
Tableau Calculus for Dummett Logic Based on

Present and Next State of Knowledge

Guido Fiorino
Dipartimento di Metodi Quantitativi per le Scienze Economiche ed Aziendali,
Università di Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milano, Italy.

guido.fiorino@unimib.it

Abstract

In this paper we use the Kripke semantics characterization of Dummett logic to in-
troduce a new way of handling non-forced formulas in tableau proof systems. We pursue
the aim of reducing the search space by strictly increasing the number of forced proposi-
tional variables after the application of non-invertible rules. The focus of the paper is on a
new tableau system for Dummett logic, for which we have an implementation. The ideas
presented can be extended to intuitionistic logic as well.

1 Introduction

In this paper we present a tableau calculus and theorem prover for propositional Dummett logic.
By exploiting the linearly ordered Kripke semantics of Dummett logic, we devise a tableau
calculus working on two semantical levels: the present and the next state of knowledge. In this
way we can guarantee that as the construction of the tableau proceeds, moving from a state of
knowledge to another the known information strictly increases. Moreover, the calculus can be
equipped with specialized rules to reduce the branching. As a result, the decision procedure
is speeded up. In Section 6 we discuss how to apply our ideas to a tableau calculus exploiting
information about the next state of knowledge in the case of Intuitionistic deduction.

Dummett logic has been extensively investigated both by people working in computer science
and in logic. The history of this logic starts with Gödel, who studied the family of logics
semantically characterizable by a sequence of n-valued (n > 2) matrices ([12]). In paper [7]
Dummett studied the logic semantically characterized by an infinite valued matrix which is
included in the family of logics studied by Gödel and proved that such a logic is axiomatizable
by adding to any Hilbert system for propositional intuitionistic logic the axiom scheme (p →
q) ∨ (q → p). Moreover, it is well-known that such a logic is semantically characterizable by
linearly ordered Kripke models. Dummett logic has been extensively studied also in recent
years for its relationships with computer science ([4]) and fuzzy logics ([14]). For a survey in
proof theory in Gödel-Dummett logics we quote [6].

To perform automated deduction both tableau and sequent calculi have been proposed.
Paper [1] provides tableau calculi whose distinguishing feature is a multiple premise rule for
implicative formulas that are not-forced. The syntactical way to express this semantical meaning
is by the sign F. We recall that the sign F comes from Smullyan ([18, 11]) and labels those
formulas that in a sequent calculus occur in the right-hand side of ⇒. A tableau calculus
derived from those of [1] is provided in paper [9]. Its main feature is that the depth of every
deduction is linearly bounded in the length of the formula to be proved.

The approach of [1], based on characterizing Dummett logic by means of the multiple premise
rule, has been criticized because, from the worst case analysis perspective, there are simple
examples of sets of formulas giving rise to a factorial number of branches in the number of
formulas in the set. Paper [5] shows how to get rid of the multiple premise rule. New rules are
provided whose correctness is strictly related to the semantics of Dummett logic. These ideas
have been further developed and in paper [16] a graph-theoretic decision procedure is described

G. Sutcliffe, S. Schulz, E. Ternovska (eds.), IWIL 2010 (EPiC Series, vol. 2), pp. 17–32 17

guido.fiorino@unimib.it

A New Calculus for Dummett Logic Guido Fiorino

and implemented. The approach introduced in [5] has also disadvantages with respect to the
multiple premise rule proposed in [1] and these disadvantages have been considered in [10],
where also a new version of the multiple premise rule is proposed. This version, from a practical
point of view, can reduce the branching when compared with the original one. Paper [10] also
provides an implementation that outperforms the one of [16], thus proving that the approach
based on the multiple premise rule of [1] deserves attention also from the practical point of
view. As a matter of fact, on the one hand the rules of [5] give rise to two branches at most, on
the other hand there are cases of formulas that multiple premise calculi decide with a number
of steps lower than the calculi based on [5].

In this paper we continue our investigation around multiple premise calculi for Dummett
logic. The tool we use to prove our results is the characterization of Dummett logic via linearly
ordered Kripke models, whose elements are considered worlds or states of knowledge ordered
w.r.t. ≤ and α ≤ β means that, roughly speaking, β is in a subsequent point of the time w.r.t.
α.

With the aim to reduce the size of the proofs, we present a calculus whose main feature
is the way the non-forced formulas are handled. In tableau calculi proofs start by supposing
that in the present state of knowledge A is not forced. A proof of our calculus starts by adding
a further semantical constraint, namely, by supposing that the present state of knowledge is
the last where A is not forced. This further constraint implies that in the present we have
information about a different semantical status of A in the future: if we conclude that there
exists the next state of knowledge, then we deduce that in such a future state of knowledge A is
forced (note that this implies that starting from such a future state of knowledge A is equivalent
to ⊤). Such information can be handled to draw deductions about the semantical status of the
formulas both in the present and in the future state of knowledge. As a consequence, our
calculus handles two kinds of signed formulas: the first kind describes the semantical status of
a formula at the present state of knowledge, the second kind describes the semantical status
of a formula to the next state of knowledge. The introduction of the signs related to the next
state of knowledge allows to introduce specialized rules that exploit the knowledge about the
future to draw deductions about the present. In particular, we refer to the introduction of
specialized and single conclusion rules to handle the formulas of the kind F(A → B) (to be
read “at the present state of knowledge, the fact A → B is not known”), thus reducing the
branching generated by the multiple premise rule.

The semantical constraint used in calculus has also the advantage to change the effect of the
application of the non-invertible rules. Roughly speaking, non-invertible rules draw conclusions
about future states of knowledge having as premise facts about the present. The application of
these rules has an effect in the proof-search, usually requiring the introduction of backtracking
to guarantee the completeness of the proof-search procedure. The semantical effect is that in
the construction of the counter model a new state of knowledge is added, corresponding to the
facts derived by the non-invertible rule. In the known sequent/tableau calculi for intermediate
logics there is no guarantee that in the conclusion of the non-invertible rules at least one fact
that in the premise was explicitly unknown becomes explicitly known in the conclusion. In the
semantical construction this means that there is no guarantee that between two subsequent
worlds, knowledge increases. The two semantical levels used in our calculus allow us to provide
non-invertible rules such that there is at least one fact that in the premise is explicitly signed
as not known and in the conclusion is explicitly signed as known. This implies that moving
from the present to the next state of knowledge there is at least one explicitly unknown fact
of the present that becomes explicitly known in the future. This has also a correspondence in
the construction of the Kripke counter model, where there are no two elements exactly forcing

18

A New Calculus for Dummett Logic Guido Fiorino

the same propositional variables. Such an increment of known information, that is formulas
equivalent to ⊤, is exploited by the replacement rule, which replaces all the occurrences of a
formula proved to be equivalent to the ⊤ with ⊤ . Such a replacement reduces the size of
the set to be decided. Further reductions are possible by applying replacements based on the
truth table of the connectives. Rules based on the replacement have been proved effective to
dramatically reduce the search space both in classical and intuitionistic logic ([17, 2]), thus
we have developed a calculus whose rules are designed to conclude as much as possible about
formulas equivalent to ⊤. We remark that by using the appropriate data structures to represent
formulas and sets of formulas, the application of the replacement rule and the reduction rules
based on the truth table of the connectives can be performed in constant time. The results
of our prolog prototype show that the calculus we provide is suitable for an implementation
outperforming those cited above.

2 Basic definitions, the calculus and general considera-

tions

We consider the propositional language based on a denumerable set of propositional variables
PV , the boolean constants ⊤ and ⊥ and the logical connectives ¬,∧,∨,→. We call atoms

the elements of PV ∪ {⊤,⊥}. In the following, formulas (respectively set of formulas and
propositional variables) are denoted by letters A, B, C. . . (respectively S, T , U ,. . . and p, q,
r,. . .) possibly with subscripts or superscripts.

From the introduction we recall that Dummett Logic (Dum) can be axiomatized by adding
to any axiom system for propositional intuitionistic logic the axiom scheme (p → q) ∨ (q → p)
and a well-known semantical characterization of Dum is by linearly ordered Kripke models. In
the paper model means a linearly ordered Kripke model, namely a structure K = 〈P,≤,ρ,〉,
where 〈P,≤, ρ〉 is a linearly ordered set with ρ minimum with respect to ≤ and is the forcing
relation, a binary relation on P × (PV ∪ {⊤,⊥}) such that: (i) if α p and α ≤ β, then β p;
(ii) for every α ∈ P , α ⊤ holds and α ⊥ does not hold. Hereafter we denote the members
of P by means of lowercase letters of the Greek alphabet.

The forcing relation is extended in a standard way to arbitrary formulas of our language as
follows:

1. α A ∧B iff α A and α B;

2. α A ∨B iff α A or α B;

3. α A → B iff, for every β ∈ P such that α ≤ β, β A implies β B;

4. α ¬A iff for every β ∈ P such that α ≤ β, β A does not hold.

We write α 1 A when α A does not hold. It is easy to prove that for every formula A the
persistence property holds: If α A and α ≤ β, then β A. We say that β is immediate

successor of α iff α < β and there is no γ ∈ P such that α < γ < β. A formula A is valid in a

model K = 〈P,≤,ρ,〉 if and only if ρ A. It is well-known that Dum coincides with the set
of formulas valid in all models.

The rules of our calculus D are in Figures 1-4, where rules in Figures 1 and 2 form the
logical apparatus necessary to decide Dum, whereas rules in Figures 3 and 4 are optimization
rules, introduced to speed-up the deduction. The calculus D works on signed formulas, that is
well-formed formulas prefixed with one of the signs T (with TA to be read “the fact A is known

19

A New Calculus for Dummett Logic Guido Fiorino

at the present state of knowledge”), F (with FA to be read “the fact A is not known at the
present state of knowledge”), Fl (with FlA to be read “this is the last state of knowledge where
A is not known”), Fn (with FnA to be read “A is not known in the next state of knowledge”)
and Tn (with TnA to be read “A will be known in the next state of knowledge”), and on
sets of signed formulas (hereafter we omit the word “signed” in front of “formula” in all the
contexts where no confusion arises). Formally, the meaning of the signs is provided by the
relation realizability (✄) defined as follows: Let K = 〈P,≤,ρ,〉 be a model, let α ∈ P , let H be
a signed formula and let S be a set of signed formulas. We say that α realizes H (respectively
α realizes S and K realizes S), and we write α ✄ H (respectively α ✄ S and K ✄ S), if the
following conditions hold:

1. α✄TA iff α A;

2. α✄ FA iff α 1 A;

3. α✄ FnA iff there exists β > α, β ✄ FA;

4. α✄TnA iff for every β > α, β ✄TA;

5. α✄ FlA iff α✄ FA and α✄TnA;

6. α✄ S iff α realizes every formula in S;

Before to enter into technical details, let us justify the introduction of the signs Fl, Fn and
Tn in the object language by means of a motivating case. Let us suppose that a world α of a
model K realizes SF→ = {F(A1 → B1), . . . ,F(An → Bn)}. Then there exists the last element
β ≥ α such that β ✄TAj ,FBj , SF→ \ {F(Aj → Bj)}. Without loss of generality we let j = 1.
Analogously, there exists an element γ ≥ β such that γ ✄ TAi,FBi,TA1, SF→ \ {F(A1 →
B1),F(Ai → Bi)}. Without loss of generality we let i = 2. Now, β < γ or β = γ. If β < γ,
then, since β is last element where FB1 holds, it follows that γ ✄ TB1 holds. If β = γ, then
β is the last element where both B1 and B2 are not forced. The example shows that we can
give a rule (F →) taking into account that if α ✄ F(Ai → Bi), for i = 1, . . . , n, then the set
{TAi,FBi} is realized in θ ∈ {α, β} and for every world γ > θ, γ ✄ TBi holds. The sign Fl

aims to codify such a semantical property of Bi.
Generalizing the case given above, let SF→ = {F(A1 → B1), . . . ,F(An → Bn)} and let S

be a set of formulas. Let us suppose that α ✄ S, SF→. Then, for i = 1, . . . , n, let us consider
the element βi such that βi ✄ TAi,FBi and for every γ > βi, γ ✄ TAi,TBi. Thus βi is
the maximum element such that βi ✄ TAi,FBi. Since α ✄ F(Ai → Bi), such an element βi

exists. Let βj = min{β1, . . . , βn}, with j ∈ {1, . . . , n}. There are two cases: (i) βj = α, then
we conclude that β realizes the set S,TAj ,FlBj , SF→ \ {F(Aj → Bj)}; (ii) βj > α, then βj

realizes the set Sc,TAj ,FlBj , SF→ \ {F(Aj → Bj)}, where, by the meaning of the signs, Sc

consists of: (i) the formulas of S signed with T; (ii) the formulas TA such that FlA ∈ S.
With the aim of reducing the size of the proofs, we add further considerations justifying

the introduction of the sign Fn. Let us suppose that beside α✄ S, SF→ we also know that for
every model β1, . . . , βj−1 > βj holds. This rules out that βj ✄ TAi,FlBi, for i = 1, . . . , j − 1,
and implies that there exists an element γ such that βj < γ and γ ✄ F(Ai → Bi). The
sign Fn aims to codify that the formulas F(Ai → Bi) have the following semantical property:
there exists an element γ such that βj < γ and γ ✄F(Ai → Bi), thus the element βj is not the
maximum element realizing F(Ai → Bi). By the meaning of Fn it follows that βj✄Sc,Fn(A1 →
B1), . . . ,Fn(Aj−1 → Bj−1),TAj ,FBj , SF→ \ {F(A1 → B1), . . . ,F(Aj−1 → Bj−1)}, where by
the meaning of the signs, Sc consists of: (i) the formulas of S signed with T; (ii) the formulas

20

A New Calculus for Dummett Logic Guido Fiorino

S,T(A ∧ B)

S,TA,TB
T∧

S,F(A ∧ B)

S,FA|S,FB
F∧

S,T¬(A ∧ B)

S,T¬A|S,T¬B
T¬∧

S,T¬¬(A ∧ B)

S,T¬¬A,T¬¬B
T¬¬∧

S,T(A ∨ B)

S,TA|S,TB
T∨

S,F(A ∨ B)

S,FA,FB
F∨

S,T¬(A ∨ B)

S,T¬A,T¬B
T¬∨

S,T¬¬(A ∨ B)

S,T¬¬A|S,T¬¬B
T¬¬∨

S,F¬A

S,T¬¬A
F¬

S,T¬¬¬A

S,T¬A
T¬¬¬

S,T¬(A → B)

S,T¬¬A,T¬B
T¬→

S,T¬¬(A → B)

S,T¬A|S,T¬¬B
T¬¬→

S,T((A ∧ B) → C)

S,T(A → (B → C))
T→∧

S,T(¬A → B)

S,T¬¬A|S,TB
T→¬

S,T((A ∨ B) → C)

S,T(A → C),T(B → C)
T→∨

S,T((A → B) → C)

S,F(A → p),T(p → C),T(B → p)|S,TC
T→→ with p a new atom

S,Fl(A ∨ B)

S,FA,FlB,TnB|S,FB,FlA,TnA
Fl∨

S,F(A → B)

S,TA,FlB,TnB|S,Fn(A → B)
F→

S,Tn(A ∧ B)

S,TnA,TnB
Tn∧

S,Tn(¬A)

S,T¬A
Tn¬

S,F(A → B)

S,TA,FlB
F→1, provided TnB ∈ S

S,Fl(A → B)

S,TA,FlB,TnB
Fl→

S,Fl(A ∧ B)

S,FlA,TnA,TnB|S,TA,TnB,FlB
Fl∧

S,T(A → B)

Scl,T¬A|Scl,TB
T→-cl

S,T¬¬A

Scl,TA
T¬¬-cl

provided S only contains T and Tn-formulas

S,Fl(¬A)

Scl,TA
Fl¬

S,Fl⊥

Scl

Fl⊥,
S,Tn⊥

Scl

Tn⊥,

where
Scl = {TA|TA ∈ S} ∪ {T¬A|FA ∈ S} ∪ {T¬A|FlA ∈ S}

Figure 1: The invertible rules of D.

TA such that FlA ∈ S. These are the intuitions justifying the rules Fn and F →. In particular
the aim of F → is to distinguish if the last element realizing F(A → B) is the same element
α realizing the premise or an element β such that α < β. The rule Fn handles the formulas
of the kind FnA. For every formula there exists a world β such that α < β and β is the last
element such that β 1 A. The minimum of such β does not force any formula in evidence in
the premise.

The intuition behind the rule Fn can be explained as follows. Let us suppose that α ✄

S,FnA1, . . . ,FnAu. Thus there exists βi such that α < βi and βi ✄ FlAi, for i = 1, . . . , u.
We notice that βi realizes all the T formulas in S and βi ✄ TC if FlC ∈ S. Moreover, if
β1 = min{β1, . . . , βu}, then β1 ✄ FlA1,FA2, . . . ,FAu. If β2 is the minimum and we know
that there is no model realizing α ✄ S,FnA1, . . . ,FnAu having β1 as the minimum, then,
since β2 < β1 holds, we conclude that β2 ✄ FnA1,FlA2,FA3, . . . ,FAu. Analogously, if βi is
the minimum and we know that there is no model realizing α ✄ S,FnA1, . . . ,FnAu having
β1,. . . or βi−1 as the minimum, then, since βi < β1, . . . , βi−1 holds, we conclude that βi ✄

21

A New Calculus for Dummett Logic Guido Fiorino

S,T¬¬A

Scl,TA|Sφ,TA
T¬¬-Atom, provided S does not contain Fn-formulas.

where
Sφ = {TA|TA ∈ S} ∪ {TA|TnA ∈ S} ∪ {TA|FlA ∈ S} and
Scl = {TA|TA ∈ S} ∪ {T¬A|FA ∈ S} ∪ {T¬A|FlA ∈ S};

S,FnA1, . . . ,FnAu

V1| . . . |Vj | . . . |Vu

Fn

where:
for j = 1, . . . , u, Vj = Sc ∪ {FnA1, . . . ,FnAj−1,FlAj ,FAj+1, . . . ,FAu};
Sc = {TA|TA ∈ S} ∪ {TA|FlA ∈ S} ∪ {TA|TnA ∈ S};

Figure 2: The non-invertible rules of D.

S,TA

S[A/⊤],TA
ReplaceT

S,T¬A

S[A/⊥],T¬A
ReplaceT¬

S,T¬¬A

S[¬A/⊥],T¬¬A
ReplaceT¬¬

S,FnA,FlB

S,FnA[B/⊤],FlB
ReplaceFl

S,SA,TnB

S,SA[B/⊤],TnB
ReplaceTn, with S ∈ {Tn,Fn}

Figure 3: The Replacement rules

S

S[A ∧ ⊥/⊥]
Simp∧⊥

S

S[⊥ ∧ A/⊥]
Simp⊥∧

S

S[A ∧ ⊤/A]
Simp∧⊤

S

S[⊤∧ A/A]
Simp⊤∧

S

S[A ∨ ⊥/A]
Simp∨⊥

S

S[⊥ ∨ A/A]
Simp⊥∨

S

S[A ∨ ⊤/⊤]
Simp∨⊤

S

S[⊤∨ A/⊤]
Simp⊤∨

S

S[⊥ → A/⊤]
Simp⊥→

S

S[A → ⊥/¬A]
Simp→⊥

S

S[⊤ → A/A]
Simp⊤→

S

S[A → ⊤/⊤]
Simp→⊤

S

S[¬⊤/⊥]
Simp¬⊤

S

S[¬⊥/⊤]
Simp¬⊥

Figure 4: The Simplification rules

FnA1,. . . ,FnAi−1,FlAi,FAi+1,. . . ,FAu.

The sign Tn is strictly related to Fl and conveys redundant information with respect to the
completeness. For this reason we give only two rules to treat the formulas of this kind and the
replacement rules. This presentation of the calculus takes into account the implementation of
the prolog prototype. We have decided to embed in the logical part the information conveyed
from the Fl-formulas. The explicit introduction ofTn emphasizes how to handle the information
of the Fl-formulas and its computational cost. An alternative presentation could avoid to insert

22

A New Calculus for Dummett Logic Guido Fiorino

the sign Tn. In this case the rule F →1 becomes

S,F(A → B),FlB

S,TA,FlB

Also the replacement rules for Tn can be restated as rules involving Fl. The rules Tn∧ and
Tn¬ deserve some considerations. From the point of view of the presentation of the logical
calculus they are not relevant and can be deleted from Figure 1. From the practical point of
view, the application of these rules is useful because they break down the information deriving
from Fl formulas and can be used, as an example, to turn a F →-formula into a Fn →-
formula. Thus one wonders how to insert them in the decision procedure. Our implementation
treats explicitly the information derived from Fl-formulas by means of the sign Tn and of the
logical rules. A different choice could be to use the Fl-formulas and implicitly break down the
semantical information of the Fl-formulas to decide, as an example, if a given F →-formula can
be turned into a Fl →-formula, or if FnA is equivalent to (the inconsistent) formula Fn⊤. Our
choice is to insert all the machinery in the logical apparatus of the calculus. Finally, the sign
Tn permits to introduce many other special rules allowing a reduction of the branching. We
postpone to Section 6 the discussion of these special rules.

From the meaning of the signs we get the conditions that make a set of formulas inconsistent.
A set S is inconsistent if one of the following conditions holds:

-T⊥ ∈ S; -F⊤ ∈ S; -Fl⊤ ∈ S; -Fn⊤ ∈ S;
-{FnA,Fl¬B} ⊆ S; -{FnA,Tn⊥} ⊆ S; -{FnA,Fl⊥} ⊆ S;

We emphasize that inconsistency conditions of the last line are related to the existence of a
future state of knowledge α and in such a α the other formula of the pair is not realizable. It
is easy to prove the following

Proposition 1. If a set of formulas S is inconsistent, then for every Kripke model K =
〈P,≤,ρ,〉 and for every α ∈ P , α ⋫ S.

Proof. We only consider some significant the case {FnA,Fl¬B} ⊆ S. By absurd, let us suppose
that α✄ S, then α✄Fl¬B and α✄FnA. Since α✄FnA, there exists β ∈ P such that α < β.
By definition of Fl, it follows that α 1 ¬B and for every β ∈ P , if α < β, then β ¬B. Note
that such a β exists. Since K is a linearly ordered Kripke model, by definition of negation it
follows that α ¬B. Thus we have that α 1 ¬B and α ¬B, absurd. The other cases are
easy to prove.

A proof table (or proof tree) for S is a tree, rooted in S and obtained by the subsequent in-
stantiation of the rules of the calculus. The premise of the rules are instantiated in a duplication-
free style: in the application of the rules we always consider that the formulas in evidence in
the premise are not in S. We say that a rule R applies to a set U when it is possible to instan-
tiate the premise of R with the set U and we say that a rule R applies to a formula H ∈ U
(respectively the set {H1, . . . , Hn} ⊆ U) to mean that it is possible to instantiate the premise
of R taking S as U \ {H} (respectively U \ {H1, . . . , Hn}).

A closed proof table is a proof table whose leaves are all inconsistent sets. A closed proof
table is a proof of the calculus and a formula A is provable iff there exists a closed proof table
for {FlA}. We refer to [13] for full details on tableaux systems.

The calculus contains two non-invertible rules. In Section 4 we prove that it is possible to
devise a complete strategy that relies on respecting a particular sequence in the application of

23

A New Calculus for Dummett Logic Guido Fiorino

the rules: T¬¬-Atom is applied if no other rule is applicable and Fn is applied if no other rule
but T¬¬-Atom is applicable.

3 Correctness

To prove the correctness of D with respect to Dummett logic we need to prove that, if there
exists a closed proof table for {FlA}, then A is a valid formula in Dummett logic. The main
step is to prove that the rules of the calculus preserve realizability:

Proposition 2. For every rule of D, if a model realizes the premise, then there exists a model

realizing at least one of the conclusions.

Proof. Let α be an element of K = 〈P,≤,ρ,〉. We analyze the correctness of some rules of D.
Rule Fl →: if α✄ S,Fl(A → B), then, by definition of Fl, α 1 A → B and for every β ∈ P , if
α < β, then β A → B. This implies, by definition of forcing of an implicative formula, that
α A and α 1 B hold. By the preservation of forcing we get that, for every β ∈ P , if α < β,
then β A, thus β B. Therefore α✄ FlB.

Rule Fl∧: if α ✄ S,Fl(A ∧ B) then, by definition of Fl, α 1 A ∧ B, thus α 1 A or α 1 B.
Moreover, for every β ∈ P , if α < β, then β A ∧ B, thus β A and β B. We have two
possible cases: (i) α 1 A, thus α ✄ FlA, α ✄ TnA and α ✄ TnB; (ii) α A, thus α ✄ TA,
α✄ FlB and α✄TnB.

Rule Fl¬: if α ✄ S,Fl(¬A), then we notice that no Fn-formula is in S. By definition of Fl,
α 1 ¬A, thus there exists γ ∈ P such that α ≤ γ and γ A. Moreover, for every β ∈ P ,
if α < β, then β ¬A. By definition of forcing, an element cannot force a formula and its
negation, thus the only possibility is that α is the final element of K, thus γ = α. Since α is the
final element of K, for every formula B, α 1 B implies α ¬B and α ¬¬B implies α B.
Thus α✄ Scl.

Rule T¬¬-Atom: if α ✄ S,T¬¬A, then we have two cases: (i) α is not the final element φ.
By the semantical meaning of the signs, it follows that φ realizes all the T-formulas in S and
if FlB ∈ S, then φ ✄ TB; (ii) if α is the final element, then it is immediate to check that α
realizes the leftmost conclusion of T¬¬-Atom.

Rule Tn⊥: if α ✄ S,Tn⊥, then for every β ∈ P , if α < β, then β ⊥. Since no world forces
⊥ the only possibility is that α < β does not hold, thus α is the final element of K. Since
α behaves as a classical model with respect to the semantics of the connectives, we get that
α✄ Scl.

Theorem 1. If there exists a proof table for A, then A is valid in Dum.

Proof. By hypothesis there exists a proof table starting from {FlA} whose leaves are all incon-
sistent sets. An inconsistent set is not realizable and the rules of D preserve the realizability,
thus FlA is not realizable. By absurd, let us suppose that there exist a model K = 〈P,≤,ρ,〉
and a world α ∈ P such that α 1 A. Then, there exists β ∈ P s.t. α ≤ β, β 1 A and for every
γ ∈ P s.t β < γ, γ A holds. Thus β✄FlA and, since the rules of D preserve the realizability,
the leaves of the proof table are realized, which is impossible. We conclude that that for every
model K = 〈P,≤,ρ,〉 and every α ∈ P , α A, that is A is valid in Dum.

24

A New Calculus for Dummett Logic Guido Fiorino

The aim of the sign Fl is to label those formulas that after an application of Fn become
equivalent to ⊤. After an application of the rule Fn, the formulas signed with Fl become
signed with T, thus they are equivalent to ⊤. Hence the rule ReplaceT of Fig. 3 are applicable.
The occurrences of ⊤ are removed by using the simplification rules of Fig. 4. We refer to
the whole machinery of Fig. 3 and 4 as reduction rules. It is an easy task to check that the
rules are invertible. We emphasize that ReplaceT¬ and ReplaceT¬¬ are a specialization of
ReplaceT. The rule ReplaceFl exploits the meaning of Fl and Fn to perform a replacement:
if α✄ FnA,FlB holds, then we conclude β ✄ FA,TB, with β immediate successor of α. Thus
β ✄ FA[B/⊤] and α✄ FA[B/⊤] hold.

It can be noticed that in the conclusion of the Fl-rules there is a duplication of a subformula
of the premise. This duplication, that occurs with sign Tn, is correct but not necessary to the
completeness and is related to the logical treatment of the information under sign Fl. It has
to be noticed that this duplication does not explode in an exponential number of formulas
since the presence of the rule ReplaceTn allows the Tn-formulas generated by duplication from
Fl-formulas to be treated only once. As an example, consider Fl → and let us suppose that B
occurs as subformula of TnC in S. By applying ReplaceTn the occurrence of B in C is replaced
by ⊤, thus the rules of the calculus handle the connectives of B twice: once when FlB is handled
and once when TnB is handled. We also remark that there are only two rules for Tn-formulas.
This implies that the overhead necessary to manage by Tn-formulas the information conveyed
by Fl-formulas does not implies the generation of branches and requires at most a number of
applications of rules of D which is linear in the length of the Fl-formulas.

Compared with the calculus in paper [10], introducing the sign Fl has a price: proof tables
can be wider, because of the combined action of F → and Fn. To reduce this problem there
is the rule F →1, which is not necessary to the completeness and represents an example of
exploitation of Tn-formulas. Moreover, since the application of rules in Fig.2 turns the Fl-
formulas into T-formulas, that is formulas equivalent to the logical value ⊤, we investigate if
this feature can reduce the depth of the proofs. We have experienced that the reduction rules
reduce the size of the proofs, for this reason we are devising a calculus that introduces as much
as possible formulas equivalent to the logical value ⊤.

4 A Strategy to Decide Dummett Logic and Its Complete-

ness

In the following we sketch the recursive procedure Dum(S). Given a set S of formulas, Dum(S)
returns either a closed proof table for S or NULL (if there exists a model realizing S). To
describe Dum we use the following definitions and notations. We call α-rules and β-rules the
rules of Figure 1 with one conclusion and with two conclusions, respectively. The α-formulas
and β-formulas are the kind of the signed formulas in evidence in the premise of the α-rules
and β-rules, respectively (e.g. T(A ∧ B) is an α-formula and T(A ∨ B) is a β-formula). Let
S be a set of formulas, let H ∈ S be an α or β-formula. With Rule(H) we denote the rule
corresponding to H in Figure 1. Let S1 or S1 | S2 be the nodes of the proof tree obtained
by applying to S the rule Rule(H). If Tab1 and Tab2 are closed proof tables for S1 and S2

respectively, then S
Tab1

Rule(H) or S
Tab1 | Tab2

Rule(H) denote the closed proof table for S defined

in the obvious way. Moreover, for H different from Fl⊥ and Tn⊥, Ri(H) (i = 1, 2) denotes
the set containing the formulas of Si which replaces H . For instance:
R1(T(A ∧B)) = {TA,TB },
R1(T(A ∨B)) = {TA}, R2(T(A ∨B)) = {TB},

25

A New Calculus for Dummett Logic Guido Fiorino

In the case of Fn we generalize the above notation. Let SFn
be the set of all the Fn-formulas

of S. Let S1| . . . |Sn be the nodes of the proof tree obtained by applying to S the rule Fn.
If Tab1 . . . , T abn are closed proof tables for S1, . . . , Sn, respectively, then S

Tab1 | ... | Tabn
Fn

is the closed proof table for S. With Ri(SFn
) we denote the set of formulas that replaces

the set SFn
in the i-th conclusion of Fn. For example, given SFn

= {FnA1,FnA2,FnA3},

R2(SFn→) = {FnA1,FlA2,FA3}.

We consider Simplification as function that applies to its parameters the reduction rules
as long as possible.

Function Dum (S)
1. If S is an inconsistent set, then Dum returns the proof S;

2. Let S′ =Simplification(S). If S′ 6= S, then let π = Dum(S′). If π is a proof, then Dum

returns S
π Simp, otherwise Dum returns NULL;

3. If the rule Fl⊥ or Tn⊥ applies to S, then let H ∈ S be the formula Tn⊥ or Fl⊥. If
Dum((S \ {H})cl) returns a proof π, then Dum returns the proof S

πRule(H), otherwise Dum

returns NULL;

4. If the rule T¬¬-cl or Fl¬ applies to S, then let H ∈ S be a formula of the kind T¬¬A or
Fl¬. If Dum((S \ {H})cl ∪ {TA}) returns a proof π, then Dum returns the proof S

πRule(H),
otherwise Dum returns NULL;

5. If an α-rule applies to S, then let H be a α-formula of S. If Dum((S \ {H}) ∪ R1(H))
returns a proof π, then Dum returns the proof S

πRule(H), otherwise Dum returns NULL;

6. If the rule T →-cl applies to S, then let H ∈ S be a formula of the kind T(A → B). Let
π1 = Dum((S \ {H})cl∪{T¬A}) and π2 = Dum((S \ {H})cl∪{TB}). If π1 or π2 is NULL, then
Dum returns NULL, otherwise Dum returns S

π1 | π2
T→-cl;

7. If a β-rule applies to S, then let H be a β-formula of S. Let π1 = Dum((S \ {H})∪R1(H))
and π2 = Dum((S \ {H}) ∪ R2(H)). If π1 or π2 is NULL, then Dum returns NULL, otherwise
Dum returns S

π1 | π2
Rule(H);

8. If the rule Fn applies to S, then let SFn
= {FnA ∈ S} and n = |SFn

|. If there exists

i ∈ {1, . . . , n}, such that πi = Dum((S \ SFn
)c ∪ Ri(SFn

)) is NULL, then Dum returns NULL.

Otherwise π1, . . . , πn are proofs and Dum returns S
π1 | ... | πn

Fn;

9. If the rule T¬¬-Atom applies to S, then let H be a T¬¬-Atom formula of S. Let
π1 = Dum((S \ {H})cl ∪ R1(H)) and π2 = Dum((S \ {H})φ ∪ R2(H)). If π1 or π2 is NULL,
then Dum returns NULL, otherwise Dum returns S

π1 | π2
Rule(H);

10. If none of the previous points apply, then Dum returns NULL.

end function Dum.

We emphasize that function Dum respects a particular sequence in the application of the
rules: T¬¬-Atom is applied if no other rule is applicable and Fn is applied if no other rule but
T¬¬-Atom is applicable. As a result no backtracking step is necessary.

By inspecting the rules of the calculus it follows that the procedure terminates. In particular
the rightmost conclusion of the rule F → only change the sign of the formula in evidence in
the premise, but we remark that the rule Fn handles these kind of formulas, thus the combined
action of F → and Fn allows to prove that there is no an infinite loop handling F →-formulas.

In order to get the completeness of Dum, in the following it is proved that given a set of

26

A New Calculus for Dummett Logic Guido Fiorino

formulas S, if the call of Dum(S) returns NULL, then there is enough information to build a
model K = 〈P,≤,ρ,〉 such that ρ✄ S.

Lemma 1 (Completeness). Let S be a set of formulas and suppose that Dum(S) returns NULL.
Then, there exists a Kripke model K = 〈P,≤,ρ,〉 such that ρ✄ S.

Proof. By induction on the number of nested recursive calls.
Basis: There are no recursive calls. Then Step 10 has been performed. We notice that S is
not inconsistent (otherwise Step 1 would have been performed) and S does not contain neither
Fn-formulas nor T¬¬-formulas (otherwise Step 8 or Step 9 would have been performed). In-
deed, S only contains atomic formulas signed with T,F,Tn, Fl, formulas of the kind T¬p, with
p atomic, and formulas of the kind T(p → A) with p atomic and Tp 6∈ S (otherwise, if Tp ∈ S
holds, then Step 2 applies and at least a recursive call to Dum would have been performed). It
is easy to prove that the model K = 〈P,≤,ρ,〉, where P = {ρ}, ρ ≤ ρ and ρ p iff Tp ∈ S,
realizes S.

Step: By induction hypothesis we assume that the proposition holds for all sets S′ such that
Dum(S′) requires less than n recursive calls. We prove the proposition holds for a set S such
that Dum(S) requires n recursive calls by inspecting all the possible cases where the procedure
returns the NULL value.

NULL value returned performing Step 4 with H of the kind Fl(¬A). By induction hypothesis
there exists a model K realizing Scl,TA. Notice that S does not contain Fn-formulas, otherwise
S would be inconsistent, and Scl contains only T-formulas. This implies that all the formulas
occurring in the subsequent recursive calls are signed with T. Thus no step related to the rules
of Fig. 2 is employed. We conclude that ρ is the only element of K and ρ✄ Scl implies ρ✄ S.
Moreover, ρ maximal element of K and ρ✄TA imply ρ✄ Fl(¬A).

NULL value returned performing Step 8. We notice that S is consistent, thus no formula of
the kind Fl(¬A) belongs to S. The set S contains atomic formulas and formulas of the kind
T(p → A), Fn(A → B), Fn(A ∧B), Fn(A ∨B). Since the NULL instruction in Step 8 has been
performed, at least a πi is NULL, then by induction hypothesis there is a model K′ = 〈P,≤′

, ρ′,′〉 realizing (S \ SFn
)c ∪ Ri(SFn

). We define a Kripke model K = 〈P ∪ {ρ},≤, ρ,〉,
where

P ∩ {ρ} = ∅,
≤ = ≤′ ∪ {(ρ, α)|α ∈ P}
 =

′ ∪ {(ρ, p)|Tp ∈ S}

Since K ′ is a Dummett model realizing (S \ SFn
)c, it follows that K is a Dummett model. As

a matter of fact, ρ′ is the immediate successor of ρ and TA ∈ S implies TA ∈ (S \ SFn
)c,

thus the forcing relation is preserved. Moreover, FlA ∈ S implies TA ∈ (S \ SFn
)c and the

consistency of S implies TA 6∈ S. Thus we have proved that K′
✄ (S \ SFn

)c ∪Ri(SFn
). It is

an easy task to check that K realizes S.

NULL value returned performing Step 9. We notice that when Step 9 is reached S does not
contain any Fn-formula. Thus if a T¬¬-formula belongs to S the recursive call is performed
and it is a correct application of the rule T¬¬-Atom. Since Step 9 returns NULL one between
π1 or π2 is NULL. If π1 is NULL, then by induction hypothesis there is a model K = 〈P,≤,ρ,〉
such that ρ ✄ (S \ {T¬¬A})cl ∪ TA. By the meaning of (S \ {T¬¬A})cl immediately we

27

A New Calculus for Dummett Logic Guido Fiorino

get that ρ✄ S. If π2 is NULL, then, by induction hypothesis, the recursive call returns a model
K ′ = 〈P,≤′, ρ′,′〉 realizing (S\{T¬¬A})φ∪{TA}. We define a modelK = 〈P∪{ρ},≤, ρ,〉 as
in the above point. Now, ρ′✄TA implies ρ✄T¬¬A. Moreover, by definition of (S \{T¬¬A})φ,
it is immediate to prove that ρ✄ (S \ {T¬¬A}) holds.

We conclude the section with a sketch of deduction with our calculus. We consider the
provable formula SYJ201.001 of ILTP library:

H ≡ ((((p0 → p1) ∧ (p1 → p0)) → C) ∧ (((p1 → p2) ∧ (p2 → p1)) → C)∧
(((p2 → p0) ∧ (p0 → p2)) → C)) → C

where C ≡ (p0 ∧ (p1 ∧ p2)).
The proof starts with FlH . Since H is implicative, Fl → is applied and we get

S1 = {T((((p0 → p1) ∧ (p1 → p0)) → C) ∧ (((p1 → p2) ∧ (p2 → p1)) → C)
∧ (((p2 → p0) ∧ (p0 → p2)) → C)),

FlC,TnC}

By applying two times T∧, two times Tn∧ and three times T → ∧ we get

S2 = {Tnp1,Tnp2,Tnp0,T((p2 → p0) → ((p0 → p2) → H)),
T((p1 → p2) → ((p2 → p1) → H)),
T((p0 → p1) → ((p1 → p0) → H)),FlC}

We apply to S2 the rule T →→, having T((p2 → p0) → ((p0 → p2) → H)) as main premise.
The result are two sets, we only consider the leftmost

S3 = {F(p2 → p0),T(p0 → ((p0 → p2) → H)),Tnp1,Tnp2,Tnp0,
T((p1 → p2) → ((p2 → p1) → H)),T((p0 → p1) → ((p1 → p0) → H)),FlC}

We apply to S3 the rule F →1 and Simplification as long as possible. The result is

S4 = {Tp2,Flp0,T(p1 → (p0 ∧ p1)),T(p0 → (p0 ∧ p1)),Tnp1,Tnp0,
T((p0 → p1) → ((p1 → p0) → (p0 ∧ p1))),Fl(p0 ∧ p1)}

We apply to S4 the rule T →→. The results are two sets, we only consider the leftmost:

S5 = {F(p0 → p1),T(p1 → ((p1 → p0) → (p0 ∧ p1))),Tp2,Flp0,T(p1 → (p0 ∧ p1)),
T(p0 → (p0 ∧ p1)),Tnp1,Tnp0,Fl(p0 ∧ p1)}

We apply to S5 the rule F →1 and then Simplification as long as possible. We get

S6 = {Tp0,Tp2,Tp1,Fl⊤}

which is contradictory. Along the same line we get a contradiction from the sets we left.

28

A New Calculus for Dummett Logic Guido Fiorino

5 Implementation and Experimental Results

The prolog prototype EPDL-new1 implements the strategy described in Section 4. The devel-
oping effort is not in the implementation of particular data structures but on the strategy to
reduce the branching. As a result, the application of the reduction rules requires a quadratic
number of steps in the length of the premise. By using the advanced data structures employed
in [2], such a number can be reduced to be constant. Since the replacement rules have been
proved useful to speed-up the intuitionistic deduction ([2]), beside the replacement rules of
Figure 3, EPDL-new implements the replacement rules:

S,TA,FlB

S,TA,TnA[B/⊤],FlB
ReplaceFl−dup

S,TA,TnB

S,TA,TnA[B/⊤],TnB
ReplaceTn−dup

provided a Fn-formula is in S

The advantage of these two further replacement rules is that they are a mechanism to discover
information that will be forced in the next state of knowledge. Since the sign T subsumes
Tn, an alternative is to introduce a Tn-formula for every T-formula in the set, but this would
increase the number of Tn-formulas also in cases where this information cannot be exploited.
With our choice a Tn-formula is introduced only when a new information about the future is
explicitly known. The benefit of discovering as much Tn-formulas as possible is related to the
rule F →1, a particular case of F →, that has one conclusion. The proviso on the application
of the rules guarantees that we do not waste time by applying the replacement rules if there is
no witness that a future state exists. Such a condition is necessary to guarantee the correctness
of

S,T¬A,TnB

S,T¬A[B/⊤],TnB
ReplaceTn−special

provided a Fn-formula is in S

a version of ReplaceTn − dup that does not require duplication of the negated T-formula.
Since ReplaceTn-dup and ReplaceFl-dup copy the premise TA, to avoid an infinite loops in
the application of the rules a special labelling on the copied formulas is implemented.

In Fig. 5 we report the comparisons with EPDL ([10]) on the formulas of ILTP library (the
ILTP family formulas from SYJ201 to SYJ206 are valid in Dummett logic). On the missing
families the behaviour of the implementations is similar. On the the families of formulas SYJ201,
SYJ205, SYJ207 and SYJ208 EPDL-new is clearly faster than EPDL and the timings of EPDL-
new grow slower than EPDL. As regard the family SYJ202 (the pigeon principle) EPDL-new
is clearly slower. This is due to the overhead to manage the Tn-formulas introduced in the
deduction that do not give any advantage to decide this formula. The overhead to manage
the Tn-formulas is twofold. In the deduction occur formulas of the kind Tn(A ∧ B), thus
the decision procedure applies the rule Tn∧. Moreover, the application of the rules in Fig. 3
and 4 requires, for both EPDL and EPDL-new, quadratic time in the number of connectives
and atoms in the set of formulas. Since the set managed by EPDL-new is bigger than EPDL
we have such an increment in the timings. As we noticed at the beginning of this section, by
employing the data structures of [2], the time required to apply the reduction rules can be
lowered from quadratic to constant in the number of symbols of the set to be handled. Thus
the impact of the overhead is greatly reduced. As regard the family formulas SYJ211, we notice
that the different timings have to be charged to the way the reduction rules are implemented.

1available from http://www.dimequant.unimib.it/˜guidofiorino/epdl.jsp

29

A New Calculus for Dummett Logic Guido Fiorino

Formula EPDL EPDL-new
SYJ201+1.002 0.21 0.03
SYJ201+1.003 2.73 0.07
SYJ201+1.004 33.63 0.14
SYJ201+1.005 358.07 0.26

SYJ202+1.004 0.12 0.23
SYJ202+1.005 1.02 2.24
SYJ202+1.006 9.32 27.21
SYJ202+1.007 100 335

SYJ205+1.009 12.04 2.18
SYJ205+1.010 30.44 3.00
SYJ205+1.011 75.57 3.84
SYJ205+1.012 187.17 5.06

SYJ207+1.003 0.27 0.04
SYJ207+1.004 3.33 0.10
SYJ207+1.005 37.78 0.17
SYJ207+1.006 419.80 0.27

Formula EPDL EPDL-new
SYJ208+1.009 6.55 1.70
SYJ208+1.010 14.75 3.05
SYJ208+1.011 30.06 5.03
SYJ208+1.012 71.28 8.23

SYJ211+1.017 0.17 1.05
SYJ211+1.018 0.20 1.16
SYJ211+1.019 0.22 1.38
SYJ211+1.020 0.26 1.59

SYJ212+1.011 0.25 0.90
SYJ212+1.012 0.49 1.90
SYJ212+1.013 1.18 4.12
SYJ212+1.014 2.22 8.25

Figure 5: EPDL and New-EPDL on ILTP formulas.

As a matter of fact, to decide the last formula of the family EPDL takes 127 rules and EPDL-
new 147, where the difference in the number of the rules is due to the application of Tn∧-rule.
We also remark that the growing ratio of the two implementations is similar. Finally EPDL
decides SYJ212+1.014 by applying 54 rules whereas EPDL-new applies 81. These formulas
are huge (SYJ212+1.014 is a formula in 14 variables, containing 131063 connectives and 98296
variable occurrences). Because of the duplication of the calculus, the sets of formulas managed
by EPDL-new contains more symbols than those managed by EPDL and the difference in
timings is mostly chargeable to the implementation of the reduction rules rather than to the
difference on the number of applications of rules. Another clue to support our statement is
that EPDL-new requires to apply 63, 69, 75 and 81 rules to decide respectively SYJ212+1.011,
SYJ212+1.012, SYJ212+1.013 and SYJ212+1.014, whereas to decide the same formulas EPDL
applies respectively 42, 46, 50 and 54 rules. We remark that the number of rules increases of
a constant value for both provers, but the timings of the EPDL and EPDL-new approximately
double.
Summarizing, on some families of formulas the ideas on which the calculus is based on do not
apply, as a result the deduction is slowed-down. This difference is remarkable on the family
SYJ202, the pigeon principle, that, apart from the first rule, is decided by a deduction requiring
rules for connectives ∧ and ∨. We point out that on the families SYJ202, SYJ211 and SYJ212
the multiple premise rule Fn is not applied. We conjecture that implementing the calculus with
better data structures, on the family formulas SYJ211 and SYJ212 the difference in timings
between EPDL and EPDL-new can be reduced almost to zero. Finally we remark that on the
other families the deduction requires some steps of the multiple premise rule Fn and in this
case both timings and growing ratio of EPDL-new are lower than EPDL.

30

A New Calculus for Dummett Logic Guido Fiorino

6 Conclusions and future work

The main novelty of the calculus presented in this paper is the presence of rules tailored to
draw deductions about the (immediate) future and rules exploiting the information about facts
known in the future to draw facts about the present state of knowledge. The aim is to reduce
the branching of the proof to decide a formula in Dummett logic. The presence of the signs
Fl and Tn allow us to introduce specialized rules in particular to handle implicative formulas.

Rule F →1 is an example but other specialized rules can be introduced:
S,F(A → B),FlA

S,FlA,FnB
is a further example of single conclusioned rule for F →-formulas. Also formulas of the kind
T((A → B) → C) can be handled by means of specialized rules:

S,T((A → B) → C),Fl(A → B)

S,Fl(A → B),TnC

S,T((A → B) → C),FlC

S,F(A → B),FlC

S,T((A → B) → C),Tn(A → B)

S,Fl(A → B),TnC|S,Tn(A → B),TC

S,T((A → B) → C),TnC

S,F(A → B),TnC|S,TC

These rules are a particular version of T →→ allowing to reduce branching or the size of
the conclusion.

As related works, we quote the implementation LC-cmodels ([16]), compared with EPDL
in [10]. We also quote the approach of [3], where propositional Dummett logic is decided via
a decision procedure for propositional Intuitionistic logic. Paper [3] introduces the notion of
Generalized Tableaux to decide intermediate logics. A Generalized Tableau is a tableau for
propositional Intuitionistic logic plus a rule to be applied once as first rule of the deduction.
The aim of this rule is to introduce formulas obtained by instantiating the axiom scheme
of the logic under consideration. For the case of Dummett logic, to decide a given formula
A, the special rule introduces the set of formulas obtained by instantiating in every possible
way the propositional variables the axiom schemata (p → q) ∨ (q → p) with the formulas
in Rsf(A)={B|B is subformula of A and B is a propositional variable or B ≡ C → D or
B ≡ ¬C}. Since |Rsf(A)| = O(|A|) and there are |Rsf(A)| choices for p and q, it follows that
the special rule introduces O(|A|2) formulas (|A| denotes the cardinality of A). Thus the number
of connectives to be handled in the deduction is O(|A|3). Paper [15] proves that propositional
intuitionistic logic is decidable in O(n lg n)-SPACE, hence this technique requires O(n3 lg n)-
SPACE and the depth of the deductions is O(|A|3). Another approach is the translation of A
into a formula to be decided in classical logic. One can exploit the fact that a formula with n
propositional variables is satisfiable in a Kripke model having n+1 worlds at most and writing
a formula A′ expressing that for every B and C, subformulas of A, B → C or C → B holds.
Moreover also the persistence of the forcing has to be expressed. Thus the size of A′ is O(|A|3).

The ideas presented in this paper for propositional Dummett logic can be applied to intu-
itionistic deduction too. Here we sketch how to design a calculus for the propositional implica-
tive fragment. The sign Fn is no longer necessary. Formulas of the kind F(A → B) are handled

by the rule
S,F(A → B)

S,TA,FlB|Sc,TA,FlB
and formulas of the kind T(A → B) are handled by the

rule
S,T(A → B)

S,TB|S,FlA,TnB|Sc,FlA,TnB
. We emphasize that these rules respect the subformula

property, thus we are on the way to design a duplication-free calculus (in the sense of [1]) re-
specting the subformula property, as long as the replacement rules are not employed. As regard

31

A New Calculus for Dummett Logic Guido Fiorino

the decision procedure equipped with the replacement rules, we expect to improve the perfor-
mances of fCube ([8]) as EPDL-new improves the performances of EPDL. Our consideration is
based on the fact that, since intuitionistic logic is in PSPACE whereas Dummett logic is in NP,
the overhead due to the application of the replacement and special rules is less in intuitionistic
than in Dummett logic.

References

[1] A. Avellone, M. Ferrari, and P. Miglioli. Duplication-free tableau calculi and related cut-free
sequent calculi for the interpolable propositional intermediate logics. Logic Journal of the IGPL,
7(4):447–480, 1999.

[2] A. Avellone, G. Fiorino, and U. Moscato. Optimization techniques for propositional intuitionistic
logic and their implementation. Theoretical Computer Science, 409(1):41–58, 2008.

[3] A. Avellone, P. Miglioli, U. Moscato, and M. Ornaghi. Generalized tableau systems for intermediate
propositional logics. In D. Galmiche, editor, Proceedings of the 6th International Conference on

Automated Reasoning with Analytic Tableaux and Related Methods: Tableaux ’97, volume 1227 of
LNAI, pages 43–61. Springer-Verlag, 1997.

[4] A. Avron. Simple consequence relations. Journal of Information and Computation, 92:276–294,
1991.

[5] A. Avron and B. Konikowska. Decomposition proof systems for gödel-dummett logics. Studia

Logica, 69(2):197–219, 2001.

[6] M. Baaz, A. Ciabattoni, and C. G. Fermüller. Hypersequent calculi for Gödel logics – a survey. J.
of Logic and Computation, 13(6):835–861, 2003.

[7] M. Dummett. A propositional calculus with a denumerable matrix. Journal of Symbolic Logic,
24:96–107, 1959.

[8] C. Fiorentini M. Ferrari and G. Fiorino. fcube: An efficient prover for intuitionistic propositional
logic. In LPAR 2010.

[9] G. Fiorino. An O(n log n)-space decision procedure for the propositional Dummett Logic. Journal
of Automated Reasoning, 27(3):297–311, 2001.

[10] G. Fiorino. Fast decision procedure for propositional dummett logic based on a multiple premise
tableau calculus. Information Sciences, 180(19):3633 – 3646, 2010.

[11] M.C. Fitting. Intuitionistic Logic, Model Theory and Forcing. North-Holland, 1969.

[12] K. Gödel. On the intuitionistic propositional calculus. In S. Feferman et al, editor, Collected

Works, volume 1. Oxford University Press, 1986.

[13] R. Hähnle. Tableaux and related methods. In John Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning, pages 100–178. Elsevier and MIT Press, 2001.

[14] P. Hajek. Metamathematics of Fuzzy Logic. Kluwer, 1998.

[15] J. Hudelmaier. An O(n log n)-space decision procedure for intuitionistic propositional logic. Jour-
nal of Logic and Computation, 3(1):63–75, 1993.

[16] D. Larchey-Wendling. Graph-based decision for Gödel-Dummett logics. J. Autom. Reasoning,
38(1-3):201–225, 2007.

[17] F. Massacci. Simplification: A general constraint propagation technique for propositional and
modal tableaux. In Harrie de Swart, editor, Proc. International Conference on Automated Rea-

soning with Analytic Tableaux and Related Methods, Oosterwijk, The Netherlands, volume 1397 of
LNCS, pages 217–232. Springer-Verlag, 1998.

[18] R.M. Smullyan. First-Order Logic. Springer, Berlin, 1968.

32

	Introduction
	Basic definitions, the calculus and general considerations
	Correctness
	A Strategy to Decide Dummett Logic and Its Completeness
	Implementation and Experimental Results
	Conclusions and future work

