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Abstract

The geometries of points, lines, line segments, triangles and circles have been studied at
depth by many learned mathematicians, scholars and researchers for a long period of time.
Among these geometries the geometrical properties of nine-point circle is indeed interesting,
fascinating and glamorous also. The curiosity present in human mind have motivated the
aforesaid community to explore the properties of more than one nine-point circle emerging
from four arbitrarily chosen points. In this paper the authors have attempted to simulate
a few of them in a user friendly environment and bringing in light a case which is yet not
either studied or not found in the prevailing literature, as regards Schrödder’s findings.
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1 Introduction

The NPC in the world of geometry is like a moon in the sky. This is because of its interesting,
fascinating and much more than that complex as regards the proof of its properties. The con-
struction of an NPC has been carried out by numerous learned mathematicians, researchers and
scholars. By the curiosity of the afore-said communities of researchers more extensive studies
have also come into picture. This includes the emergence of the four NPC coming into the
picture on selection of four arbitrarily chosen points and their findings are stated as follow: The
four arbitrarily chosen points describe four basic reference triangles. Their NPCs are always
concurrent in a point. Further, if the four arbitrarily chosen points are ortho-centric then the
four basic triangles have an NPC common to all. The above statements though stated, discussed
and proved as well, they are found to be still reserved in its universality. Before this universality
is brought in light, the following section provides the selection of geometrical tools and software.
Selection of co-ordinate system and software The Cartesian co-ordinate system is substantially
old and well tested to verify and prove very interesting facts of geometry for a long period of
time. This is because of the simplicity of the system and availability of a large number of results
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as regards the geometry problems. Because of this here also it is selected wisely to formulate
the solution of the problem in the simulation environment. Similarly, MATLAB is one of the
most popular and user-friendly software to address the problems of various fields of science and
technology. It has also a strong library of commands to draw geometric figures simply using
simple syntax. Therefore MATLAB is used here also to obtain required simulations. Such sim-
ulations have been prepared in this environment, using the MATLAB commands by numerous
learned researchers and scholars to solve the complex geometry problems in engineering and
mathematics [[4], [9], [13]].

2 Simulations

Simulation steps for case I and case II, have been listed as follows:
Case I

1. Generate a matrix R(4, 2), using random number generator command in MATLAB.

2. Scale the matrix, using a suitable multiplier.

3. Name the elements R(i, 1) as the xi and R(i.2) as the yi co-ordinates for i = 1, 2, 3, 4 of
the four arbitrarily selected points.

4. Define the four basic reference triangles and construct their NPCs using the NPC function.

5. Test the concurrence of the NPCs constructed in step 4 and verify the result.

Case II

1. Generate a matrix R(3, 2), using random number generator command in MATLAB.

2. Scale the matrix, using a suitable multiplier.

3. Name the elements R(i, 1) as the xi and R(i.2) as the yi co-ordinates for i = 1, 2, 3 of the
three arbitrarily selected points.

4. Obtain the ortho-centre of the triangle described by the above three points.

5. The above three points and the ortho-centre as fourth point, collectively describes an
ortho-centric system of four-points.

6. Define the four basic reference triangles and construct their NPCs using the NPC function.

7. Test the concurrence of the NPCs constructed in step 4 and verify the result.

Case III
The previous section describes the selection of the four arbitrary points and the simulations
confirm to the results obtained earlier. But the user has still a freedom to choose three points
collinear out of the four. In this case, there can exists only three basic reference triangles and
thus three basic NPCs come into picture. But very interestingly they are also concurrent at a
point (namely, at the foot of the common altitude among the three basic triangles). This case
is not much found in the literature pertaining to this.
Simulation of this case can be carried out through the following simulation steps:

1. Generate a matrix R(3, 1), using random number generator command in MATLAB.
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2. Generate a random number c, using the random number generator.

3. Scale the matrix R(3, 1), using a suitable multiplier.

4. Scale the constant c also using a suitable multiplier.

5. Name the elements R(i, 1) as the xi for i = 1, 2, 3 of the three arbitrarily selected points.

6. Obtain the yi-coordinates corresponding to xi using the line equation y = mx + c.

7. Generate the fourth point, using the method described above (This is the users choice).

8. Define the three basic triangles and construct their NPCs using NPC function.

9. Test the concurrence of the above three NPCs constructed in step 8 and verify the result.

Case IV
In this case all four points are linear. Therefore no scope of discussion as no triangle formation
will occur.
The above discussion in the form of the corresponding diagrams is shown in Appendix I.

Sr No Nature arbitrarily Number of Concurrence Number of
chosen four NPC concurrent
points existing points

1 Four coplanar points Four They are concurrent One
where no three at a point
are collinear

2 Four coplanar points Three They are concurrent One
where three are at a point
collinear

3 Four coplanar ortho- Four All the NPCs are Infinitely
centric points common many

4 All the four points None No scope of No scope of
are collinear discussion discussion

Table 1:

3 Future Scope

As stated in case IV, if the four collinear points are chosen so as to match the inner division
ratio as observed in the discussion of Euler line, what about the existence of an NPC?
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Appendix I

Figure 1: Four coplanar points where no three are collinear

Figure 2: Four coplanar points where three are collinear

Figure 3: Four coplanar ortho-centric points
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