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Abstract 
The use of transients as a diagnostic tool in pressurized pipe networks requires 

reliable and efficient numerical models. The traditional models derived in the frequency 
domain as solutions to the linearized water hammer equations, namely the impulse 
response and the transfer matrix methods, are efficient in the simulation but are not 
suited for complex arbitrarily configured networks. An alternative frequency domain 
formulation is the Network Admittance Matrix Method (NAMM), where the equations 
are reorganized into a matrix form using graph-theoretic concepts. In this paper the 
similitude between steady-state Global Gradient Approach (GGA) and the unsteady-
state and NAMM formulation are explored. The resulting improvements on the 
efficiency of the models are tested on two case studies. 

1 Introduction 
Water distribution and supply networks can be schematized as oriented graphs of links and nodes. 

For this reason Graph Theory, which provides general matrix formulations of the fundamental 
properties and principles of flows in networks, is used for the formalization of the governing 
equations in both steady- and unsteady-state conditions. 

Most steady-state models, derived from the Global Gradient Algorithm (GGA) formulation of 
Todini and Pilati (1988), and the frequency domain models used for the unsteady-state analysis, as the 
Network Admittance Matrix Method (NAMM) proposed by Zecchin et al. (2009), take advantage of 
the Graph Theory tools for their matrix derivation. In the following, the matrix formulation of GGA 
and NAMM is briefly presented and used to represent the steady/unsteady-state flow governing 
equations. The analogies and the differences between the two algorithms are then discussed and an 
extension of GGA to unsteady state flow is introduced, which is shown to encompass the NAMM 
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formulation. The physical meaning of the relevant matrices and ways for improving the efficiency of 
the algorithms are finally discussed. 

2 Graph theory notation 
Formalization of a steady state water distribution networks as a graph 𝐺(𝜨, 𝜦) with the node set 

𝜨 ≡ {𝑛*, 𝑛+,… , 𝑛-}, requires the links of the set	𝜦 ≡ 0𝜆*, 𝜆+,… , 𝜆-23 to be oriented, meaning that they 
start from an upstream node and end in the downstream node. The link-node incidence matrix of 𝐺, or 
simply the incidence matrix, 𝐀*+, is expressed as: 

 

𝐀*+(𝑖, 𝑗) = 8
−1	if	flow	leaves	link	𝜆F	towards	upstream	node	𝑛M	
0	if	link	𝜆F	is	not	connected	to	node	𝑛M																			
+1	if	flow	enters	link	𝜆F	from	downstream	node	𝑛M

    (1) 

 
The transpose 𝐀+* = 𝐀*+Q  is also known as the node-link incidence matrix. In an unsteady state 

representation, the contribution of the upstream and downstream nodes to the incidence matrix must 
be separated, which is done by introducing the upstream and downstream incidence matrices  

 

 𝐍S = T
+1	if	flow	enters	link	𝜆F	towards	upstream	node	𝑛M
0	if	link	𝜆F	is	not	connected	to	node	𝑛M																			

  

 
and  
 

𝐍U = T
0	if	link	𝜆F	is	not	connected	to	node	𝑛M																		

−1	if	flow	leaves	link	𝜆F	from	downstream	node	𝑛M
  

 
so that 𝐀*+ = 𝐍𝐔 + 𝐍𝐃 or 
 

𝐀*+ = [𝐈 𝐈] [
𝐍S
𝐍U
\  (2) 

 
where 𝐈 is an identity matrix. Equation (2) shows that the incidence matrix 𝐀*+ can be defined as the 
row by row sum of the unsteady flow incidence matrices 𝐍S and	𝐍U. In Eq. (2), 𝐍S represents the 
incidence matrix for links in which node j is the upstream node, while	𝐍U represents the incidence 
matrix for links in which node j is the downstream node. 

3 The steady-state equations 
In steady-state models, due to the mass conservation of uncompressible flow, the flows entering or 

leaving the generic link 𝜆F are considered identical in the absence of leaks or abstractions along the 
pipe. Hence, a single value of the flow, 𝑄M, is associated to a generic link j.  

The left multiplication of the incidence matrix to the link state variable, i.e. the flows, provides the 
compact expression of the flow continuity equations for the pipe network:  

 
𝐀+*𝐐 = −𝐝	 	 (3)	
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where 𝐐 is the vector of the 𝑛` flows in each link, 𝑄M, and d is the column vector of the demands at 
junctions, defined as the outflows from the systems toward the environment.  

Using the above defined incidence matrix, the steady-state momentum equation can be formulated 
as: 

 
𝐃	𝐐 +	𝐀*+𝐇 = −𝐀*b𝐇𝟎  (4) 
 

where D is the diagonal matrix of the resistances, 𝐇𝟎 is the vector of pressure at fixed head nodes and 
𝐀*b, the relevant incidence matrix.  

Equation (3) is written for all the nodes with known demand, and Eq. (4) is written for all the links 
leading to the following system of equations (Todini and Pilati, 1988; Todini and Rossman, 2013): 

 

 [ 𝐃 𝐀*+
𝐀+* 𝟎 \ d𝐐𝐇e = d−𝐀*b𝐇𝟎

−𝐝
e  (5) 

 
In this system, the topology in A12, the pipe characteristics in D, and the inputs in H0 and d, 

connect the heads, H, to the flows, Q.   
The uniqueness of the solution for the two sets of Eq. (5) is guaranteed provided the head is 

known at least at a node, which will then be taken to the right hand side in the form of 𝐀*b𝐇𝟎. 
The GGA proposed by (Todini and Pilati, 1988) provides the solution of the non-linear system of 

Eq. (5) and has been implemented into EPANET 2 (Rossman, 2000), a package widely used in the 
water pipeline system management for steady-state simulations. 

Since the matrix 𝐃 depends on the unknown 𝐐, an iterative procedure is used based on the 
solution of the system 

 

[𝐀** 𝐀*+
𝐀+* 𝟎 \d𝐝𝐐

𝐝𝐇
e = [−𝐝𝐄−𝐝𝐪\  (6) 

 
where dQ and dH are the vectors of the corrections to flows and heads at each iteration and dE and 
dq are the vectors containing the errors in the continuity and momentum equations due to the 
approximate solutions. 

4 The unsteady-state equations 
For several reasons, the algorithms used for water hammer unsteady-state analysis in complex 

networks did not evolve analogously to the steady-state one. Recently, Zecchin et al. (2009) showed 
that a matrix formulation, similar to those obtained for the steady-state, can be obtained when the 
governing equations are linearized and integrated in the frequency domain.  

In the admittance formulation, for each link four vector variables are introduced, given by the 
Laplace (or Fourier) transform of pressure heads and flows at the upstream (hU and qU) and 
downstream (hD and qD) nodes. The Laplace transform of the unsteady-flow governing equations 
(Chaudry, 2014) yields a system of two equations for a single link: 

 

h
ℎjk
ℎlk

m = n
𝑍pk𝑐𝑜𝑡ℎ	tγ𝐿Mw −𝑍pk𝑐𝑠𝑐ℎ	tγ𝐿Mw

𝑍pk𝑐𝑠𝑐ℎ	tγ𝐿Mw −𝑍pk𝑐𝑜𝑡ℎ	tγ𝐿Mw
y [
𝑞jk
𝑞lk

\    (7) 

 
which can be re-written as: 
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[
𝑎M −𝑏M
−𝑏M 𝑎M

\ [
𝑞jk
𝑞lk

\ − h
ℎjk
−ℎlk

m = 0   (8) 

 
with 𝑎M = 𝑍pk𝑐𝑜𝑡ℎ	tγM𝐿Mw and 𝑏M = 𝑍pk𝑐𝑠𝑐ℎ	tγM𝐿Mwand where the 𝑗-th link propagation operators,	γM , 
and characteristic impedances, 𝑍pk, depend on the Laplace variable, 𝑠, and on the properties of each 
pipe, and Lj is the pipe length. 

Since the unsteady-state formulation requires to separately accounting for the contribution to the 
continuity equations at nodes of upstream and downstream flows, Eq. (3) becomes 

 
[𝐍SQ 𝐍UQ] d

𝐪S
𝐪Ue = −𝚿   (9) 

 
where qU and qD are the vectors of the flows qUj and qDj, and  𝚿 is the vector of the Laplace (or 
Fourier) transform of the demands at nodes. 

With the adopted notation, the system for the entire network becomes: 
 

d 𝐔 −𝐍
−𝐍Q 𝟎 e d𝐪𝐡e = [𝐍b

Q𝐡b
𝐝

\  (10) 

 

with: 𝐔 = d𝐀 𝐁
𝐁 𝐀e ; 		𝐍 = [𝐍j𝐍l

\ ; 		𝐍Q = [𝐍jQ 		𝐍lQ]	; 		𝐪 = d
𝐪j
𝐪le. The transform of the variation of the 

fixed head nodes 𝐡b = [𝐡bj𝐡bl
\ are normally equal to zero, and the corresponding incidence matrix 

𝐍b = [𝐍bj𝐍bl
\ may not necessarily be needed. 

Matrix 𝐔 is symmetrical and formed by diagonal matrices 𝐀 ≜ 𝑑𝑖𝑎𝑔0𝑎MM3 and 𝐁 ≜ 𝑑𝑖𝑎𝑔0−𝑏MM3 

5 The comparison 
The system of equations (5) and (10) can both be written as 
 

d𝐌 𝐍
𝐍𝐓 𝟎e d

𝐱𝐪
𝐱𝐡e = [

𝐛𝐡
𝐛𝐪
\   (11) 

 
which fully corresponds to that of the NAMM proposed by Zecchin et al. (2009). To solve the system 
of Eq. (9), it can be shown that the inverse of the system matrix:  

 

d𝐌 𝐍
𝐍𝐓 𝟎e

�*
=[𝐌

�𝟏 − 𝐌�𝟏𝐍(𝐍𝐓𝐌�𝟏𝐍)�𝟏𝐍𝐓𝐌�𝟏 𝐍𝐌�𝟏𝐍(𝐍𝐓𝐌�𝟏𝐍)�𝟏
(𝐍𝐓𝐌�𝟏𝐍)�𝟏𝐍𝐓𝐌�𝟏 (𝐍𝐓𝐌�𝟏𝐍)�𝟏

\  (12) 

 
can be reduced, as in GGA to the inversion of the matrix 𝐍𝐓𝐃�𝟏𝐍. This inversion, or better to say the 
solution of Eq. (11) is the cornerstone of both GGA and NAMM. In both cases the coefficient matrix 
reduces to the product the transpose of an incidence matrix, NT, a diagonal matrix or a matrix with 
diagonal sub-matrices, M, and an incidence matrix N. In both cases, the result of this product is a 
Laplacian matrix of a weighted oriented graph, with the weights provided by M. 

The similarity between Eq. (10) with Eq. (5) is now evident, only requiring the solution of the 
sparse symmetric system of equations, which can be obtained through the same approach already 

Matrix Formulation of Steady/Unsteady-State Models in Complex ... E. Todini and M. Ferrante

2084



proven as effective for the solution of the steady-state GGA algorithm in EPANET. This approach, 
described by George and Liu (1981) was also considered by Gilbert et al. (1992) to introduce the 
sparse matrix in Matlab. 

For steady-state conditions, the system of Eq. (1) needs only to be solved once, unless an extended 
period simulation is required, in which case some of the terms in M, bh and bq depend on time and the 
system must be solved for all the considered times. 

For unsteady-state conditions, the terms of the matrices M, bh and bq in the system of Eqs. (11) 
depend on the Laplace variable 𝑠 = 𝜎 + 𝑖𝜔 or on the Fourier variable 𝜔, which requires solving 
several systems with the same sparse matrix structure but with different coefficients.  

As a consequence, the following improvements are introduced in the GGA/NAMM algorithm to 
take advantage of these characteristics. In the Matlab implemented algorithm, the matrices are 
declared as sparse and an ordering algorithm is used once, to speed up the solution of the Eqs. (9) for 
different values of 𝜔. Instead of the ordering algorithm of George and Liu (1981) used in EPANET, 
the approximate minimum degree algorithm (Amestoy et al, 1996) is used here. Furthermore, since 
the solutions of the Eqs. (11) for different values of 𝜔 are independent of each other, the algorithm is 
parallelized to take advantage of multiple workers in a parallel pool. 

6 The case studies 
To evaluate the effects of using the GGA/NAMM algorithm the simple Y network in (Capponi et 

al. 2017; Capponi and Ferrante, 2018; Ferrante and Capponi, 2017) is used. A flow unit impulse is 
introduced at one node where the pressure head variation is also evaluated in time. In the first 
simulation the system is solved by brute force, without any improvement, in 4.2 s. A 2.3 GHz Intel 
Core i7 processor is used.  

In other three different simulations, the same system is solved ordering the coefficient matrix, 
declaring all the matrices involved as sparse and parallelizing the solution of the systems for different 
values of 𝜔, respectively. The computational time is reduced to 4.1, 3.4, and 1.7 s. With the 
implementation of all the suggested improvements in a further simulation, the computational time is 
reduced to 1.3 s, which is less than 1/3 of the computational time without any improvement in the 
code.  

Another system of 438 links and 436 nodes is also used for three simulations, with and without 
implementing the improvement concerning sparsity, ordering and parallelization. The 436 by 436 
coefficient matrix in this case has 1312 non zero elements, which corresponds to less than 0.7 % of 
the total matrix elements. In Fig. 1 the structure of the coefficient matrix is shown before (left) and 
after (right) the ordering.  
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.   
Figure 1 Coefficient matrix structure before (left) and after (right) the ordering by the minimum degree 

permutation. 

Parallelization of the code, still considering full non re-ordered matrices, allows for a reduction in 
the computational time from 458 s to 275 s, while the addition of matrix re-ordering substantially 
increases this reduction and the computational time drops to 55 s.  

7 Conclusions 
In this paper the extension of the global gradient algorithm, GGA, from the original steady state 

formulation to solve unsteady state problems via the admittance matrix method, NAMM, is explored. 
The reformulation of the admittance matrix method in the GGA framework allows interesting 
conclusions about the possible improvements in the NAMM efficiency. It is also reasonable to assume 
that any commercial steady-state software implementing an efficient algorithm for the GGA solution 
could be easily extended to obtain the unsteady-state solution provided by the NAMM formalization 
proposed in this paper. In this case, NAMM with an improved efficiency could be a formidable tool 
for inverse transient analysis and in calibration problems, where the reduced computational time is a 
fundamental requisite. 
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