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Abstract 
Cyanobacteria blooms are a serious problem around the world and have caused 

severe ecological and social-economic damage. Data-mining models have proven 
effective at predicting such blooms; however, few of them can provide the spatial 
dynamics. Although process-based numerical models do provide a way to model, such 
approach often involves too many parameters to be calibrated. This study took the case 
of Taihu Lake and developed a model that embedded a data-mining technique into a 
cellular automata configuration, so as to obtain the spatial-temporal dynamics of 
cyanobacteria blooms. The lake was divided into polygons in accordance with the 
monitoring stations by using the Voronoi method. Data on flows, water quality and 
phytoplankton were collected from monitoring stations inside Taihu Lake. Genetic 
programming was applied to establish predictive formulations for the cyanobacteria 
population dynamics in relation to flow and water quality variables by using the 
collected data. The formulations accounted for local interactions between polygons as 
the evolution rules for the cellular automata. The results show that in this way CA 
models are able to predict both approximate magnitudes as well as accurate timing of 
cyanobacteria blooms quite well for all areas except for regions with lower 
cyanobacteria population. Overall the CA model shows very promising performance in 
capturing the spatial-temporal dynamics of algal abundance in lakes. 

1 Introduction 
Blooms of cyanobacteria are a global environmental concern. Lake Taihu, located in a region of 

China undergoing rapid economic development, has experienced accelerating eutrophication over the 
past three decades (Qin et.al., 2007, 2010). The cyanobacteria population has increased considerably 
and accounts for nearly 85% of the summer phytoplankton biomass (Chen et al., 2003). The dominant 
species Microcystis is usually toxic and associated with severe human health effects (Jia et al., 2016). 
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Cyanobacteria produce taste and odor problems in drinking water supplies, disrupt tourism and 
fishing, and cause economic losses (Yang et al., 2008; Guo et al., 2007). 

The mechanisms causing cyanobacterial blooms are complicated, involving hydrodynamic, 
chemical and biological processes and interactions. During the past decades, considerable efforts have 
been made to develop models for predicting cyanobacteria blooms. Such models have proved helpful 
in ecosystem analysis and better understanding ecological interactions. Nowadays, process–based 
modelling and data mining approaches both are commonly used methods. Process–based models have 
achieved remarkable success in various lakes because they can describe the growth and outbreak 
processes of cyanobacteria quite well (Hamrick, 1992; Cole and Buchak, 1995; Moll and Radach, 
2003; Gal et al., 2009; Zhang et al., 2013; Chen et al., 2014). However, a substantial amount of 
physical, chemical and biological data is needed to calibrate each detailed process description. This 
causes difficulties in practical application and leads to uncertainty of the predictive capabilities. 
Alternatively, many data mining techniques such as artificial neural networks, genetic programming 
and fuzzy logic have been applied to ecological case studies, in particular when the hydrodynamic and 
transport processes can be neglected (Chan et al., 2007; Chen and Mynett, 2003; Maier et al., 1998; 
Recknagel et al., 2003; Whigham and Recknagel, 2001). However, predictive models based on data 
mining techniques often focus on one particular lake only, which causes the portability of the models 
to be poor. Moreover, data-mining models usually cannot provide the spatial dynamics. Therefore, the 
prediction of cyanobacteria dynamics in large lakes with heterogeneous spatial properties still remains 
an extremely challenging topic in ecohydraulics research. 

Cellular automata models are set up by subdividing the study space into cells and taking each 
cell as a separate subdomain with it’s internal rules on e.g. growth and decay processes. The CA 
approach can overcome the shortcomings of data mining models and reflect the spatial heterogeneity 
and local interactions (Chen et al., 2002). In recent years, CA has been widely used in ecological 
modelling, including rainforest dynamics (Alonso and Sole, 2000), population dynamics of animals 
(Chen and Mynett, 2003), competitive growth of underwater macrophyte species (Chen et al., 2002) , 
vegetation evolution (Ye et al., 2010) and more. 

In this study, genetic programming (GP) using the dataset of measurements from Lake Taihu was 
used to develop the internal rule-based system of the cellular automata model to predict the spatial-
temporal dynamics of cyanobacteria blooms. The lake was divided into polygons by connecting the 
monitoring sites using the Voronoi method (Lin, 2014). For each site, GP was applied to establish a 
predictive formulation for cyanobacteria population dynamics in relation to physical-chemical 
variables. These formulations include local interactions between polygons to serve as evolution rules 
of cellular automata. 

2 Materials and methods 
2.1 Study area and data collection 

Lake Taihu, situated in the South of the Yangtze River Delta (E30o56′~31o33′, 
N119o54′~120o36′) is the third largest shallow freshwater lake in China (Figure. 1). The surface area 
is 2,338 km2 and the water depth ranges from 1.0 to 2.5 m. The lake has a drainage area of 36,500 
km2 and more than 30 canals and rivers discharge water into the lake. The inflow rivers mainly come 
from the Western lake. The Taipu River is the main river discharging water from the lake. The 
Wangyu River delivers Yangtze River water to the lake. In recent years, due to excessive wastewater 
discharge from factories, industry and agriculture, severe cyanobacteria blooms have occurred from 
May to October. 
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Monthly data on surface water (0.0~0.5 m) from 2008 to 2012 were collected from 31 sites in 
the whole lake (Figure. 1). For each site, physical, chemical and biological parameters were measured, 
including water temperature (WT), Secchi depth (SD), pH, nitrate-N (NO3-N), ammonia-N (NH3-N), 
phosphate-P (PO4-P) and cyanobacteria. Before developing any model, the data were linearly 
interpolated to produce daily values. The principle characteristics are given in Table 1.  

2.2 Methodologies 
Genetic Programming (GP) belongs to the class of evolutionary algorithms (EAs), which evolve 

tree structures and find optimized solutions (Koza, 1994, 1996). Banzhaf (1998) define GP as the 
direct evolution of programs or algorithms for the purpose of inductive learning. The method builds 
on the genetic algorithm (GA) concept, and represents an initialized population using LISP lists, 
which are specific tree structures. Subsequently, the population evolves and is optimized by means of 
genetic operators (a.o. crossover and mutation). The approach has been widely used in a variety of 
fields such as engineering science, economics science, medical science and environmental science.  

In this study, GP was applied for predicting cyanobacteria populations in Lake Taihu by means 
of physical and chemical data. The coefficient of determination (r2) of a linear regression and visual 
comparison between predicted and measured data were used to determine the best performing 
predictive models generated by GP. The model was designed for 2-day ahead forecasting by imposing 
a time lag of two days between input and output data. For all applications of the GP, an initial 
population of 100 and a maximum number of generations of 80 were chosen based on trial and error.  

Cellular automata constitute a mathematical system in which many simple components interact 
locally to produce globally complicated patterns of behaviour (Chen et al., 2002). A cellular automata 
system usually consists of a regular lattice of sites (cells or automata). Each site has some properties 
that are updated in discrete time steps according to local evolution rules, which are functions of the 
states of the cell itself and its neighbours (Chen and Mynett, 2006). 
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Figure 1: Map of Lake Taihu, where the large tributaries and sampled sites are named. Parts A~H indicate 
Meiliang Bay, Zhushan Bay, Gonghu, Western Lake, Southern Lake, Main Lake, Eastern Lake and 

Southeast Lake. 
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2.3 Model setup 
The Thiessen polygons based on the Voronoi method were used to set up the cells in the study 

area. In the CA model the Moore neighbourhood configuration is applied and the local evolution rules 
are built by GP from the measurement data obtained. Since the measured cyanobacteria population is 
affected by the neighbouring sites, assuming that the amount of nutrients and cyanobacteria 
population are constant in the whole lake, we eliminated the influence of neighbouring sites according 
to the weighted average method and build a generic predictive model under the condition of no winds, 
which is given by Eq. (1): 

                               (1) 

where is the average value of each variable;  is the site;  is the number of the site;  is the area 
that each site represents; is the total area of Lake Taihu. The converted data are used to produce the 
generic predictive rule set. Then for each site the rule set is applied to predict the next level of 
cyanobacteria. Considering that the cyanobacteria at time step t+2 are affected by the cyanobacteria at 
time step t, the growth rate (R) is chosen as the output variable and the pH, water temperature, Secchi 
depth, NH4-N, NO3-N, PO4-P as the input variables. The growth rate formula is given by Eq. (2): 

      
 
    (2)

 
where represents the growth rate for site i at the time step t+2； represents the NO3-N values 

for site i at the time step t； represents the water temperature for site i at the time step t；
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Limnological variable Site 2 Site 6 Site 11 Site 12 

Water temp. WT (°C) 1.90/17.95/30.70 2.00/18.46/32.50 1.60/17.96/32.6
0 2.50/18.29/32.60 

Secchi depth SD (m) 0.25/0.33/0.41 0.27/0.38/0.48 0.28/0.36/0.43 0.31/0.51/0.71 
pH 7.92/8.44/8.94 7.70/8.28/9.08 7.85/8.38/8.90 7.52/7.92/8.32 
NO3-N (mg/L) 0.04/0.97/2.75 0.08/1.72/3.28 0.04/0.81/2.18 0.04/0.28/0.72 
NH3-N (mg/L) 0.03/0.16/0.33 0.07/1.18/2.80 0.03/0.15/0.33 0.03/0.13/0.24 
PO4-P (μg/L) 2.50/4.81/8.97 4.88/10.26/15.60 1.00/2.81/5.20 0.78/2.57/4.68 
Cyanobacteria 
(103cell/mL) 1.00/23.52/90.98 0.16/22.73/115.6

8 0.54/5.53/24.00 0.46/5.06/21.68 

Limnological variable Site 17 Site 22 Site 24 Site 29 

Water temp. WT (°C) 2.50/17.51/31.20 2.20/18.30/31.70 2.10/17.63/31.2
0 2.50/17.95/31.30 

Secchi depth SD (m) 0.28/0.33/0.37 0.27/0.33/0.38 0.31/0.38/0.46 0.29/0.33/0.38 
pH 7.85/8.32/8.80 7.62/8.43/9.26 7.82/8.21/8.63 7.74/8.31/8.93 
NO3-N (mg/L) 0.67/2.05/2.63 0.04/1.04/2.62 0.04/0.49/1.28 0.04/1.13/2.32 
NH3-N (mg/L) 0.03/0.15/0.36 0.03/0.25/0.46 0.03/0.11/0.20 0.03/0.17/0.36 
PO4-P (μg/L) 1.56/4.01/7.93 1.43/4.94/9.30 0.91/1.96/3.71 1.04/4.03/7.80 
Cyanobacteria 
(103cell/mL) 0.93/10.76/42.70 0.80/23.46/116.6

0 0.72/2.67/11.85 0.66/11.33/52.72 

Note: Data are minimum/mean/maximum 
Table 1: Limnological variables measured at 8 typical sites in Lake Taihu from 2008 to 2012 
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represents the pH for site i at the time step t； represents the PO4-P values for site i at the time 
step t. For each site the measured cyanobacteria values are given as initial values. The predicted 
values of cyanobacteria are calculated iteratively according to Eq. (3): 

                         (3) 
where represents the predicted values of cyanobacteria for site i at the time step t+2；  
represents the values of cyanobacteria for site i at the time step t. Then according to Eq. (4) the 
cyanobacteria for each site are updated to become the initial values at the next time step 

                     (4) 
where  is the weight for site i,  is the weight for neighbouring sites.  represents the values 

of cyanobacteria for neighbouring site j at time step t+2. In Lake Taihu, the three prevailing winds are 
from the Southeast in spring and summer, Northeast in autumn, and Northwest in winter (Ma et al., 
2009). The neighbouring sites are identified according to the flow field determined by the wind. 

Based on many trial experiments,  was found to be 0.7;  is calculated according to the inverse 

distance between the affected site and its neighbouring site, while is 0.3. 

3 Results 
3.1 Temporal predictive modelling of cyanobacteria by CA 

Figure 2 shows a comparison between the measured and predicted results for eight sites 
representing the eight parts identified within Lake Taihu. For site 2, site 6 and site 22 with hyper-
eutrophication and very high cyanobacteria, the CA models could predict the magnitude and timing of 
cyanobacteria blooms well, and r2 values were well above 0.54. For site 11, site 17 and site 29 with 
medium-eutrophication and high cyanobacteria, the r2 of the model fit were between 0.35 and 0.48. 
Although these r2 values are relative low, the CA models could still predict the outbreak of 
cyanobacteria blooms well. For sites 12 and 24 with light eutrophication and low cyanobacteria levels, 
the peak values of cyanobacteria predicted by the CA model were much higher than the measured 
results and the highest r2 was 0.12. This may be due to the fact that the Eastern Lake connects to the 
river outflow so the cyanobacteria flow out of the water body in reality, leading to the predictive 
values being higher than observed values. 

The results of the CA model were compared with those of the site-specific model (Zhang et al., 
2014) and a genetic programming (GP) model that did not use any CA procedure (i.e. without the 
calculation of Eq. (4)). The comparisons are given in Table 2 to Table 4. Although the r2 in the CA 
models was relatively lower than the site-specific model, the CA models could better capture the 
outbreak of cyanobacteria in most areas except for the worst results, in the Eastern Lake. Compared to 
the GP models that did not account for the influence from neighbouring sites, the results from the CA 
models turned out to perform much better. For site 2, site 6 and site 22, the CA models achieved better 
predictive results. For site 12 and site 24, the timing of cyanobacteria blooms lagged in the GP model 
and the peaks were much higher than the measured results. Although the peak values in the CA 
models were substantially reduced, the timing of the peaks was still adequate. For site 11 and site 17, 
the peak values of cyanobacteria in the GP models came out higher than the measured results. The CA 
models greatly improved the results. For site 29, the CA models improved the peaks and timing of 
cyanobacteria blooms only slightly. 
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Figure 2: Comparison between measured and predicted results in eight sites representing eight typical parts 
of Lake Taihu (model 1: GP models not considering the influences of neighbouring sites; model 2: Cellular 

automata prediction models considering the influences of neighbouring sites) 

 

 

 

Sites Site-specific model* GP model without neighbouring sites CA model 
Site 2 0.83 0.20 0.62 
Site 6 0.83 0.22 0.56 
Site 11 0.70 0.39 0.35 
Site 12 0.77 0.11 0.08 
Site 17 0.67 0.54 0.48 
Site 22 0.78 0.14 0.54 
Site 24 0.62 0.005 0.12 
Site 29 0.73 0.11 0.40 
* Site specific model developed by using the same data (Zhang et al., 2014). 

Table 2: R-square values between the measured and predicted results for four models in eight sites 
representing eight parts of Lake Taihu 
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3.2 Temporal predictive modelling of cyanobacteria by CA 
The spatial cyanobacteria dynamics in four seasons during 2008–2012 calculated by the CA 

model are presented in Figure. 3 which shows that CA models can capture the spatial patterns of 
cyanobacteria quite well compared to the observations, except that the predictive values in the Eastern 
Lake were higher than the measured values. 

Sites  Site-specific model* GP model without neighbouring sites CA model 
Site 2 0.23 0.53 0.21 
Site 6 0.24 0.78 0.33 
Site 11 0.44 1.81 0.53 
Site 12 0.20 2.66 0.33 
Site 17 0.25 1.15 0.27 
Site 22 0.23 0.64 0.27 
Site 24 0.32 4.76 1.16 
Site 29 0.22 0.52 0.31 
* Site specific model developed by using the same data (Zhang et al., 2014). 

Table 3: The absolute value of relative error between the measured and predicted results for four models 
in eight sites representing eight parts of Lake Taihu 

Sites Site-specific model* GP model without neighbouring sites CA model 
Site 2 15 42 6 
Site 6 20 32 21 
Site 11 20 92 17 
Site 12 24 100 95 
Site 17 16 117 27 
Site 22 18 77 30 
Site 24 37 52 50 
Site 29 30 59 40 
* Site specific model developed by using the same data (Zhang et al., 2014). 

Table 4: The mean error days between the measured and predicted results for four model in eight sites 
representing eight parts of Lake Taihu 
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4 Discussion and conclusions 
A spatial-temporal dynamic model of cyanobacteria blooms was developed using genetic 

programming to establish the transition rules from measurement data and integrate them into a 
cellular automata model set up for Taihu Lake, China. The resulting model proved to predict the 
magnitudes and timing of cyanobacteria blooms quite well for all areas except in the Eastern Lake 
which had a lower cyanobacteria population. Simultaneously, the model could capture the spatial 
dynamics of cyanobacteria and intuitively enhance our understanding of the spatial plaque formation 
mechanism of cyanobacteria blooms and help to improve the capability of cyanobacteria bloom 
management. 

Clearly the site-specific models provided good results for each individual site, but did not 
provide a generic understanding of the underlying processes and key determining factors. The GP 
models based on aggregated data for all sites showed to overcome the disadvantages of site-specific 
models and turn out to have good portability. However, these models lack the ability to simulate 
spatial dynamics. In contrast, CA models can provide spatial dynamics, but the models produced from 
aggregated data gave worse results than the site-specific models. However, deploying GP to derive 
site-specific transition rules to be implemented into a spatially-explicit CA formulation, provides a 
generic modelling approach to site-specific conditions.   

The evaluation criteria for models should not only focus on predictive capabilities at one 
particular site, but should also take into account the portability and generic interpretation. Overall, the 
results from the models employed in this study indicate that CA is a most effective method to deal 
with local interactions and model spatial variability. CA models not only consider the dynamic 
processes of cyanobacteria but also the spatial connection between the various sites, and have the 
capacity to simulate spatial-temporal dynamics. Compared to the traditional dynamic models for algal 
blooms based on two- or three-dimensional numerical simulation, this method avoids the complicated 
process of solving a great number of coupled partial differential equations, leading to higher 
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computational efficiency. 
Genetic programming was used to formulate the transition rules for cyanobacteria population 

dynamics while the cellular automata approach was able to capture the spatial variability of bloom 
events. The results demonstrate that CA models can be used to forecast the magnitude, timing and 
location of cyanobacteria blooms by providing input on limnological time-series measurement data. 
The findings reveal that GP in combination with CA can provide a promising modelling approach in 
the field of spatial-temporal algal bloom forecasting.   
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