventual) non-termination.

Theorem 2 (Chaining [18, 19]). If (ϕ, ~u) is twn, then the chained loop (ϕch, ~uch) = (ϕ ∧
ϕ(~u), ~u(~u)) is tnn and we have (E)NT(ϕ,~u) = (E)NT(ϕch,~uch).

When computing closed forms for the n-fold update of tnn-loops, one obtains so-called poly-
exponential expressions. Poly-exponential expressions are arithmetic terms over the variables
~x and the additional designated variable n. In the following, for any X ⊆ R, k ∈ R, and
. ∈ {≥, >}, let X.k = {x ∈ X | x . k}. Moreover, QS is the quotient field of S, i.e., the smallest
field in which S can be embedded.

Definition 3 (Poly-Exponential Expressions [18, 19, 27]). Let C be the set of all finite conjunc-
tions over the literals n = c, n 6= c where n is a designated variable and c ∈ N. Literals of the
form n = c are called positive and literals n 6= c are negative. Furthermore, given a formula
ψ ∈ C, let JψK : N→ {0, 1} be the characteristic function of ψ, i.e., we have JψK (c) = 1 if ψ[n/c]
holds and JψK (c) = 0, otherwise. The set of all poly-exponential expressions over S with the
variables ~x is

PE[~x] =

{∑`

j=1
JψjK · αj · naj · bnj

∣∣∣∣ `, aj ∈ N, ψj ∈ C, αj ∈ QS [~x], bj ∈ S>0

}
.

The set of normalized poly-exponential expressions NPE[~x] ⊆ PE[~x] only consists of those
expressions that do not contain factors of the form JψjK (i.e., where each ψj is true). The factors
αj are called the coefficients of a poly-exponential expression.

So an example for a poly-exponential expression over S = Z (where QS = Q) is

Jn 6= 0 ∧ n 6= 1 ∧ n 6= 2K · (1
2 · x1

2 + 3
4 · x2 − 1) · n3 · 3n + Jn = 2K · (x1 − x2).

Theorem 4 (Closed Forms for tnn-Loops [18, 27]). Let (ϕ, ~u) be a tnn-loop. Then one can

compute a vector ~q ∈ (PE[~x])
d

such that ~q = ~un.

Example 5. Consider the following loop L:

281

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

while x1 > 0 do (x1
x2

)←
(
x1+x2
x2+1

)
Here, one can compute the closed form ~q =

(
x

(n)
1 , x

(n)
2

)
for the n-fold application of the update,

where

x
(n)
1 = 1

2 · n
2 +

(
x2 − 1

2

)
· n+ x1 and x

(n)
2 = n+ x2.

3 The Halting Problem

We now consider the halting problem for twn-loops. In contrast to termination, i.e., to the
question whether a loop terminates for all ~e ∈ Sd, the halting problem asks whether a loop
terminates for a given ~e ∈ Sd. In this section, we will prove the following theorem.

Theorem 6. The halting problem for twn-loops is decidable.

Clearly, if the halting problem is decidable for S = RA, then it is also decidable for all
subrings of RA. Thus, throughout this section, w.l.o.g. we restrict ourselves to loops over RA.

In [19], we presented (semi-)decision procedures for (non-)termination of twn-loops. However,
the approach from [19] only yields witnesses for eventual non-termination of a loop (ϕ, ~u). If one
applies the update ~u sufficiently often to ~e ∈ ENT(ϕ,~u), then one obtains a witness ~un0(~e) for
non-termination. However, the number of required updates, i.e., the value of n0, is not obvious.
So in general, up to now it was unclear how to find witnesses for non-termination of twn-loops.
By proving Thm. 6, i.e., by showing that the set NT(ϕ,~u) is decidable, we fill this gap.

To prove decidability of NT(ϕ,~u), we show how to compute a natural number n0 such that
the truth value of the loop condition ϕ stabilizes, i.e., such that ϕ(~un(~e)) ⇐⇒ ϕ(~un0(~e)) for all
n ≥ n0. Thus, given the closed form ~q of ~un and a witness ~e for eventual non-termination (which
can, e.g., be computed as in [19]), a witness for non-termination can efficiently be computed
by evaluating ~q[~x/~e, n/n0]. In this way, one can also enumerate all (possibly infinitely many)
witnesses for non-termination.

We now prove Thm. 6, i.e., we show that for any ~e ∈ RdA, it is decidable whether ~e is a
witness for non-termination. As chaining preserves NT (cf. Thm. 2), we can assume that

(ϕ, ~u) is a tnn-loop (Simplification 1)

without loss of generality. As mentioned above, our proof is based on the concept of stabilization.

Definition 7 (Stabilization). We say that (ϕ, ~u) stabilizes on ~e ∈ RdA after n0 ∈ N iterations if

∀n ≥ n0. ϕ(~un(~e)) ⇐⇒ ϕ(~un0(~e)).

The smallest value n0 for which (ϕ, ~u) stabilizes on ~e is called the stabilization threshold of
(ϕ, ~u) on ~e (written sth(ϕ,~u)(~e)).

Clearly, (ϕ, ~u) stabilizes on ~e after n0 iterations iff

∀n ≥ n0. ϕ(~q[~x/~e]) ⇐⇒ ϕ(~q[~x/~e, n/n0]),

where ~q is the closed form of ~un. For convenience, we sometimes also say that ϕ(~q) stabilizes on
~e. If ϕ(~q) ≡ pe . 0 for pe ∈ PE[~x] and . ∈ {≥, >}, then we also just say that pe stabilizes on ~e.

For any pe ∈ PE[~x] and ~e ∈ RdA, let sthpe(~e) be the smallest value n0 such that

∀n ≥ n0. sign (pe[~x/~e]) = sign (pe[~x/~e, n/n0]) ,

where for any c ∈ R, we define sign (c) = 1 if c > 0, sign (c) = −1 if c < 0, and sign (0) = 0. So
if ϕ(~q) ≡ pe . 0, then we have3 sth(ϕ,~u) ≤ sthpe .

3We compare functions pointwise, i.e., f ≤ g iff f(~e) ≤ g(~e) for all ~e ∈ dom(f) = dom(g).

282

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

The following lemma is an immediate consequence of Thm. 4 and the fact that every
poly-exponential expression is weakly monotonic w.r.t. n for large enough values of n.4

Lemma 8. Every tnn-loop stabilizes on each ~e ∈ RdA.

So for tnn-loops (ϕ, ~u), stabilization generalizes eventual non-termination: For every ~e ∈
ENT(ϕ,~u) there exists an n0 such that ∀n ≥ n0. ϕ(~un(~e)), and for every ~e ∈ RdA \ ENT(ϕ,~u)

there exists an n0 such that ∀n ≥ n0. ¬ϕ(~un(~e)).

Example 9. The tnn-loop L from Ex. 5 stabilizes on any input. Its loop condition is x1 > 0

and for all x1, x2 ∈ RA, we have x
(n)
1 = 1

2 · n
2 +

(
x2 − 1

2

)
· n+ x1 > 0 for large enough n.

To decide the halting problem, it suffices to find a computable upper bound n0 on sth(ϕ,~u)(~e).
Then (ϕ, ~u) diverges on ~e iff ∀n ≤ n0. ϕ(~un(~e)). Let pol1 .1 0, . . . , polr .r 0 be all inequations
occurring in ϕ. Then we have

sth(ϕ,~u) ≤ max{sth(poli.i0,~u) | 1 ≤ i ≤ r} (2)

and thus we can assume

ϕ ≡ pol . 0 where . ∈ {≥, >} and pol ∈ RA[~x]. (Simplification 2)

So in the following, let ϕ(~q) ≡ pol(~q) . 0 ≡ pe . 0 for some pe ∈ PE[~x]. Then our goal is to
over-approximate the stabilization threshold of pe on ~e. Here, we may assume pe ∈ NPE[~x]
without loss of generality. To see why, let c ∈ N be larger than any constant that occurs in a
factor JψK in pe. (If there is no such factor, then we choose c = 0.) Then we can compute the
stabilization threshold for penorm instead of pe on ~e, where penorm results from pe by replacing
all factors JψK that contain positive literals with 0 and all other such factors with 1. Afterwards,
we can easily lift the resulting bound on sthpenorm

(~e) to a bound on sthpe(~e). The reason is that
we have pe = penorm for all n ≥ c (since then, positive literals become false and negative literals
become true). Thus,

sth(ϕ,~u)(~e) ≤ sthpe(~e) ≤ max{sthpenorm
(~e), c}. (3)

Hence, in the following we assume

ϕ(~q) ≡ pol(~q) . 0 ≡ pe . 0 where pe ∈ NPE[~x]. (Simplification 3)

To infer a bound on sthpe(~e), we rely on the concept of monotonicity thresholds.

Definition 10 (Monotonicity Threshold). Let â,qa ∈ N and b̂,qb ∈ (RA)>0 with (̂b, â) >lex (qb,qa)

(i.e., b̂ > qb or both b̂ = qb and â > qa). Moreover, let k ∈ RA. Then the smallest n0 ∈ N such that

nâ · b̂n > k · nqa ·qbn for all n ≥ n0 is called the k-monotonicity threshold of (̂b, â) and (qb,qa).

Example 11. As an example, consider (̂b, â) = (1, 2) >lex (1, 1) = (qb,qa). The 14-monotonicity

threshold of (̂b, â) and (qb,qa) is n0 = 15, as nâ · b̂n = n2 · 1n > 14 · n1 · 1n = 14 · nqa · qbn for all

n ≥ n0 = 15, but 14â · b̂14 = 142 · 114 = 196 ≤ 196 = 14 · 141 · 114 = 14 · 14qa ·qb14.

Lemma 12 (Computing Monotonicity Thresholds). For any â,qa ∈ N, b̂,qb ∈ (RA)>0 with

(̂b, â) >lex (qb,qa), and any k ∈ RA, the k-monotonicity threshold of (̂b, â) and (qb,qa) is computable.

Proof. If k ≤ 0 then the k-monotonicity threshold of (̂b, â) and (qb,qa) is 1. We now regard the
case k > 0. To prove the lemma, we show that if both

â ≥ qa or
(

m
m+1

)
qa−â
· b̂

qb
≥ 1 and (4)

4In other words, for large enough n, every pe ∈ PE[~x] is weakly monotonically increasing (or decreasing), i.e.,
n′ ≥ n implies validity of pe[n/n′] ≥ pe (or of pe[n/n′] ≤ pe).

283

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

mâ · b̂m > k ·mqa ·qbm, (5)

then m is an upper bound on the k-monotonicity threshold of (̂b, â) and (qb,qa). Then the claim

immediately follows, as limm→∞

(
m
m+1

)
qa−â
· b̂

qb
> 1 if â < qa (and thus b̂ > qb), i.e., (4) and (5)

hold for large enough m. So to compute monotonicity thresholds, one initializes m to 0 and
increments it until (4) and (5) are satisfied. As (4) and (5) are only a sufficient criterion for

upper bounds on the k-monotonicity threshold, we now have nâ · b̂n > k · nqa ·qbn for all n ≥ m,
but m is not necessarily the smallest such number. Hence, one then has to decrement m again
until (m− 1)â · b̂m−1 ≤ k · (m− 1)qa ·qbm−1 holds.

So assuming (4) and (5), we need to prove

nâ · b̂n > k · nqa ·qbn for all n ≥ m. (6)

Since n ≥ m > 0 due to (5), we have

nâ · b̂n > k · nqa ·qbn iff nâ−qa ·
(
b̂
qb

)n
> k.

Case â ≥ qa: Then nâ−qa ·
(
b̂
qb

)n
is monotonically increasing and thus, (6) follows from (5).

Case â < qa: Let

f(n) = nâ−qa ·
(
b̂
qb

)n
and f∆(n) = f(n+ 1)− f(n).

We prove that (4) implies5 f∆(n) ≥ 0 for all n ≥ m. As (5) is equivalent to f(m) > k, our claim
(6) then follows by induction on n.

For all n ≥ m, we have

f∆(n) ≥ 0

⇐⇒ (n+ 1)â−qa ·
(
b̂
qb

)n+1

− nâ−qa ·
(
b̂
qb

)n
≥ 0 (by definition of f∆)

⇐⇒
((

n+1
n

)â−qa · b̂
qb
− 1
)
· nâ−qa ·

(
b̂
qb

)n
≥ 0

⇐⇒
(
n+1
n

)â−qa · b̂
qb
− 1 ≥ 0 (as nâ−qa ·

(
b̂
qb

)n
> 0 for all n ≥ m > 0)

⇐⇒
(

n
n+1

)
qa−â
· b̂

qb
− 1 ≥ 0

⇐⇒
(

n
n+1

)
qa−â
· b̂

qb
≥ 1

⇐=
(

m
m+1

)
qa−â
· b̂

qb
≥ 1 (as n ≥ m implies

(
n
n+1

)
qa−â
· b̂

qb
≥
(

m
m+1

)
qa−â
· b̂

qb
)

⇐⇒ (4) (as â < qa)

Lemma 13 shows that Lemma 12 allows us to over-approximate the stabilization threshold
of pe on ~e. This finishes the proof of Thm. 6.

Lemma 13 (Over-Approximating Stabilization Thresholds). For any pe ∈ NPE[~x] and any
~e ∈ (RA)d, one can compute an m ∈ N with m ≥ sthpe(~e).

5We use f∆ instead of f ’s first derivative, since we consider monotonicity w.r.t. n ∈ N (as opposed to n ∈ R).

284

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

Proof. Let pe[~x/~e] =
∑`
j=1 kj · naj · bnj with kj 6= 0 for all 1 ≤ j ≤ `, and (b`, a`) >lex . . . >lex

(b1, a1). If ` = 1, then we trivially have sign (pe[~x/~e]) = sign (k`) for all n ≥ 1, which implies
1 ≥ sthpe(~e).

If ` ≥ 2, then for each addend kj · naj · bnj with 1 ≤ j < ` − 1, we can compute the
|kj |
|k`−1| -

monotonicity threshold mtj of (b`−1, a`−1) and (bj , aj) by Lemma 12. Thus, |k`−1| ·na`−1 ·bn`−1 >
|kj | · naj · bnj holds for all n ≥ mtj . Let mt = max{mtj | 1 ≤ j < ` − 1} (where we use the
convention max∅ = 0, i.e., we have mt = 0 if ` = 2). Then for all n ≥ mt we obtain

`−1∑
j=1

kj · naj · bnj ≤
`−1∑
j=1

|kj | · naj · bnj ≤
`−1∑
i=1

|k`−1| · na`−1 · bn`−1 = (`− 1) · |k`−1| · na`−1 · bn`−1.

Moreover, by Lemma 12 we can also compute the (`−1)·|k`−1|
|k`| -monotonicity threshold mt′ of

(b`, a`) and (b`−1, a`−1). Hence, |k`| · na` · bn` > (`− 1) · |k`−1| · na`−1 · bn`−1 holds for all n ≥ mt′.
Let m = max{mt,mt′}. Then for all n ≥ m we have

`−1∑
j=1

kj · naj · bnj ≤ (`− 1) · |k`−1| · na`−1 · bn`−1 < |k`| · na` · bn` ,

i.e., for all n ≥ m we have sign (pe[~x/~e]) = sign (k`), which implies m ≥ sthpe(~e).

Example 14. We show how to decide the halting problem for the loop L from Ex. 5 on the input

x1 = 11 and x2 = 4. By Ex. 5, we have ϕ(~q) ≡ x
(n)
1 > 0, i.e., sth(ϕ,~u)(11, 4) ≤ sth

x
(n)
1

(11, 4).

So our goal is to compute an upper bound on sth
x
(n)
1

(11, 4). We have

x
(n)
1 [x1/11, x2/4] =

(
1
2 · n

2 +
(
x2 − 1

2

)
· n+ x1

)
[x1/11, x2/4] = 1

2 · n
2 + 7

2 · n+ 11.

Thus, ` = 3, k1 = 11, k2 = 7
2 , and k3 = 1

2 . As in the proof of Lemma 13, we first compute

the |k1||k2| -monotonicity threshold, i.e., the 22
7 -monotonicity threshold of (1, 1) and (1, 0), which

is mt = 4. Next, we compute the (`−1)·|k2|
|k3| -monotonicity threshold, i.e., the 14-monotonicity

threshold of (1, 2) and (1, 1), which is mt′ = 15, cf. Ex. 11. Hence, max{mt,mt′} = 15 is an

upper bound on sth
x
(n)
1

(11, 4). Thus, by verifying
∧15
n=0

(
1
2 · n

2 + 7
2 · n+ 11 > 0

)
, we conclude

that (11, 4) witnesses non-termination of L.

Alg. 1 summarizes our technique to decide the halting problem for twn-loops. If necessary, the
loop is chained in Line 1 to enforce Simplification 1. Then n0 is initialized to 0 and afterwards,
we process each inequation pe . 0 in ϕ(~q) separately, cf. Simplification 2. Line 5 implements
Simplification 3. Then n0 is set to an upper bound on sthpenorm

(~e), for all inequations penorm .0,
cf. (2). Finally, in Line 8 and 9 we ensure that n0 is large enough to justify normalizing pe to
penorm, cf. (3).

Our results on the decidability of the halting problem can also be extended to certain
loops that are not in twn-form by using our techniques from [19, Sect. 3], where we presented
a transformation of loops which is based on RA-automorphisms. An RA-endomorphism of
RA[~x] is a mapping η : RA[~x] → RA[~x] which is RA-linear and multiplicative.6 As usual, an
RA-automorphism is an invertible RA-endomorphism η, i.e., there exists an RA-endomorphism
η−1 such that η ◦ η−1 = η−1 ◦ η is the identity function on RA[~x]. Intuitively, the transformation
substitutes the variables in the program by polynomials such that the substitution can be
inverted by another substitution of variables by polynomials.

6So we have η(c · pol + c′ · pol ′) = c · η(pol) + c′ · η(pol ′), η(1) = 1, and η(pol · pol ′) = η(pol) · η(pol ′) for all
c, c′ ∈ RA and all pol , pol ′ ∈ RA[~x].

285

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

Algorithm 1: Deciding the Halting Problem

Input: a twn-loop (ϕ, ~u) and ~e ∈ RdA
Result: > if (ϕ, ~u) terminates on ~e, ⊥ otherwise

1 if (ϕ, ~u) is not tnn then (ϕ, ~u)← (ϕ ∧ ϕ(~u), ~u(~u))

2 ~q ← closed form of ~un with ~q ∈ (PE[~x])d

3 n0 ← 0
4 foreach inequation pe . 0 occurring in ϕ(~q) do
5 pe ← penorm
6 compute m ≥ sthpe(~e) as in the proofs of Lemma 12 and Lemma 13
7 n0← max{n0,m}
8 c ← 1 + the maximal constant that occurs in any factor JψK in ϕ(~q)
9 n0 ← max{n0, c}

10 if ϕ(~q[~x/~e]) holds for all 0 ≤ n ≤ n0 then return ⊥ else return >

This transformation allows for transforming certain non-twn-loops into twn-form. Moreover,
in [19, Cor. 15] we showed that this transformation induces a bijection η̂ on the sets of non-
terminating inputs. Here, η̂ : Sd → Sd maps ~e to η(~x)[~x/~e]. Thus, given a non-twn loop (ϕ, ~u),
an input ~e ∈ RdA, and a polynomial automorphism η which transforms (ϕ, ~u) into a twn-loop, we
can proceed as follows to decide whether (ϕ, ~u) terminates on ~e:

• First, we transform the loop (ϕ, ~u) into the twn-loop (ϕ′, ~u′) by using η.

• Then we transform the input ~e into ~e ′ = η̂(~e).

• Finally, we apply Alg. 1 to (ϕ′, ~u′) and ~e ′.

So we can not only decide the halting problem for all twn-loops over RA, but we can decide it
for all twn-transformable loops which can be transformed into twn-form by an RA-automorphism.
The reason is that whenever a loop is twn-transformable, then an automorphism which transforms
it into twn-form is computable [19].

4 Runtime Bounds

In the following, we restrict ourselves to twn-loops over the integers and show how to obtain
upper bounds on their runtime. Def. 15 introduces this notion formally, which is only defined
for inputs where the loop terminates.

Definition 15 (Runtime). For a loop (ϕ, ~u) over Z, the runtime rt (ϕ,~u) : T(ϕ,~u) → N for ~e ∈ Zd
is

rt (ϕ,~u)(~e) = min{n ∈ N | ¬(ϕ(~un(~e)))}.

So (ϕ, ~u) terminates on ~e ∈ T(ϕ,~u) after rt (ϕ,~u)(~e) iterations. In practice, it is usually
infeasible to compute the runtime exactly, so that state-of-the-art complexity analyzers rely
on approximations, cf. e.g., [2, 3, 12, 13, 16, 17, 23, 41, 42]. In this spirit, we will prove that
the runtime of a twn-loop on Zd is bounded (from above) by a polynomial in the 1-norm7

7Measuring vectors of integers via the 1-norm is standard in automated complexity analysis where one is
interested in analyzing the efficiency of implementations. This is orthogonal to complexity theory, where the size
of numbers is measured logarithmically and the goal is to characterize decision problems by proving membership
or hardness w.r.t. complexity classes like P or NP.

286

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

‖~x‖ =
∑d
j=1 |xj | of ~x. Moreover, this polynomial is computable. This constitutes the first

computability result for the runtime complexity of non-linear programs that we are aware of.

Theorem 16 (Polynomial Loops Have Polynomial Runtime). Let (ϕ, ~u) be a tnn-loop over Z
and let ~q ∈ (PE[~x])d be the closed form of ~un. Then there is a polynomial f ∈ N[y] such that

rt (ϕ,~u)(~e) ≤ f(‖~e‖) for all ~e ∈ T(ϕ,~u),

where deg(f) is bounded by the maximal degree of the coefficients in ϕ(~q).

Here, recall that the coefficients of the poly-exponential expressions in ϕ(~q) are polynomials
from QS [~x]. Note that Thm. 16 does not hold for loops over Q or RA, as demonstrated by the
following example.

Example 17. Consider the loop (x1 ≥ 0∧x2 > 0, (x1−x2, x2)) over Q or RA. It terminates after
max{0, dx1

x2
e+1} iterations, but its runtime is not bounded by any continuous function f : R→ R

in ‖(x1, x2)‖. To see this, for any k ∈ N let ~ek = (1, 1
k) and let f : R→ R be continuous. Then

limk 7→∞ ‖~ek‖ = limk 7→∞(|1| + | 1k |) = 1 and thus, by continuity, limk 7→∞ f(‖~ek‖) = f(1) ∈ R.
However, for any k ∈ N we have

rt (x1≥0∧x2>0,(x1−x2,x2))(~ek) = max{0, dke+ 1} = k + 1.

Hence,

lim
k 7→∞

rt (x1≥0∧x2>0,(x1−x2,x2))(~ek) = lim
k 7→∞

(k + 1) =∞.

Thus, we have

rt (x1≥0∧x2>0,(x1−x2,x2))(~ek) > f(‖~ek‖)
for large enough k. Hence, there is no continuous function f : R→ R with

rt (x1≥0∧x2>0,(x1−x2,x2))(~ek) = k + 1 ≤ f(‖~ek‖)
for all k ∈ N. Essentially, the problem is that measuring the “size” of non-integer inputs via
the 1-norm ‖·‖ is not suitable for analyzing runtime complexity. The same problem arises
with any other continuous function ‖ · ‖′ : Rd → R, e.g., any norm on Rd, because then we
have limk 7→∞ ‖~ek‖′ = ‖ limk 7→∞(1, 1

k)‖′ = ‖(1, 0)‖′ and thus, for any continuous function f ,
limk 7→∞ f(‖~ek‖′) is a constant from R. For that reason, we restricted ourselves to loops over Z
in this section.

While Thm. 16 only applies to tnn-loops, it can also be used to obtain a bound on the
complexity of other twn-loops due to the following lemma.

Lemma 18 (Chaining Preserves Asymptotic Runtime). Let (ϕ, ~u) be a loop over Z and let
(ϕch, ~uch) = (ϕ ∧ ϕ(~u), ~u(~u)) be the corresponding chained loop. We have

2 · rt (ϕch,~uch)(~e) ≤ rt (ϕ,~u)(~e) ≤ 2 · rt (ϕch,~uch)(~e) + 1 for all ~e ∈ Zd.

Proof. Let rt (ϕ,~u)(~e) = n~e and rt (ϕch,~uch)(~e) = n′~e. Then we have

n′~e = min{n ∈ N | ¬(ϕch(~unch(~e)))} (by definition of rt (ϕch,~uch))

⇐⇒ ∀n < n′~e. ϕch(~unch(~e)) ∧ ¬ϕch(~u
n′~e
ch (~e))

⇐⇒ ∀n < n′~e.
(
ϕ(~u2·n(~e)) ∧ ϕ(~u(~u2·n(~e)))

)
∧ ¬

(
ϕ(~u2·n′~e(~e)) ∧ ϕ(~u(~u2·n′~e(~e)))

)
(by definition of ϕch and ~uch)

⇐⇒ ∀n < n′~e.
(
ϕ(~u2·n(~e)) ∧ ϕ(~u2·n+1(~e))

)
∧ ¬

(
ϕ(~u2·n′~e(~e)) ∧ ϕ(~u2·n′~e+1(~e))

)
⇐⇒ ∀m < 2 · n′~e. ϕ(~um(~e)) ∧

(
¬ϕ(~u2·n′~e(~e)) ∨ ¬ϕ(~u2·n′~e+1(~e))

)
287

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

⇐⇒ 2 · n′~e ≤ rt (ϕ,~u)(~e) ≤ 2 · n′~e + 1.

From Thm. 16 and Lemma 18, we get the following corollary.

Corollary 19 (Linear Loops Have Linear Runtime). Let (ϕ, ~u) be a triangular linear loop over
Z. Then there is a polynomial f ∈ N[y] with deg(f) = 1 such that

rt (ϕ,~u)(~e) ≤ f(‖~e‖) for all ~e ∈ T(ϕ,~u).

The reason is that chaining preserves linearity, i.e., if (ϕ, ~u) is linear, then (ϕch, ~uch) is linear,
too. Hence, all coefficients of the closed form ~q of ~unch are also linear [18].

We now prove Thm. 16. As we clearly have

rt (ϕ,~u)(~e) ≤ sth(ϕ,~u)(~e) for all ~e ∈ T(ϕ,~u),

to derive an upper bound on rt (ϕ,~u), it suffices to find an upper bound on sth(ϕ,~u). Moreover,
due to (2), we may restrict ourselves to loops of the form (pol . 0, ~u) without loss of generality.
More precisely, if pol1 .1 0, . . . , polr .r 0 are all inequations occurring in ϕ, then we compute a
polynomial upper bound fi ∈ N[y] on sth(poli.i0,~u) for each 1 ≤ i ≤ r. Then f1 + . . .+ fr is an
upper bound on sth(ϕ,~u), since f1(y) + . . .+ fr(y) ≥ max{f1(y), . . . , fr(y)} for all y ∈ N.

As in Sect. 3, let ~q ∈ (PE[~x])d be the closed form of ~un and let pe = pol(~q). Moreover, let
c ∈ N again be larger than any constant that occurs in a factor JψK in pe and let penorm ∈ NPE[~x]
be defined as in Sect. 3. As in (3), we therefore have

rt (pol.0,~u)(~e) ≤ sthpe(~e) ≤ max{sthpenorm
(~e), c}.

Note that the degrees of the coefficients of penorm are bounded by the degrees of the coefficients
of pe. Thus, to prove Thm. 16, it suffices to find a polynomial bound f whose degree is bounded
by the maximal degree of the coefficients in penorm. So from now on, we assume pe ∈ NPE[~x].

Furthermore, w.l.o.g. we may assume that

pe =
∑̀
j=1

αj · naj · bnj where αj ∈ Z[~x] (instead of αj ∈ Q[~x] = QZ[~x]). (Simplification 4)

The reason is that by multiplying with the denominators of all fractions that occur in some αj ,
we obtain a pe ′ ∈ NPE[~x] with sthpe = sthpe′ where the coefficients of pe ′ are elements of Z[~x].

Example 20. Now the loop L from Ex. 5 is considered over Z, where ϕ(~q) ≡ x
(n)
1 > 0 and

x
(n)
1 = 1

2 · n
2 +

(
x2 − 1

2

)
· n+ x1.

To compute a bound on sth
x
(n)
1

, we can regard the following expression over Z instead:

n2 + (2 · x2 − 1) · n+ 2 · x1

The following lemma allows us to compute a bound on the stabilization threshold sthpe(~e).
More precisely, the lemma shows that sthpe(~e) can be over-approximated by a polynomial in
the 1-norm of ~e ∈ Zd, provided that α`(~e) 6= 0. Here, we (again) use the convention max∅ = 0.

Lemma 21 (Bound on Stabilization Thresholds). Let pe ∈ NPE[~x] with pe =
∑`
j=1 αj · naj · bnj

and (b`, a`) >lex . . . >lex (b1, a1), where αj ∈ Z[~x] for all 1 ≤ j ≤ `. Then there is a polynomial
f ∈ N[y] with deg(f) = max{deg(αj) | 1 ≤ j < `} such that

sthpe(~e) ≤ f(‖~e‖) for all ~e ∈ Zd with α`(~e) 6= 0.

Proof. If ` = 1, then the claim is trivial by choosing f(y) = 1. The reason is that for each ~e we
have pe(~e) = α1(~e) · na1 · bn1 , whose sign is the sign of α1(~e) 6= 0 for every n ∈ N with n ≥ 1.

288

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

Otherwise, let

m = max{deg(αj) | 1 ≤ j < `},
kmax = max{|k| | 1 ≤ j < `, k is a coefficient of αj}, and

αmax(~x) = kmax ·
∑m
i=0 ‖~x‖i.

Then for all 1 ≤ j < ` and all ~e ∈ Zd we have

αj(~e) ≤ max{|k| | k is a coefficient of αj} ·
deg(αj)∑
i=0

‖~e‖i ≤ αmax(~e).

If ` ≥ 3, then let

mt = max{1-monotonicity threshold of (b`−2, a`−2) and (bj , aj) | 1 ≤ j < `− 2},
let mt′ be the (` − 2)-monotonicity threshold of (b`−1, a`−1) and (b`−2, a`−2), and let N =
max{mt,mt′}. Then

`−2∑
j=1

naj · bnj ≤
`−2∑
j=1

na`−2 · bn`−2 = (`− 2) · na`−2 · bn`−2 < na`−1 · bn`−1

holds for all n ≥ N . If ` = 2, then we define N = 1. Thus, we get:
`−1∑
j=1

αj(~e) · naj · bnj ≤
`−1∑
j=1

αmax(~e) · naj · bnj

= αmax(~e) ·
`−1∑
j=1

naj · bnj

= αmax(~e) ·

`−2∑
j=1

naj · bnj + na`−1 · bn`−1

< 2 · αmax(~e) · na`−1 · bn`−1 for all n ≥ N

We proceed by a case analysis.

Case b` = b`−1: As (b`, a`) >lex (b`−1, a`−1) we have a` > a`−1 and hence

2 · αmax(~e) · na`−1 · bn`−1 = 2 · αmax(~e) · na`−1 · bn`
≤ na`−1+1 · bn` for all n ≥ 2 · αmax(~e)

≤ na` · bn` .
Thus, we obtain

`−1∑
j=1

αj(~e) · naj · bnj < na` · bn` for all n ≥ max{N, 2 · αmax(~e)}. (7)

Case b` > b`−1: Then (b`, a`) >lex (b`−1, a`−1 + 1). Let M ∈ N be the 1-monotonicity
threshold of (b`, a`) and (b`−1, a`−1 + 1). Then we have

2 · αmax(~e) · na`−1 · bn`−1 ≤ na`−1+1 · bn`−1 < na` · bn`
for all n ≥ max{M, 2 · αmax(~e)} and thus we obtain

`−1∑
j=1

αj(~e) · naj · bnj < na` · bn` for all n ≥ max{N,M, 2 · αmax(~e)}. (8)

289

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

From (7) and (8), we get

∀~e ∈ Zd, n ≥ max{N,M, 2 · αmax(~e)}.
`−1∑
j=1

αj(~e) · naj · bnj < na` · bn`

(where we define M = 0 if b` = b`−1).

Recall that we restricted ourselves to loops over Z (i.e., we have ~e ∈ Zd) and to poly-
exponential expressions where the polynomials αj only have integer coefficients (cf. Simplification
4). Thus, if α`(~e) > 0, then α` ∈ Z[~x] and e ∈ Zd imply α`(~e) ≥ 1. Hence, if n ≥ max{N,M, 2 ·
αmax(~e)}, then pe[~x/~e] > (α`(~e) − 1) · na` · bn` ≥ 0 and hence, sign (pe[~x/~e]) = 1. Similarly, if
α`(~e) < 0, then α` ∈ Z[~x] and e ∈ Zd imply α`(~e) ≤ −1. So if n ≥ max{N,M, 2 ·αmax(~e)}, then
pe[~x/~e] < (α`(~e) + 1) · na` · bn` ≤ 0 and hence, sign (pe[~x/~e]) = −1. This implies

sthpe(~e) ≤ max{N,M, 2 · αmax(~e)} for all ~e ∈ Zd with α`(~e) 6= 0. (9)

It remains to show that there is a polynomial f ∈ N[y] with deg(f) = m such that f(‖~e‖) ≥
max{N,M, 2 · αmax(~e)} for all ~e ∈ Zd. We define

f(y) = 2 · kmax ·
m∑
i=0

yi + max{N,M},

where we have f ∈ N[y] as αj ∈ Z[~x] implies kmax ∈ N. Then for any ~e ∈ Zd we get

f(‖~e‖) = 2 · kmax ·
m∑
i=0

‖~e‖i + max{N,M}

= 2 · αmax(~e) + max{N,M} (by definition of αmax)

≥ max{N,M, 2 · αmax(~e)},
as desired.

Example 22. Reconsider the loop L from Ex. 5 over Z. To compute a bound on its runtime,
we construct a polynomial upper bound f on sthpe where

pe = n2 + (2 · x2 − 1) · n+ 2 · x1,

cf. Ex. 20. Following the proof of Lemma 21, we have ` = 3, α1 = 2 · x1, α2 = 2 · x2 − 1, and
α3 = 1, i.e., m = 1 and kmax = 2. Moreover, we have mt = 0 and mt′ = 2 (as the 1-monotonicity
threshold of (1, 1) and (1, 0) is 2). Thus, we get N = max{mt,mt′} = 2. Furthermore, we have
M = 0, as b2 = b3 = 1. Thus, we get

f(y) = 2 · kmax ·
m∑
i=0

yi + max{N,M} = 4 · y + 6.

Note that α`(~e) = α3(~e) = 1 6= 0 for all ~e ∈ Z2. Thus, sthpe(e1, e2) is bounded by f(‖(e1, e2)‖) =
4 · (|e1| + |e2|) + 6 for all (e1, e2) ∈ Z2. Consequently, the runtime of L is also bounded by
4 · (|e1|+ |e2|) + 6 for all (e1, e2) ∈ TL. So for terminating inputs, L’s runtime is at most linear.

Example 23. The loop from Ex. 17 also shows that Lemma 21 does not hold for rings like
Q or RA. Here, the closed form of the n-fold update is ~q = (x1 − n · x2, x2). Thus, ϕ(~q) is
x1 − n · x2 ≥ 0 ∧ x2 > 0. When considering pe = x1 − n · x2, then we have sthpe(~ek) = k + 1
for ~ek = (1, 1

k). But as shown in Ex. 17, there is no continuous function f : R → R with
sthpe(~ek) = k + 1 ≤ f(‖~ek‖) = f(1 + 1

k) for all k ∈ N.

Indeed, the construction of f in the proof of Lemma 21 would no longer yield an upper bound
on sthpe. In our example, we have ` = 2, α1 = x1, and α2 = −x2. Hence, m = 1 and kmax = 1.
Finally, since ` = 2, we have N = 1 and since b1 = b2 = 1, we have M = 0. Thus, if we construct

290

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

f as in the proof of Lemma 21, then we get f(y) = 2 · kmax ·
∑m
i=0 y

i + max{N,M} = 2 · y + 3.
So f(‖~ek‖) = 5 + 2

k , but f(‖~e5‖) = 27
5 < 6 = sthpe(~e5), i.e., f is not an upper bound on sthpe .

According to the preconditions of Lemma 21, the resulting bound f is only valid for all ~e ∈ Zd
with α`(~e) 6= 0. However, for every ~e ∈ Zd, we either have pe[~x/~e] = 0 (and thus sthpe(~e) = 0)
or there is an 1 ≤ `~e ≤ ` such that |α`~e(~e)| ≥ 1 and αj(~e) = 0 for all `~e < j ≤ `. So by applying

Lemma 21 to
∑`~e
j=1 αj · naj · bnj , we obtain a polynomial f`~e such that sthpe(~e) ≤ f`~e(‖~e‖).

Thus, by applying Lemma 21 to each expression
∑`′

j=1 αj · naj · bnj with 1 ≤ `′ ≤ `, we obtain

polynomials f1, . . . , f` such that for each ~e ∈ Zd, there is some fj with sthpe(~e) ≤ fj(‖~e‖).
Hence, for f =

∑`
j=1 fj we obtain sthpe(~e) ≤ f(‖~e‖) since fj ∈ N[y] for all 1 ≤ j ≤ `. As the

definition of f is independent of ~e, this finishes the proof of Thm. 16.

Our technique to compute runtime bounds via Thm. 16 and Lemma 18 can be implemented
as in Alg. 2. For Simplification 1, the loop is again chained in Line 1 if necessary. In that case,
the difference between the complexity of the original and the chained loop is taken into account
in Line 13, where the result is adapted according to Lemma 18. Next, f is initialized to the
polynomial 1 and afterwards, we again process each inequation pe . 0 in ϕ(~q) separately, cf.
Simplification 2. Line 5 implements Simplification 3 and Line 6 corresponds to Simplification 4.

As explained after its proof, we have to apply Lemma 21 to each expression
∑`′

j=1 αj · naj · bnj
with 1 ≤ `′ ≤ ` and the obtained bounds have to be added in order to get a bound on sthpe . As
in the proof of Lemma 21, we can skip poly-exponential expressions with just a single addend
(i.e., where `′ = 1). Thus, in Line 10, f is updated to the sum of its previous value and the

upper bound on
∑`′

j=1 αj · naj · bnj . By adding the bounds on sthpe for all pe . 0 occurring in
ϕ(~q), Line 10 also reflects the polynomial approximation of the max-expressions from (2) via a
sum. Similarly, Line 12 approximates the max-expression from (3) via summation.

Algorithm 2: Computing Runtime Bounds

Input: a twn-loop (ϕin, ~uin) on Zd
Output: a polynomial f ∈ N[y] such that rt (ϕin,~uin)(~e) ≤ f(‖~e‖) for all ~e ∈ T(ϕin,~uin)

1 if (ϕin, ~uin) is tnn then (ϕ, ~u)← (ϕin, ~uin) else (ϕ, ~u)← (ϕin ∧ ϕin(~uin), ~uin(~uin))

2 ~q ← closed form of ~un with ~q ∈ (PE[~x])d

3 f ← 1
4 foreach inequation pe . 0 occurring in ϕ(~q) do
5 pe ← penorm
6 pe ← pe ·

∏
k occurs as denominator in pe

k

7 let pe =
∑`
j=1 αj · naj · bnj with (b`, a`) >lex . . . >lex (b1, a1)

8 foreach `′ with 2 ≤ `′ ≤ ` do

9 compute kmax, N , and M for
∑`′

j=1 αj · naj · bnj as in the proof of Lemma 21

10 f ← f + 2 · kmax ·
∑m
i=0 y

i + max{N,M}
11 c ← 1 + the maximal constant that occurs in any factor JψK in ϕ(~q)
12 f ← f + c
13 if (ϕin, ~uin) is tnn then return f else return 2 · f + 1

When comparing Alg. 1 and Alg. 2, note that Alg. 1 computes an upper bound on sth(ϕ,~u)(~e)
for a given input ~e, whereas Alg. 2 computes an upper bound on the stabilization threshold
sth(ϕ,~u) for all inputs ~e. More precisely, for twn-loops over Z, Alg. 2 computes a polynomial

f such that sth(ϕ,~u)(~e) ≤ f(‖~e‖) holds for all ~e ∈ Zd. So for such loops, Alg. 2 could also be

291

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

used to decide the halting problem, since (ϕ, ~u) is non-terminating on ~e iff ϕ(~q[~x/~e]) holds for
all 0 ≤ n ≤ f(‖~e‖). However, in contrast to Alg. 2, Alg. 1 can be used to decide the halting
problem for loops on arbitrary rings Z ≤ S ≤ RA. The reason is that Lemma 12 (which is the
basis of Alg. 1) holds for RA (and therefore also for its subrings), whereas Lemma 21 (which is
the basis of Alg. 2) only holds for the ring Z.

As in Sect. 3, our program transformation from [19] allows us to extend our computability
results for runtime bounds to certain loops that are not in twn-form. But while the results of
Sect. 3 immediately carry over to any twn-transformable loop, this is not true for the results of the
current section. The reason is that we now require that the coefficients of the poly-exponential
expressions in ϕ(~q) are elements of Q[~x] (resp. Z[~x], cf. Simplification 4). This is crucial for the
proof of Lemma 21.

So when applying an automorphism to a non-twn loop over the integers, we have to ensure
that this requirement is still valid after the transformation. But when applying arbitrary
RA-automorphisms, this cannot be ensured, since the transformed program may contain real
algebraic numbers. Thus, we have to restrict ourselves to Q-automorphisms instead of RA-
automorphisms. Then the technique presented in the current section can indeed be applied
to all loops that can be transformed into twn-form via Q-automorphisms.8 Here, however,
the following has to be taken into account: When (ϕ, ~u) is transformed into (ϕ′, ~u′) via a
Q-automorphism η, then the run of (ϕ, ~u) on ~e ∈ Zd corresponds to the run of (ϕ′, ~u′) on η̂(~e)
(and vice versa). Thus, if f(‖~e‖) is a bound on rt (ϕ′,~u′)(~e) for all ~e ∈ η̂

(
Zd
)
, then we have

f(‖η̂(~e)‖) ≥ rt (ϕ′,~u′)(η̂(~e)) = rt (ϕ,~u)(~e) for all ~e ∈ Zd. So besides the loop under consideration,
we also have to transform the resulting upper runtime bound.

5 Related Work and Conclusion

In this work, we presented a decision procedure for the halting problem of twn-loops, i.e., loops
of the form

while ϕ do ~x← ~u

with polynomial arithmetic where the use of non-linearity in ~u is mildly restricted and ~x← ~u
is a triangular system of polynomial equations. While we considered loops over RA in Sect. 3,
decidability of the halting problem for loops over other rings Z ≤ S ≤ RA follows immediately.
The key idea is to approximate the so-called stabilization threshold sth(ϕ,~u)(~e), i.e., the number
of iterations after which the loop condition ϕ stops changing its truth value, for a given input ~e.
To the best of our knowledge, this is the first positive result on the decidability of the halting
problem for classes of loops with non-linear arithmetic.

Moreover, we generalized this idea to approximate the stabilization threshold sth(ϕ,~u)(~x) for
arbitrary inputs ~x of twn-loops over the integers. In this way we showed that for all terminating
inputs ~x, the runtime complexity of a twn-loop over the integers is bounded by a polynomial in
the 1-norm ‖~x‖ of the input. Moreover, we showed how to compute such a polynomial. As a
corollary, it follows that the runtime of triangular linear loops is bounded by a linear polynomial
in ‖~x‖. To the best of our knowledge, this is the first positive result regarding the computability

8Note that the inequation (9) does not hold directly anymore, as we now have ~e ∈ η̂
(
Zd
)
⊆ Qd instead of

~e ∈ Zd and thus we may have 0 < |α`(~e)| < 1. However, this can easily be fixed. The reason is that for each
~e ∈ η̂

(
Zd
)
, the occurring denominators stem from the polynomials η(x1), . . . , η(xd) ∈ Q[~x] and thus the least

common multiple k of the denominators that occur in η(x1), . . . , η(xd) is a multiple of the denominators that
occur in ~e. So by multiplying the inequations pe . 0 in ϕ(~q) by k, one obtains a poly-exponential expression with
coefficients α such that α(~e) ∈ Z for all ~e ∈ η̂

(
Zd
)
.

292

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

of upper bounds on the runtime complexity of polynomial integer loops.

Related Work

There exist several decidability results for the termination of linear [9, 10, 18, 24, 30, 32, 38,
43] and non-linear loops [19, 31, 45]. These works consider the question whether a polynomial
loop terminates on all inputs, whereas we presented a decision procedure for termination on a
specific input. Moreover, most of these works rely on the notion of eventual non-termination
and thus they do not yield witnesses of non-termination.

For linear loops (ϕ, ~u) where ϕ is a conjunction of atoms of the form pol > 0, subsets of
NT(ϕ,~u) can be computed via the techniques presented in [30, 32]. Moreover, for the same class
of loops, a complete characterization of NT(ϕ,~u) in the case of two variables is given in [15].
Here, it is also proven that in the case of more than two variables, NT(ϕ,~u) cannot be described
by a propositional formula over polynomial inequalities. Furthermore, there are certain special
cases of linear loops over Z with conjunctive loop conditions where ~un and thus also NT(ϕ,~u) is
known to be Presburger-definable [9]. For non-linear loops, [31] shows how to compute witnesses
for non-termination under certain prerequisites. In particular, the loop condition needs to
characterize a closed, bounded, and connected set. In contrast, our result on the decidability
of the halting problem enables us to enumerate all non-terminating inputs, and it allows for
non-linearity and more complex loop conditions.

Obviously, decidability of the halting problem does not imply decidability of (universal)
termination: For example, termination is undecidable for twn-loops over Z with non-linear
integer arithmetic (due to undecidability of Hilbert’s 10th problem: (pol = 0, ~x) terminates
over Z iff pol has no integer root). On the other hand, we showed that the halting problem is
decidable for twn-loops over Z (and over any other ring Z ≤ S ≤ RA).

For the converse direction, note that in contrast to Turing-complete languages, in the
restricted formalism of polynomial loops, decidability of termination does not trivially imply
decidability of the halting problem. The reason is that one cannot encode a fixed initial value of
the program variables in a loop of the form (1).

For example, while termination of linear integer loops with conjunctive loop conditions
is decidable [24], the halting problem for these loops is equivalent to the so-called positivity
problem (cf. [39]), whose decidability is open. The positivity problem asks whether a given
linear integer recurrence sequence with fixed initial values only takes positive values. Moreover,
the closely related Skolem problem asks whether a given linear integer recurrence sequence with
fixed initial values ever takes the value 0. While decidability of both the positivity and the
Skolem problem is still open in the general case, there exist several partial solutions, cf. e.g.,
[1, 35, 36, 37]. For example, in [35] it is shown that the positivity problem is decidable for
recurrences of order 5 or less, which implies decidability of the halting problem for linear integer
loops with at most 4 variables and conjunctive loop conditions.9 It is considered folklore that the
Skolem and positivity problem are decidable if the characteristic polynomial of the recurrence
sequence has real roots only [1]. For the Skolem problem, a proof of (a generalization of) this
claim can be found in [22]. Hence, the halting problem is decidable for linear integer loops
with conjunctive loop conditions where the update matrix has real eigenvalues only. Moreover,
decidability of the halting problem for linear loops where the update matrix has only periodic
rational eigenvalues10 was shown in [27].

9Note that the first step of the transformation from a loop (ϕ,A · ~x +~b) into a recurrence relation is to

eliminate the vector ~b by introducing an additional variable.
10A matrix has periodic rational eigenvalues if every eigenvalue λ satisfies λm ∈ Q for some m ∈ N≥1.

293

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

In contrast to these results, we showed decidability of the halting problem for twn-loops with
non-linear arithmetic where the guard is an arbitrary propositional formula over polynomial
inequations, which is orthogonal to the positivity problem.

Furthermore, there is a large body of work on automated complexity analysis (e.g., [2, 3, 12,
13, 16, 17, 23, 41, 42]). This line of work aims at inferring bounds on the runtime of programs
with complex control flow by using incomplete techniques. The most popular approach to infer
runtime bounds automatically synthesizes lexicographic combinations of linear ranking functions.
To see the necessity of complete approaches, consider the twn-loop

while x1 ≥ x2 ∧ x2 ≥ 1 do (x1
x2

)←
(

2·x1
3·x2

)
,

which terminates, but is beyond the capabilities of such ranking functions [8, 29]. However, with
our approach, one can compute the bound 2 · (|x1|+ |x2|) + 3 on its runtime.

There are also several works on runtime analysis for restricted program models such as vector
addition systems with states (e.g., [11, 46]), bounded polynomial loops where the number of
iterations of the loop is fixed in advance and does not depend on the loop body (e.g., [4, 5,
6, 7]), and max-plus automata (e.g., [14]). These models are orthogonal to the (unbounded)
polynomial loops considered in the current paper.

Finally, there also exist several other approaches which exploit the existence of closed forms
for similar classes of programs (like solvable loops [40]), in order to, e.g., deduce invariants (e.g.,
[25, 26, 27, 28, 33, 34, 40]).

References

[1] S. Akshay, N. Balaji, and N. Vyas. “Complexity of Restricted Variants of Skolem and
Related Problems”. In: Proc. MFCS ’17. LIPIcs 83. 2017, 78:1–78:14. doi: 10.4230/
LIPIcs.MFCS.2017.78.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. “Closed-Form Upper Bounds in Static
Cost Analysis”. In: Journal of Automated Reasoning 46.2 (2011), pp. 161–203. doi:
10.1007/s10817-010-9174-1.

[3] E. Albert, M. Bofill, C. Borralleras, E. Martin-Martin, and A. Rubio. “Resource Analysis
driven by (Conditional) Termination Proofs”. In: Theory and Practice of Logic Program-
ming 19.5-6 (2019), pp. 722–739. doi: 10.1017/S1471068419000152.

[4] A. M. Ben-Amram, N. D. Jones, and L. Kristiansen. “Linear, Polynomial or Exponential?
Complexity Inference in Polynomial Time”. In: Proc. CiE ’08. LNCS 5028. 2008, pp. 67–76.
doi: 10.1007/978-3-540-69407-6_7.

[5] A. M. Ben-Amram and L. Kristiansen. “On the Edge of Decidability in Complexity Analysis
of Loop Programs”. In: International Journal of Foundations of Computer Science 23.7
(2012), pp. 1451–1464. doi: 10.1142/S0129054112400588.

[6] A. M. Ben-Amram and A. Pineles. “Flowchart Programs, Regular Expressions, and
Decidability of Polynomial Growth-Rate”. In: Proc. VPT@ETAPS ’16. EPTCS 216. 2016,
pp. 24–49. doi: 10.4204/EPTCS.216.2.

[7] A. M. Ben-Amram and G. W. Hamilton. “Tight Worst-Case Bounds for Polynomial Loop
Programs”. In: Proc. FOSSACS ’19. LNCS 11425. 2019, pp. 80–97. doi: 10.1007/978-3-
030-17127-8_5.

294

https://doi.org/10.4230/LIPIcs.MFCS.2017.78
https://doi.org/10.4230/LIPIcs.MFCS.2017.78
https://doi.org/10.1007/s10817-010-9174-1
https://doi.org/10.1017/S1471068419000152
https://doi.org/10.1007/978-3-540-69407-6_7
https://doi.org/10.1142/S0129054112400588
https://doi.org/10.4204/EPTCS.216.2
https://doi.org/10.1007/978-3-030-17127-8_5
https://doi.org/10.1007/978-3-030-17127-8_5

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

[8] A. M. Ben-Amram, J. J. Doménech, and S. Genaim. “Multiphase-Linear Ranking Functions
and Their Relation to Recurrent Sets”. In: Proc. SAS ’19. LNCS 11822. 2019, pp. 459–480.
doi: 10.1007/978-3-030-32304-2_22.

[9] M. Bozga, R. Iosif, and F. Konecný. “Deciding Conditional Termination”. In: Logical
Methods in Computer Science 10.3 (2014). doi: 10.2168/LMCS-10(3:8)2014.

[10] M. Braverman. “Termination of Integer Linear Programs”. In: Proc. CAV ’06. LNCS 4144.
2006, pp. 372–385. doi: 10.1007/11817963_34.

[11] T. Brázdil, K. Chatterjee, A. Kucera, P. Novotný, D. Velan, and F. Zuleger. “Efficient
Algorithms for Asymptotic Bounds on Termination Time in VASS”. In: Proc. LICS ’18.
2018, pp. 185–194. doi: 10.1145/3209108.3209191.

[12] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. “Analyzing Runtime and
Size Complexity of Integer Programs”. In: ACM Transactions on Programming Languages
and Systems 38.4 (2016), 13:1–13:50. doi: 10.1145/2866575.

[13] Q. Carbonneaux, J. Hoffmann, T. W. Reps, and Z. Shao. “Automated Resource Analysis
with Coq Proof Objects”. In: Proc. CAV ’17. LNCS 10427. 2017, pp. 64–85. doi: 10.1007/
978-3-319-63390-9_4.

[14] T. Colcombet, L. Daviaud, and F. Zuleger. “Size-Change Abstraction and Max-Plus
Automata”. In: Proc. MFCS ’14. LNCS 8634. 2014, pp. 208–219. doi: 10.1007/978-3-
662-44522-8_18.

[15] L. Dai and B. Xia. “Non-Termination Sets of Simple Linear Loops”. In: Proc. ICTAC ’12.
LNCS 7521. 2012, pp. 61–73. doi: 10.1007/978-3-642-32943-2_5.

[16] A. Flores-Montoya. “Upper and Lower Amortized Cost Bounds of Programs Expressed as
Cost Relations”. In: Proc. FM ’16. LNCS 9995. 2016, pp. 254–273. doi: 10.1007/978-3-
319-48989-6_16.

[17] F. Frohn, M. Naaf, J. Hensel, M. Brockschmidt, and J. Giesl. “Lower Runtime Bounds for
Integer Programs”. In: Proc. IJCAR ’16. LNCS 9706. 2016, pp. 550–567. doi: 10.1007/978-
3-319-40229-1_37.

[18] F. Frohn and J. Giesl. “Termination of Triangular Integer Loops is Decidable”. In: Proc.
CAV ’19. LNCS 11562. 2019, pp. 269–286. doi: 10.1007/978-3-030-25543-5_24. arXiv:
1905.08664.

[19] F. Frohn, M. Hark, and J. Giesl. “On the Decidability of Termination for Polynomial
Loops”. In: CoRR abs/1910.11588 (2019). arXiv: 1910.11588.

[20] F. Frohn. “A Calculus for Modular Loop Acceleration”. In: Proc. TACAS ’20. LNCS. To
appear. 2020. arXiv: 2001.01516.

[21] J. Giesl, A. Rubio, C. Sternagel, J. Waldmann, and A. Yamada. “The Termination and
Complexity Competition”. In: Proc. TACAS ’19. LNCS 11429. 2019, pp. 156–166. doi:
10.1007/978-3-030-17502-3_10.

[22] V. Halava, T. Harju, M. Hirvensalo, and J. Karhumäki. Skolem’s Problem – On the Border
between Decidability and Undecidability. Tech. rep. 683. Turku Center for Computer Science,
2005. url: http://tucs.fi/publications/attachment.php?fname=TR683.pdf.

[23] J. Hoffmann, A. Das, and S.-C. Weng. “Towards Automatic Resource Bound Analysis for
OCaml”. In: Proc. POPL ’17. 2017, pp. 359–373. doi: 10.1145/3009837.3009842.

295

https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.2168/LMCS-10(3:8)2014
https://doi.org/10.1007/11817963_34
https://doi.org/10.1145/3209108.3209191
https://doi.org/10.1145/2866575
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1007/978-3-662-44522-8_18
https://doi.org/10.1007/978-3-662-44522-8_18
https://doi.org/10.1007/978-3-642-32943-2_5
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-40229-1_37
https://doi.org/10.1007/978-3-319-40229-1_37
https://doi.org/10.1007/978-3-030-25543-5_24
https://arxiv.org/abs/1905.08664
https://arxiv.org/abs/1910.11588
https://arxiv.org/abs/2001.01516
https://doi.org/10.1007/978-3-030-17502-3_10
http://tucs.fi/publications/attachment.php?fname=TR683.pdf
https://doi.org/10.1145/3009837.3009842

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

[24] M. Hosseini, J. Ouaknine, and J. Worrell. “Termination of Linear Loops over the Integers”.
In: Proc. ICALP ’19. LIPIcs 132. 2019, 118:1–118:13. doi: 10.4230/LIPIcs.ICALP.2019.
118.

[25] A. Humenberger, M. Jaroschek, and L. Kovács. “Invariant Generation for Multi-Path
Loops with Polynomial Assignments”. In: Proc. VMCAI ’18. LNCS 10747. 2018, pp. 226–
246. doi: 10.1007/978-3-319-73721-8_11.

[26] Z. Kincaid, J. Cyphert, J. Breck, and T. W. Reps. “Non-Linear Reasoning for Invariant
Synthesis”. In: Proceedings of the ACM on Programming Languages 2.POPL (2018),
54:1–54:33. doi: 10.1145/3158142.

[27] Z. Kincaid, J. Breck, J. Cyphert, and T. W. Reps. “Closed Forms for Numerical Loops”.
In: Proceedings of the ACM on Programming Languages 3.POPL (2019), 55:1–55:29. doi:
10.1145/3290368.

[28] L. Kovács. “Reasoning Algebraically About P-Solvable Loops”. In: Proc. TACAS ’08.
LNCS 4963. 2008, pp. 249–264. doi: 10.1007/978-3-540-78800-3_18.

[29] J. Leike and M. Heizmann. “Ranking Templates for Linear Loops”. In: Logical Methods in
Computer Science 11.1 (2015). doi: 10.2168/LMCS-11(1:16)2015.

[30] Y. Li. “A Recursive Decision Method for Termination of Linear Programs”. In: Proc.
SNC ’14. 2014, pp. 97–106. doi: 10.1145/2631948.2631966.

[31] Y. Li. “Termination of Single-Path Polynomial Loop Programs”. In: Proc. ICTAC ’16.
LNCS 9965. 2016, pp. 33–50. doi: 10.1007/978-3-319-46750-4_3.

[32] Y. Li. “Witness to Non-Termination of Linear Programs”. In: Theoretical Computer
Science 681 (2017), pp. 75–100. doi: 10.1016/j.tcs.2017.03.036.

[33] S. de Oliveira, S. Bensalem, and V. Prevosto. “Polynomial Invariants by Linear Algebra”. In:
Proc. ATVA ’16. LNCS 9938. 2016, pp. 479–494. doi: 10.1007/978-3-319-46520-3_30.

[34] S. de Oliveira, S. Bensalem, and V. Prevosto. “Synthesizing Invariants by Solving Solvable
Loops”. In: Proc. ATVA ’17. LNCS 10482. 2017, pp. 327–343. doi: 10.1007/978-3-319-
68167-2_22.

[35] J. Ouaknine and J. Worrell. “Positivity Problems for Low-Order Linear Recurrence
Sequences”. In: Proc. SODA ’14. 2014, pp. 366–379. doi: 10.1137/1.9781611973402.27.

[36] J. Ouaknine and J. Worrell. “On the Positivity Problem for Simple Linear Recurrence
Sequences,” in: Proc. ICALP ’14. LNCS 8573. 2014, pp. 318–329. doi: 10.1007/978-3-
662-43951-7_27.

[37] J. Ouaknine and J. Worrell. “Ultimate Positivity is Decidable for Simple Linear Recurrence
Sequences”. In: Proc. ICALP ’14. LNCS 8573. 2014, pp. 330–341. doi: 10.1007/978-3-
662-43951-7_28.

[38] J. Ouaknine, J. S. Pinto, and J. Worrell. “On Termination of Integer Linear Loops”. In:
Proc. SODA ’15. 2015, pp. 957–969. doi: 10.1137/1.9781611973730.65.

[39] J. Ouaknine and J. Worrell. “On Linear Recurrence Sequences and Loop Termination”.
In: SIGLOG News 2.2 (2015), pp. 4–13. url: https://dl.acm.org/citation.cfm?id=
2766191.

[40] E. Rodŕıguez-Carbonell and D. Kapur. “Automatic Generation of Polynomial Loop
Invariants: Algebraic Foundation”. In: Proc. ISSAC ’04. 2004, pp. 266–273. doi: 10.1145/
1005285.1005324.

296

https://doi.org/10.4230/LIPIcs.ICALP.2019.118
https://doi.org/10.4230/LIPIcs.ICALP.2019.118
https://doi.org/10.1007/978-3-319-73721-8_11
https://doi.org/10.1145/3158142
https://doi.org/10.1145/3290368
https://doi.org/10.1007/978-3-540-78800-3_18
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.1145/2631948.2631966
https://doi.org/10.1007/978-3-319-46750-4_3
https://doi.org/10.1016/j.tcs.2017.03.036
https://doi.org/10.1007/978-3-319-46520-3_30
https://doi.org/10.1007/978-3-319-68167-2_22
https://doi.org/10.1007/978-3-319-68167-2_22
https://doi.org/10.1137/1.9781611973402.27
https://doi.org/10.1007/978-3-662-43951-7_27
https://doi.org/10.1007/978-3-662-43951-7_27
https://doi.org/10.1007/978-3-662-43951-7_28
https://doi.org/10.1007/978-3-662-43951-7_28
https://doi.org/10.1137/1.9781611973730.65
https://dl.acm.org/citation.cfm?id=2766191
https://dl.acm.org/citation.cfm?id=2766191
https://doi.org/10.1145/1005285.1005324
https://doi.org/10.1145/1005285.1005324

Polynomial Loops: Beyond Termination Hark, Frohn, and Giesl

[41] M. Sinn, F. Zuleger, and H. Veith. “Complexity and Resource Bound Analysis of Imperative
Programs Using Difference Constraints”. In: Journal of Automated Reasoning 59.1 (2017),
pp. 3–45. doi: 10.1007/s10817-016-9402-4.

[42] A. Srikanth, B. Sahin, and W. R. Harris. “Complexity Verification Using Guided Theorem
Enumeration”. In: Proc. POPL ’17. 2017, pp. 639–652. doi: 10.1145/3009837.3009864.

[43] A. Tiwari. “Termination of Linear Programs”. In: Proc. CAV ’04. LNCS 3114. 2004,
pp. 70–82. doi: 10.1007/978-3-540-27813-9_6.

[44] TPDB (Termination Problems Data Base). url: http://termination-portal.org/
wiki/TPDB.

[45] B. Xia and Z. Zhang. “Termination of Linear Programs with Nonlinear Constraints”. In:
Journal of Symbolic Computation 45.11 (2010), pp. 1234–1249. doi: 10.1016/j.jsc.2010.
06.006.

[46] F. Zuleger. “The Polynomial Complexity of Vector Addition Systems with States”. In:
CoRR abs/1907.01076 (2019). arXiv: 1907.01076.

297

https://doi.org/10.1007/s10817-016-9402-4
https://doi.org/10.1145/3009837.3009864
https://doi.org/10.1007/978-3-540-27813-9_6
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB
https://doi.org/10.1016/j.jsc.2010.06.006
https://doi.org/10.1016/j.jsc.2010.06.006
https://arxiv.org/abs/1907.01076

	Introduction
	Preliminaries
	The Halting Problem
	Runtime Bounds
	Related Work and Conclusion

