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Abstract

We present an efficient encoding of order-sorted modular ACU terms into colored di-
rected graphs. Then, by computing the automorphism groups of the encoded graphs, we
are able to extract modular ACU structural symmetries both inside a term and across
a set of terms. Finally, we show how the computed symmetries can be applied to the
optimization of the equational generalization algorithms for modular ACU theories.

1 Introduction

Generalization (also known as anti-unification) is the dual of unification [7]. Roughly speaking,
the generalization problem for two terms t1 and t2 means finding their least general general-
ization (lgg), i.e., the least general term t such that both t1 and t2 are instances of t under
appropriate substitutions. While studying order-sorted modular ACU1 generalization in [1],
we found that our algorithm spends a large amount of time performing computations that, al-
though different from previous ones, are somehow symmetrical to them and lead to equivalent
(and thus redundant) results. Since this problem cannot be mitigated with mere memoization,
we set out to find a way of preprocessing the terms to detect symmetries and instrument our
algorithm to exploit them. This paper presents that ongoing work; in particular, we present a
technique to detect modular ACU symmetries among a set of terms. We formulate an injec-
tive encoding of order-sorted modular ACU terms in flat normal form into graphs with colored
nodes. Then, we extract useful term redundancies from the automorphism groups of these
graphs, which can themselves be computed using efficient, well-known algorithms [6, 8]. By
imposing an arbitrary order among equivalent subterms based on the automorphism groups, we
avoid generating many redundant computations in the equational least general generalization
algorithm that we formulated in [1].

Let us illustrate the problem with some equational generalization examples. Let f be an
associative and commutative function symbol over natural numbers2. Consider the least general
generalization problem of the terms f(0, 1, 2, 3, 4) and f(0, 5, 6, 7, 8). This problem has a single
solution: f(0, x, y, z, u), where x, y, z, and u are fresh variables of sort Nat because the constant
0 is the only term that is shared by both terms and the other constants have the same sort
(Nat) and only appear in one of the two given terms.

∗M. Alpuente, S. Escobar, and J. Espert have been partially supported by the EU (FEDER) and the Spanish
MEC/MICINN under grant TIN 2010-21062-C02-02, and by Generalitat Valenciana PROMETEO2011/052.
J. Espert has also been supported by the Spanish FPU grant FPU12/06223.

1Modular ACU generalization supports any combination of associative (A), commutative (C), and unity (U)
equational attributes for the function symbols of a given signature. By ACU (not qualified by modular) we refer
to theories with the three types of equational attributes. In the same way, AC generalization refers to theories
that satisfy associativity and commutativity properties, but not unity.

2Ignore Peano or other notations for now, just think of each number as a different constant.
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Let us consider now the least general generarization of f(0, 0, 1, 1, 2, 2, 3, 3, 4, 4) and
f(0, 0, 5, 5, 6, 6, 7, 7, 8, 8), where the different constants occur twice each; in this case, their
least general generalizer is the term f(0, 0, x, x, y, y, z, z, t, t). Observe that, like in the previous
example, we do not care which non-zero number each variable of the generalizer refers to; i.e.,
the choice between non-zero constants in this example is indifferent w.r.t. term structure.

However the problem becomes more involved if we have different symbols with possi-
bly different equational attributes as in the case of the least general generalization problem
for the terms f(0, 1, 2, g(0, 1), g(1, 2), g(2, 0)) and f(3, 4, 5, g(3, 4), g(4, 5), g(5, 3)), where g is a
commutative, but not associative symbol. The least general generalizer for this problem is
f(x, y, z, g(x, y), g(y, z), g(z, x)). It is interesting to note how the possible generalizer substitu-
tions reveal these symmetries: from the least general generalizer, we can obtain the first term
f(0, 1, 2, g(0, 1), g(1, 2), g(2, 0)) by applying any of the substitutions { x→ 0, y → 1, z → 2 },
{ x→ 1, y → 0, z → 2 }, { x→ 2, y → 1, z → 0 }, etc. In other words, the only requirement is
that the mapping from { x, y, z } to { 0, 1, 2 } introduced by the substitution be bijective; the
mapping itself is irrelevant, since 0, 1, and 2 are structurally equivalent.

2 Graph automorphisms

Isomorphisms of graphs [5] are bijections of the vertex sets preserving adjacency as well as
non-adjacency. In the case of directed graphs, orientations must be preserved; in the case of
graphs with colored edges and/or vertices, colors must also be preserved. Automorphisms of the
graph X = (V,E) are X → X isomorphisms; they form the subgroup Aut(X) of the symmetric
group Sym(V ). Automorphisms of directed graphs are defined analogously.

The connection between graph isomorphisms and terms with equational attributes has been
previously explored. In [3], Basin shows that AC term equivalence under variable renaming can
be reduced to graph isomorphism and proves that both problems have the same complexity.
In [2], Avenhaus and Plaisted formulate a technique based on graph isomorphisms to reduce
the search space in equational inference problems. The study of algorithms for the computa-
tion of isomorphisms and automorphism groups and their computational implementation is a
mature but active area of research. We rely on Bliss—a state-of-the-art automorphism group
computation tool [6]—for our prototypical implementations.

3 The encoding

In this paper, we define an encoding of order-sorted modular ACU terms [4] in flat normal form
(see [1]) into colored directed graphs that satisfy the following properties:

1. Every well-formed term can be encoded into a valid graph.

2. The resulting graphs preserve the equational properties of the original term.

3. That information that we extract from the automorphisms of the encoded graphs always
correspond with valid structural symmetries of the original terms.

We assume the existence of a mapping color(x) from Σ∪X to the set of the natural numbers.
The elements of the image set of this mapping are the possible colors of the nodes. This mapping
can be any one that obeys the following rules:

1. Variables with the same sort are mapped to the same number.
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(a) f is commutative (b) f is not commutative

Figure 1: Encoding of f(t1, . . . , tn)

2. Constants with the same sort are mapped to the same number.

3. Function symbols with non-zero arity are mapped to a unique number that is not shared
with any other symbol, regardless of its sort.

4. Two elements are not mapped to the same number, unless they verify one of the previous
conditions.

Our encoding codomain has two classes of graph nodes: nodes that are labelled with a
function symbol and unlabelled auxiliary nodes. Auxiliary nodes are always connected by an
outgoing arc to a labelled node (child node) and by an ingoing arc to a different labelled node
(parent node). Auxiliary nodes whose parent node is labelled with a non-commutative (free,
A, U, or AU) symbol can have additional links among them; this allows us to enforce ordering
constraints. All auxiliary nodes share the same, special color. We formulate our encoding as
follows:

1. Each variable is encoded into a unique node that is shared by all occurrences of the
variable.

2. Each constant is encoded into a unique node that is shared by all occurrences of the
constant.

3. Let f be a commutative (C, AC, CU, or ACU) symbol and f(t1, . . . , tn) be a term. The
root symbol f is encoded as a node with outgoing arcs pointing to the root symbols of
the encoded subterms t1, . . . , tn, using fresh auxiliary nodes as intermediaries. Figure 1a
depicts the structure of this transformation.

4. Let f be a non-commutative (free, A, U, or AU) symbol and f(t1, . . . , tn) be a term.
The root symbol f is encoded as a node. Similarly to the commutative case, the root
symbol f is encoded as a node with outgoing arcs pointing to the root symbols of the
encoded subterms t1, . . . , tn, using fresh auxiliary nodes as intermediaries. The difference
with the preceeding case is that each auxiliary node has an outgoing arc to the auxiliary
node of the next subterm (except for the last term), which allows us to express ordering
constraints. Figure 1b depicts the structure of this transformation.
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Table 1: AC-decompositions with and without preprocessing

size (S) 8 10 12 14 16

unoptimized (U) 15 184 2945 63756 (error)
optimized (O) 5 29 209 1909 20801
ratio (U/O) 3 6.3 14.4 33 -

The reader might think that the auxiliar nodes are redundant in the commutative cases (C,
AC, CU, and ACU). However, the resulting, simplified encoding would be incompatible with
term sharing. Consider the term f(0, 0, 1), where f is an AC function symbol and 0 are 1
constants of the sort Nat. The encoded graph would have two identical arcs from f to the node
that represents the encoding of the constant 0, which would be an invalid graph. Note that the
duplication of the node associated to the constant 0 would not lead to a valid representation
either, because then the encoded form would not be able to distinguish among constants that
belong to the same sort, as is the case for the constants 0 and 1.

The U axioms are ignored for encoding purposes. In flat normal form, the U axioms lead
to compact representations (minimum length) that do not introduce structural redundancies.
Hence, we can detect the symmetries for ACU function symbols as if they were AC, AU symbols
as if they were A, CU symbols as if they were C, and U symbols as if they were free.

4 Applications

By extending our signature with a fresh commutative symbol t with an appropriate sort sig-
nature, we can combine the encodings of a set of terms { t1, . . . , tn } to deliver the encoding of
the term t(t1, . . . , tn). This simple trick allows us to detect modular ACU symmetries across
terms as well as internal symmetries that are consistent across all the given terms. These
symmetries are relevant for the equational generalization of modular ACU theories. Table 1
shows how the symmetries can avoid a large number of computations in the computation of
AC-decompositions, a critical part of our equational generalization algorithm. For this experi-
ment we have used two terms of the form f(0, . . . , (n− 1)) and f(n, ..., (2n− 1)) where f is an
associative-commutative function symbol and the numbers represent different constants. This
configuration appears frequently when the input terms, or part of them, represent sets. In Ta-
ble 1, row (S) indicates the original size (number of symbols) of the terms, row (U) represents
the number of AC-decompositions that must be checked by the original, unoptimized algorithm
and row (O) stands for the number of AC-decompositions that must be checked after using our
symmetry-based transformation. Note that the achieved speedup (U/O) grows exponentially
with the size of the terms.

As an example, Figure 2 shows the encoding for the (unsorted) generalization problem
Γ of terms f(g(a, b), g(b, c)) and f(g(b, c), g(c, b)), where a, b, and c are constants, f is an
associative-commutative function, and g is an associative but not commutative function. The
dashed lines link structurally equivalent nodes, as computed by the technique. Observe that this
generalization problem is symmetric, because the top-level symbols of both terms are linked. We
can transform one term into the other by swapping constants a and c and applying equational
axioms. This property halves the number of cases to consider in the generalization algorithm.

Finally, we would like to remark that although this technique has been developed to optimize
the computation of lggs, the technique itself is agnostic w.r.t. to generalization and we believe
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Figure 2: Encoding of the generalization problem Γ

that it might be useful in other domains—such as equational unification—that might benefit
from discovering the structural symmetries introduced by equational attributes. As future work,
we plan to study the relationship between the symmetries than can be detected and exploited
in equational AC-unification by following our methodology compared to more conventional
equational unification algorithms based on diophantine encoding.
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