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Abstract

To find the best lattice model representation of a given full atom protein structure is a
hard computational problem. Several greedy methods have been suggested where results
are usually biased and leave room for improvement.

In this paper we formulate and implement a Constraint Programming method to refine
such lattice structure models. We show that the approach is able to provide better quality
solutions. The prototype is implemented in COLA and is based on limited discrepancy
search. Finally, some promising extensions based on local search are discussed.

1 Introduction

Extensive structural protein studies are computationally not feasible using full atom protein
representations. The challenge is to reduce complexity while maintaining detail [6, 11]. Lattice
protein models are often used to achieve this but in general only the protein backbone or the
amino acid center of mass is represented [1, 16, 18, 20, 26]. A huge variety of lattices and energy
functions have previously been developed [5, 8, 28], while the lattices 2D-square, 3D-cubic and
3D face centered cubic (FCC) are most prominent.

In order to evaluate the applicability of different lattices and to enable the transformation
of real protein structures into lattice models, a representative lattice protein structure has to
be calculated. In detail, given a full atom protein structure one has to find the best structure
representation within the lattice model that minimizes the applied distance measure. Maňuch
and Gaur have shown the NP-completeness of this problem for backbone-only models in the
3D-cubic lattice when minimizing coordinate root mean square deviation (cRMSD) and named
it the protein chain lattice fitting (PCLF) problem [19].

The PCLF problem has been widely studied for backbone-only models. Suggested ap-
proaches utilize quite different methods, ranging from full enumeration [4], greedy chain growth
strategies [17, 20, 23], dynamic programming [10], simulated annealing [25], or the optimization
of specialized force fields [13, 27]. The most important aspects in producing lattice protein
models with a low root mean squared deviation (RMSD) are the lattice co-ordination number
and the neighborhood vector angles [23, 24]. Lattices with intermediate co-ordination numbers,
such as the face-centered cubic (FCC) lattice, can produce high resolution backbone models
[23] and have been used in many protein structure studies (e.g. [11, 12, 29]).

Most of the PCFL methods introduced are heuristics to derive good solutions in reasonable
time. Greedy methods as chain growth algorithms [17, 20, 23] enable low runtimes but the
fitting quality depends on the chain growth direction and parameterization. Thus, resulting
lattice models are biased by the method applied and have potential for refinement.

This paper has the goal to provide some evidence that greedy methods can be effectively im-
proved by subsequent refinement steps that increase the fitting quality. We present a formaliza-
tion and a simple working prototype. Moreover we briefly discuss some potential methodologies
that we expect could be effectively employed.

A. Dovier, A. Dal Palù, S. Will (eds.), WCB10 (EPiC Series, vol. 4), pp. 67–74 67

mmann@informatik.uni-freiburg.de
alessandro.dalpalu@unipr.it


Lattice model refinement of protein structures Mann and Dal Palù

2 Definitions and Preliminaries

In order to define the Constraint Programming approach we first introduce some preliminary
formalisms.

Given a protein in full atom representation of length n (e.g. in Protein Data Base (PDB)
format [2]), we denote the sequence of 3D-coordinates of its Cα-atoms (its backbone trace) by
P = (P1, . . . , Pn).

A regular lattice L is defined by a set of neighboring vectors ~v ∈ NL of equal length
(∀~vi, ~vj∈NL

: |~vi| = |~vj |), each with a reverse (∀~v∈NL
: −~v ∈ NL, such that L = {~x | ~x =∑

~vi∈NL
di ·~vi∧di ∈ Z+

0 }. |NL| gives the coordinate number of the lattice L, e.g. 6 for 3D-cubic
or 12 for the FCC lattice. All neighboring vectors ~v ∈ NL of the used lattice L are scaled
to a length of 3.8Å, which is the mean distance between consecutive Cα-atoms in real protein
structures.

A backbone-only lattice protein structure M of length n is defined by a sequence of lattice
nodes M = (M1, . . . ,Mn) ∈ Ln representing the backbone (Cα) monomers of each amino
acid. A valid structure ensures backbone connectivity (∀i<n : Mi −Mi+1 ∈ NL) as well as
selfavoidance (∀i 6=j : Mi 6= Mj), i.e. it represents a selfavoiding walk (SAW) in the underlying
lattice.

The PCFL problem is to find a lattice protein model M of a given protein’s backbone P ,
such that a distance measure between M and P (dist(M,P )) is minimized [19].

In this contribution, we tackle the PCFL refinement problem. Here, a protein backbone P
as well as a first lattice model M is given, e.g. derived by a greedy chain growth procedure [17,
20, 23]. The problem is to find a lattice model M ′, such that dist(M ′, P ) < dist(M,P ), via a
relaxation/refinement of the original model M .

In the following, we utilize distance RMSD (dRMSD, see Eq. 1) as the distance measure
dist(M,P ). dRMSD is independent of the relative orientation of M and P since it captures the
model’s deviation from the pairwise distances of Cα-atoms in the original protein. Minimizing
this measure optimizes the lattice model obtained.

dRMSD(M,P ) =

√∑
i<j (|Mj −Mi| − |Pj − Pi|)2

n(n− 1)/2
(1)

3 Refinement of Lattice Models: a Constraint Model in
COLA

In this section we formalize a Constraint Optimization Problem (COP) to solve the PCFL re-
finement problem (see Sec. 2), i.e. to refine a lattice model M of a protein P . The input is the
original protein P and its lattice model M to be refined. The output is a lattice model M ′ de-
rived from M via some relaxation that optimizes our distance measure dRMSD(M ′, P ) (Eq. 1).

We first formalize the problem and show how to implement it in COLA, a COnstraint solver
for LAttices [21]. This is followed by an altered formulation that utilizes limited discrepancy
search [9].
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3.1 The Constraint Optimization Problem

The COP can be formalized as follows:

X1 . . . Xn variables representing M ′ = (M ′
1, . . . ,M

′
n)

D(Xi) variable domains = {v | v ∈ L ∧ |v −Mi| ≤ fscale · dmax},
i.e. an Mi surrounding sphere with radius fscale · dmax

SAW (X1 . . . Xn) self-avoiding walk constraint, e.g. split into a chain of binary
contiguous and a global alldifferent constraint

O objective function variable, implements dRMSD
=

∑
i<j(|Xj −Xi| − |Pj − Pi|)2 to be minimized

Note that dmax refers to the number of lattice units used and thus it is scaled to the correct
distance of fscale = 3.8Å. Thus, the domains for dmax = 0 only contain the original lattice
point Mi (domain size 1), while dmax = 1 results in Mi as well as all neighbored lattice points
(domain size 1+12 = 13 in FCC). The domain size guided by dmax defines the allowed relaxation
of the original lattice model M to be refined. For more details about global constraints for
protein structures on lattices, the reader can refer to [1, 22].

The COLA implementation takes advantage of the availability of 3D lattice point domains
and distance constraints. The implementation changes the original framework only in the
input data handling and objective function definition. A working copy of COLA and the COP
implemented for this paper are available at http://www2.unipr.it/∼dalpalu/COLA/

3.2 Limited Discrepancy Search

A simple enumeration with dmax = 1 and a protein of length 50, already shows that the search
space of the COP from the previous section is not manageable. In this example, each point
can be placed in 13 different positions in the FCC lattice, and even if the contiguous constraint
among the amino acids is enforced, the number of different paths is still beyond the current
computational limits.

We tried a simple branch and bound search an X1, . . . , Xn, where the dRMSD bound is
estimated by considering the possible placement of non labeled variables and the best dRMSD
contribution provided by each amino acid. In detail, each amino acid s not yet labeled is
compared to each other amino acid (s′). Each pair provides a range of different contributions
to dRMSD measure, depending on the placement of s and the placement of the other amino
acids (when not yet labeled). A closed formula computation (rather than a full enumeration of
all combinations), based on bounding box of domain positions, is activated, in order to estimate
the minimal contribution. Clearly, this estimation is not particularly suited, since we relax the
estimation on R3, where the null (best) contribution can be easily found as soon as the bounds
on |Xs −Xs′ | include the value |Ps − Ps′ |. Unfortunately, the discrete version requires a more
expensive evaluation that boils down to full pair checks. Therefore, the current bound is very
loose and the pruning effects are modest.

A general impression is that the dRMSD measure presents a pathological distribution of
local minima, depending on the placement of amino acids on the lattice. In general, due to the
discrete nature of the lattice, the modification of a single amino acid’s position can drastically
vary its contributions to the measure.
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Protein ID 8RXN 1CKA 2FCW
length 52 57 106

Table 1: Used proteins from the Protein Data Base (PDB) [2].

These considerations suggested us to focus on the identification of solutions that improve
the dRMSD w.r.t. M rather than searching for the optimal one. In terms of approximated
search we tried to capture the main characteristics of the COP and design efficient and effective
heuristics.

A simple idea we tested is the limited discrepancy search [9]. This search compares the
amino acid placements in the lattice models M and M ′. Every time a corresponding amino
acid is placed differently in the two conformations, we say that there is a discrepancy. We set
a global constraint that limits the number of deviations to at most K. This allows to generate
conformations that are rather similar to M , especially if dmax is greater than 1. The rational
behind this heuristics is that we expect that potential conformations M ′ improve the dRMSD
only when contained in a close neighborhood of the M structure.

The count of the number of discrepancies K is implemented directly in COLA at each
labeling step.

3.3 Results

We summarize here the preliminary results coming from the COLA implementation of a K
discrepancy search in 3D FCC lattice.

The initial lattice models to be refined were generated using the LatFit tool from the LatPack
package [16, 17]. LatFit implements an efficient greedy dRMSD optimizing chain growth method
and was parameterized to consider the best 100 structures from each elongation for further
growth1.

We test three proteins (Table 1) and for each of them we input the conformation M obtained
from the greedy algorithm (LatFit). Table 2 reports the best dRMSD of our new model M ′

found depending on dmax and the number K of amino acids placed differently from the input
conformation. Furthermore, time consumption for each parameterization is given.

Note that if either K = 0 or dmax = 0 only the input structure resulting from the greedy
LatFit run can be enumerated.

These results, yet preliminary, offer an interesting insight about the distribution of subop-
timal solutions. It is interesting to note, e.g., that better solutions are found by allowing a
rather large local neighborhood for a few amino acids (dmax parameter). On the other side, it
seems that few modifications (K) are sufficient to alter the input sequence and obtain a better
conformation.

In Figure 1 we exemplify the gain of model precision for the protein 8RNX. Only the relaxation
of K = 4 monomers enables the structural change that leads to a dRMSD drop from 1.2469
down to 1.0884, an improvement of about 13%. A movement of less monomers would not enable
such a drastic change. This depicts the potential of a local search scheme that iteratively applies
a series of such structural changes.

Investigating the time consumption (Table 2) one can see that the runtime increases dras-
tically with K which governs the search tree size. The domain sizes implied by dmax do not
show such an immense influence.

1For details on the LatFit method see [17] and the freely available web interface at http://cpsp.
informatik.uni-freiburg.de
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Figure 1: The initial lattice model M (red) of the protein chain P (blue, balls) and the final/re-
fined lattice model M ′ (green) resulting from dmax = 2 and K = 4 for protein 8RNX. Note, only
the altered loop regions (residue 2-14) are shown, but the whole structure models M and M ′

were superpositioned to P independently.

dRMSD

K
8RXN 1 2 3 4

dmax

0 1.2469 1.2469 1.2469 1.2469
1 1.2319 1.2172 1.1639 1.1189
2 1.2319 1.1674 1.1596 1.0884
3 1.2319 1.1674 1.1596 1.0884

K
1CKA 1 2 3 4

dmax

0 1.2370 1.2370 1.2370 1.2370
1 1.2226 1.2226 1.2226 1.2226
2 1.2026 1.1887 1.1887 1.1887
3 1.2026 1.1887 1.1887 1.1887

K
2FCW 1 2 3 4

dmax

0 1.1353 1.1353 1.1353 1.1353
1 1.1353 1.1324 1.1317 1.1309
2 1.1321 1.1300 1.1254 1.1200
3 1.1321 1.1300 1.1254 1.1200

time in seconds

K
8RXN 1 2 3 4

dmax

0 0.048 0.081 0.040 0.039
1 0.112 0.790 2.365 20.70
2 0.068 0.983 6.500 106.6
3 0.106 0.499 7.399 124.0

K
1CKA 1 2 3 4

dmax

0 0.031 0.030 0.027 0.037
1 0.402 0.615 3.442 39.27
2 0.225 0.456 7.595 120.6
3 0.421 0.616 8.573 140.2

K
2FCW 1 2 3 4

dmax

0 0.043 0.050 0.058 0.078
1 0.118 1.997 49.99 1128
2 0.294 7.192 341.8 14235
3 0.332 8.129 394.5 16140

Table 2: dmax and K influence on discrepancy search measured in dRMSD and time.

The behavior encountered is an indicator that a search based on exploring only the neigh-
borhood should provide efficient and good suboptimal solutions. In the next section we briefly
discuss some promising approaches that we plan to investigate.
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3.4 Future work

In our opinion, a framework that integrates CP and Local Search is particularly suited to
generate fast suboptimal solutions, potentially very close to the optimal one. We identify some
possible directions that we believe are excellent candidates to model and solve approximately
the PCLF problem:

• local neighboring search [3, 7]: this technique allows to integrate Gecode and Local
Search frameworks. The framework handles constraint specifications and local moves
within C++ programming language;

• k-local moves [25]: the idea here is to apply structural changes on k consecutive amino
acids and repeat the process in a Monte-Carlo and/or simulated annealing style.

• side chain model [15]: our model can be extended to include side chains and we could
exploit a similar set of local moves.

• the framework presented in [30]: COLA is here extended and combined directly to
a Local Search approach based on pull moves [14].

4 Conclusion

In this paper we presented a Constraint Programming based model for the refinement of lattice
fitting of protein conformations. A simple branching was shown to be ineffective and a limited
discrepancy search was modeled and shown to be beneficial to the identification of suboptimal
solutions. A prototypical implementation in the framework COLA and some preliminary results
have shown the feasibility of the method. We believe that an extension of the framework to
Local Search is particularly suited for the PCLF problem at hand.
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la programmazione con vincoli in applicazioni strategiche.
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