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Single-cell RNA-sequencing (scRNA-seq) is a high-resolution transcriptomic approach used
to discover gene expression patterns among cell types to study precise biological functions.
Unsupervised machine learning (clustering) is of central importance for the analysis of scRNA-
seq data. It can identify putative cell types, uncover regulatory relationships, and track cell
lineages and trajectories. A key issue in clustering scRNA-seq data is determining which clus-
tering method is appropriate to use, since varied methods can yield diverse results. Current
approaches usually focus on a one method and manually select a seemingly meaningful result.
From a biological relevance perspective, it is vital to distinguish between normal and pathogenic
cell types using marker genes. We present a learning framework for comparing outcomes of
multiple scRNA-seq clustering methods to determine the most optimal results. We address the
challenges of model selection and validation metrics in the context of traumatic brain injury
(TBI) applications. We compare clustering performance of five clustering algorithms and two
dimensionality reduction techniques implemented in both Seurat and Scanpy packages.

1 Introduction

One of the most significant frontiers for computational scientists is the engineering of human
healthcare delivery based on intelligent analysis of health data [15]. In diseases with high het-
erogeneity (such as cancer, autism spectrum disorders, autoimmune diseases, traumatic brain
injury, etc.), there is a need to identify more homogeneous, clinically meaningful subgroups of
patients to enable individualized care [16]. Advances in intelligent learning algorithms along
with concurrent increase in biomedical data availability have yielded significant data-driven
solutions with high potential to improve opportunities for personalized medicine [2]. In partic-
ular, computational analysis of single-cell RNA-sequencing (scRNA-seq) has amassed traction
over the past few years as advances in high throughput sequencing technologies have allowed
researchers to collect large catalogues detailing the transcriptomes of individual cells [5].

ScRNA-seq is a high-resolution transcriptomic approach used to discover gene expression
patterns among cell types to study precise biological functions. It is an improvement over
other sequencing technologies such as bulk RNA-sequencing where gene expression is taken as
the total across the sample. Gene expression is measured as the number of times a gene has
been “read,” or transcribed to RNA. Since the genome of each cell within the same organism
is identical, cell types are distinguished from each other by the expression level of each gene.
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Figure 1: Overview of learning framework for analysis of scRNA-seq data.

Beyond simple changes in average gene expression between cell types, scRNA-seq enables a
high granularity of changes in expression to be unraveled. It reveals interesting and informative
changes in expression patterns as well as cell type-specific changes in cell state across samples [7].
The ability to define cell types via unsupervised machine learning (clustering) on the basis of
transcriptome similarity has emerged as one of the most powerful applications of scRNA-seq [5].

In this work, we are interested in scRNA-seq cluster analysis with respect to traumatic brain
injury (TBI). TBI is a heterogeneous neurological disorder that is a disruption of brain function
caused by a blow to the head which could result in lasting physical, emotional and cognitive
impairments [24]. It is a global health problem affecting over 10 million people worldwide and
is a leading cause of death, neurologic and neuropsychiatric disability in the United States [23].
Recent studies reveal that secondary damage of TBI occurs as apoptotic cascades are triggered
in neurons after an initial impact which could result in permanent brain damage, disability,
or death [23]. In some patients, inflammatory and apoptotic pathways are still active years
after the trauma and cause neurodegenerative mechanisms that are also characteristic of other
neurological chronic disorders such as Alzheimer’s disease (AD). ScRNA-seq has the potential
to discover differentially expressed genes responsible for promoting these pathways, as revealed
by the transcriptional changes. Cluster analysis of these changes can lead to new insights in
identifying complex differentially expressed genes that respond to TBI as well as determine cell
populations that are altered post-injury. ScRNA-seq cluster analysis of TBI could enhance our
understanding of persistent inflammation in the subacute and chronic time points after injury
that affects surrounding neurons, key cells, and/or genes. This can also aid medical researchers
in targeting recovery pathways for therapeutic intervention and predict TBI patient outcome.

Though significant progress has been made in clustering of scRNA-seq data, some questions
remain unanswered. A key issue is how to determine which clustering method is appropriate
for a given single cell data set and what parameters to utilize in order to achieve the most
optimal clustering result, especially since different methods produce results with little overlap
[3]. Validating the clustering results also remains a significant issue for scRNA-seq data as
no ground truth is available. Our objective is to develop a learning framework for comparing
outcomes of multiple scRNA-seq clustering methods to determine the most optimal results. We
will address the challenges of model selection and validation metrics in the context of identifying
possibly relevant TBI marker genes.

2 Methods

The overall framework, as illustrated in Figure 1, consists of five key steps. Data curation and
feature selection are conducted prior to cluster analysis to ensure that the filtered representative
data adheres to the single cell quality control standards. We are interested in comparing
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(a) UMAP (b) t-SNE (c) PCA

Figure 2: Seurat plots comparing the gene expression for each condition (LPC injury = red,
saline injury = blue, control = green) [4]: UMAP vs t-SNE vs PCA.

two dimensionality reduction techniques in the feature selection phase. Varied graph based
clustering methods (Leiden, Louvain, smart local moving algorithm), as well as K-means and
hierarchical clustering are performed on the reduced data with varying resolution and number of
k clusters. Model validation involves optimal model selection utilizing certain internal validation
metrics as well as evaluating similarity of clusters obtained across varied parameter settings.
The final step, model interpretation, focuses on visualization and discussion of the clustering
results as well as the process of determining the relevant marker genes.

2.1 Data Curation

We analyze two publicly available TBI data sets in this work. The first data set, GSE101901
[1] (single cell sequencing of hippocampus tissues in TBI), is derived from the hippocampus
region of six samples of 10-week-old C57BL/6 male mice. A mild fluid percussion injury is
imposed on three of the mice to reflect TBI while the remainder three are the sham (control)
mice. 8397 hippocampal cells were collected and sequenced for 17621 genes, after 24 hours,
for at least 500 genes and 900 transcriptomes per cell. The second data set is a subset of the
GSE121654 [4] (complex cell-state changes revealed by single cell RNA sequencing of 76,149
microglia throughout the mouse lifespan and in the injured brain) data. The specific TBI
samples derived from the data set consists of 13,359 microglial cells of the white matter brain
region from nine 100-day old male mice (6 TBI, 3 control). The TBI condition is simulated via
a demyelination injury (3 lysolecithin (LPC), 3 saline injection) that depicts the damage that
occurs to the myelin sheath of the axons after a TBI. The total sample consists of 13755 genes
across 13359 cells.

To ensure consistency in analysis, the preprocessing, filtering, and normalization steps were
all implemented using the Seurat R package [17]. Cells were filtered out if they met at least one
of the following conditions. 1) Cells with unique feature (gene) counts over 2500, as this implies
duplicated reads. 2) Cells with less than 200 unique feature counts, which indicates low quality
or resulting from empty droplets. 3) Cells with excessive mitochondrial contamination (denoted
by over 5% of their feature counts), also considered low quality or dying cells. This resulted in
17621 genes across 7678 cells for the GSE101901 data set, and 13755 genes across 13246 cells
for the GSE121654 data set. No cells were filtered due to mitochondrial contamination in either
data set. The feature expression data was subsequently normalized using the aggregate sum of
the expression measurements, a scale factor of 10,000, and natural log transformation.
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2.2 Feature Selection

Feature selection using dimensionality reduction is an essential step, prior to clustering, for
single cell analysis [5]. Usually these data sets are very large, as there are potentially thousands
of genes that could define a cell, presenting both challenges and opportunities. A large data
set ensures that analyses will have high power and enhances ability to detect rare cell types.
However, visualizing and interpreting clustering results can be computationally difficult. Too
many genes contribute to the ‘curse of dimensionality’ problem as too much information could
bias the results due to noise, and hide significant patterns within the data. The goal of the
feature selection phase is to identify the most informative genes for distinguishing between
the cell types and combine them so that the gene expression patterns among the cells can be
detected. This also speeds up the computational efficiency of the cluster analysis. The subset
of most informative genes is based on those that exhibit high variability across the cells, and
thus denote heterogeneous features to prioritize for subsequent analysis. This is determined by
modeling the mean-variance relationship inherent in data [20].

We investigated three commonly used dimensionality reduction techniques: Principal Com-
ponent Analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and Uniform
Manifold Approximation and Projection (UMAP) [5]. PCA utilizes a linear approach to select
the components that explain the most variation in the data with relatively few parameters to
tune. It also preserves the global structure of the data, however it is heavily influenced by
outliers and performs poorly at preserving local structure and detecting nonlinear relationships
among cells. T-SNE and UMAP are both nonlinear methods that attempt to preserve the local
structure of the data. Though t-SNE is more robust to possible outliers, it has a relatively
longer computational time and does not preserve global structure well. T-SNE can only em-
bed 2-3 dimensions, so it cannot directly work with high-dimensional data (sometimes an initial
round of PCA is applied). UMAP is an efficient technique that relies on distance metrics to find
similarities between neighbors. It is capable of preserving both the global and local structure
of the data depending on the parameters.

These dimensionality reduction methods are also useful for visualization of the data, before
and after clustering. This is helpful for illustrating and interpreting the cluster structures within
the heterogeneous, high-dimensional scRNA-seq data. Figure 2 depicts the visualization of the
GSE121654 data based on their known condition (control, saline, and LPC) using all three
methods. As can be observed, UMAP yielded the most defined visual structures. Hence, for
the remainder of this paper, we compare the performance of the clustering methods on PCA
and UMAP transformed data and utilize UMAP for all the visualization post clustering.

2.3 Cluster Analysis

Graph-based community detection (clustering) methods are commonly used in single cell clus-
ter analysis due in part to their scalability. The Louvain algorithm is a well-known algorithm
based on optimizing modularity [21]. It has low time complexity and is frequently employed for
clustering large data sets. The Leiden algorithm [21] represents an improvement over Louvain.
It converges to a partition in which all subsets of all communities are locally optimally assigned.
It is also faster than the Louvain algorithm and uncovers better partitions. In addition, it has
been proven that the Leiden algorithm yields communities that are guaranteed to be connected.
The SLM algorithm is another modularity-based community detection algorithm [22]. In con-
trast to the other modularity based methods, it splits the communities by moving sets of nodes
between the communities to search for more possibilities to increase modularity. We apply these
graph based methods for varying values of the resolution parameter (influences the resulting
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number of clusters). In addition, we also apply k-means algorithm as well as hierarchical (ag-
glomerative) clustering method for varying values of number of clusters (k). These clustering
methods were implemented in both Seurat and Scanpy [18] packages.

2.4 Model Validation

We evaluated the varied clustering results to determine the most optimal results using inter-
and intra-cluster similarity. Three different internal validation metrics were applied: Silhouette
index (SI), Davies-Bouldin (DB) index, and Calinski-Harabansz (CH) index [11]. SI relies
on the compactness and separation of the clusters in its evaluation based on the pairwise
difference of between-and within-cluster distances. The scores range from -1 to 1, with negative
scores representing samples with wrong assignments and scores of 0 indicating overlapping
clusters while 1 denotes the most optimal result. The DB index measures the average value
of similarity between each cluster and its most similar cluster. Similar to SI, it also computes
the compactness and separation of the clusters, but in contrast, it compares each cluster to
every other cluster using the sum of the average distances from the center of each cluster.
Thus, clusters that are far from other clusters and are densely packed result in a better score.
Values closest to 0 indicate more optimal performance. The CH index measures between-cluster
isolation and within-cluster coherence. A higher score indicates better cluster performance.
To compare similarity of clustering results, we utilized the adjusted rand index (ARI). The
similarity score ranges from -1.0 to 1.0. A score of 1.0 means that the clustering results are
identical, while a score of 0 means the clustering results are random or completely independent of
each other. A negative score suggests that the clustering results have an orthogonal relationship.

2.5 Model Interpretation

For scRNA-seq cluster analysis, visualization of the resulting clusters is very key in model
interpretation. It allows the human users to effectively extract meaningful biological information
and identify novel cell subtypes based on the discovered patterns and relationships within the
data [8]. As mentioned in Section 2.2, to project high-dimensional data into a 2D or 3D space
for visualization, we utilize the dimension reduction techniques that were employed for feature
selection. Different visualization techniques exploit the nonlinear structures and patterns in the
same result in multiple ways. One technique may reveal a pattern more clearly than the other
(Figure 2), hence we utilized UMAP for all the visualization plots. Another component of model
interpretation is the identification and analysis of the marker genes from the clusters. Marker
genes are defined as the genes within a cluster or group of cells that are highly differentiated
from other clusters or groups of cells. These genes can be used to define cell types or identify
genes responsible for promoting certain pathways.

3 Results and Analysis

3.1 Experiment Setup

The implementation of the data curation and feature selection steps were all done in Seurat for
consistency. Prior to dimensionality reduction, the top 10 highly variable genes (features) were
determined using the mean-variance method in Seurat. The data matrix is scaled using a linear
transformation such that the mean expression across all cells was 0 and the variance across all
cells was 1. PCA and UMAP dimensionality reduction techniques were then compared using
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(a) GSE101901 (Seurat) (b) GSE101901 (Scanpy)

(c) GSE121654 (Seurat) (d) GSE121654 Scanpy)

Figure 3: Comparison of clustering performance using validation metrics per data set by each
clustering algorithm and dimensionality reduction technique.

the top 10 components generated from each method to compute the k-nearest neighbors (kNN)
graph using euclidean distance for the community detection clustering algorithms. Kmeans and
hierarchical clustering algorithms were also performed using both PCA and UMAP coordinates
as well as the euclidean distance metric.

The graph based clustering techniques (Leiden, Louvain, and SLM) were implemented both
in Seurat and Scanpy to compare their performance using varying resolutions (0.05, 0.02, 0.1,
0.2, 0.5). For ease of comparison with the graph based clustering results, the k-means hierar-
chical clustering methods were implemented with k = [4, 7, 9, 12] for the GSE101901 data set;
and k = [3, 4, 5, 7] for the GSE121654 data set to match the range of clusters found using the
community detection methods. We extracted the top 5 marker genes within each cluster for
each experiment for the optimal clustering results (as determined by the validation metrics) to
identify potential populations of cells susceptible to TBI.

3.2 Cluster Validation

The SI, DB, and CH validation results for both GSE101901 and GSE121654 are shown in Figure
3 by clustering algorithm and dimensionality reduction technique and by package environment
implementation. As can be observed, the results obtained vary by implementation package, even
though similar user-defined parameters and preprocessing were utilized. More experiments are
needed to fully investigate the underlying reasons for the differences. Given that the validation
metrics take into account differing properties of the cluster structure, it isn’t surprising that
the results differ. The SI and DB indices tended to either be worse or stay the same as the
value of k or resolution increased. Interestingly, the CH index results for Scanpy and Seurat
were oppositely correlated for both data sets. Increasing the value of k or resolution always
resulted in better CH scores in Seurat but worse CH scores in Scanpy. The similarity between
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(a) Visualization of GSE101901 by TBI (red)
and Sham/control (blue) cells.

(b) Top clustering result for GSE101901 by SI
& DB indices: hierarchical clustering (k = 7)

Figure 4: Top clustering result of GSE101901 compared to distribution of control and TBI cells.
The top five marker genes per cluster are listed in the legend. C7 cluster is mainly TBI cells.

the clustering results were also compared to each other using their ARI scores. Leiden and
Louvain methods resulted in the most similar clusters according to their average ARI of 0.880,
followed by comparing two different resolutions of the same clustering method (average ARI of
0.721). Comparing Seurat and Scanpy clusters resulted in the lowest average ARI of 0.444.

Generally, clustering results obtained using the Seurat package and UMAP coordinates
generated better validation metrics than those using the Scanpy package or PCA coordinates.
For the GSE101901 data set, the worst validation scores (SI of 0.05, DB of 2.66, CH of 1063.31)
resulted from using Louvain at 0.5 or 0.02 resolution on PCA coordinates using Scanpy. The best
clustering results (SI of 0.72, DB of 0.28, and CH of 128,633.94) was obtained by clustering using
UMAP coordinates with Seurat’s hierarchical clustering technique (k = 7). For the GSE121654
data set, the worst validation scores (SI of 0.11, DB of 2.01, CH of 594.73) resulted from using
Leiden or Louvain at 0.5 resolution. The best clustering results (SI of 0.57, DB of 0.55, CH of
31,365.61) was obtained with UMAP coordinates using k-means (k = 3 and k = 5) and Louvain
(resolution of 0.02) algorithms in R.

3.3 Analysis of TBI Marker Genes Findings

The best clustering result of the GSE101901 data set according to two validation metrics (SI
and DB) is shown in Figure 4b. When compared to the distribution of TBI and control cells
in Figure 4a, C7 cluster stands out as a group of cells defined by TBI. C7 cluster and TBI cells
share two marker genes: Ttr and Enpp2. In contrast, the other six clusters do not share any
marker genes with those associated with TBI. For the GSE121654 data set, the marker genes of
the top three clustering results according to each validation metric are compared to the marker
genes for each condition (LPC injury, saline injury, and control) in Figure 5. C2 cluster from
the best SI score (Figure 5b), C1 and C5 clusters from the best CH score (Figure 5c), and C2
cluster from the best DB score (Figure 5d) seem to match up well with the LPC injury cells
as shown in Figure 5a. All top five marker genes (Apoe, Ifi27la, Ifitm3, Lgals3bp, and Ccl12)
expressed in LPC cells were also marker genes in C2 cluster with the best DB score, while the
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(a) Visualization by conditions: LPC (red),
saline (blue), and control (green) cells.

(b) SI; k-means (k = 3)

(c) CH; k-means (k = 5) (d) DB; Louvain (0.02 res)

Figure 5: Top clustering result of GSE121654, using SI, DB, and CH indices, compared to the
control and TBI (Saline & LPC) cells. We identify the top 5 marker genes per cluster.

top CH score had four of the five (Apoe, Ifitm3, Ifi27l2a, and Lgals3bp) in C5 cluster 5 and
the top SI score had three of the five (Apoe, Ifi27l2a, and Ifitm3) in C2 cluster. The clustering
result with the best SI score resulted in three clusters, distributed similarly to the conditions
in Figure 5a. The best clustering results according to CH and DB metrics resulted in more
clusters, but also more accurate marker genes.

For the GSE101901 data set, there appears to be a clear optimal clustering result out of
the experiments performed. C7 cluster from this result seems to be specific to TBI, meaning
the marker genes from this cluster are likely involved in promoting pathways that are triggered
after a TBI. Two genes, Ttr and Enpp2, were highly differentiated in both TBI cells and in
cluster 7. The transthyretin protein encoded by the Ttr gene is responsible for transporting
the thyroid hormone thyroxine across the blood brain barrier [14] and binding to beta-amyloid
deposition; those with reduced expression of this gene are at a greater risk of AD [19]. Enpp2
has previously been found to be differentially expressed in metastatic cancers, including brain
cancer [10]. Other sources that utilized the same data set [1, 25] both found significant results
regarding the Ttr gene. Ttr was found to be the most differentially expressed gene after TBI
among all hippocampal cell types; using this information, modulating the Ttr pathway was
found to mitigate adverse effects of TBI [1]. The transthyretin protein encoded by Ttr has also
been significantly increased in endothelial and mural cells including pericytes after TBI [25].

The optimal clustering results for the GSE121654 data set were able to successfully uncover
most, if not all, of the marker genes associated with LPC injury. The Apoe gene was the
most differential gene associated with LPC injury; certain alleles of this gene promote the
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development of Alzheimer’s disease (AD) [6], providing an interesting link between AD and
TBI. IFN-stimulating genes Ifi27l2a and Ifitm3 have previously been described as preventing
viruses from invading the central nervous system and spreading in the brain [9]. Lgals3bp is
down-regulated in the presence of beta-amyloid, a biomarker for Alzheimer’s [12]. Ccl12 is a
gene that has been confirmed to remain persistently upregulated following TBI [13]. Several of
these marker genes specific towards LPC injury agreed with the results obtained in [4], where
a majority of the cells within the LPC-specific cluster (named IR2) were found to express
the genes Fcrls, Apoe, Ifl27l2a, Cxcl10, Ccl4, and Birc5. The cluster IR2-specific genes were
found to be variably upregulated, so the IR2 cluster was subclustered to determine four specific
populations of microglia that respond to LPC injury.

4 Conclusion

We presented a learning framework for comparing outcomes of multiple scRNA-seq clustering
methods to determine the most optimal results. We tackled the challenges of model selection
and validation metrics in the context of identifying possibly relevant TBI marker genes. ScRNA-
seq has the potential to discover differentially expressed genes responsible for promoting these
pathways, as revealed by the transcriptional changes. The marker genes specific to TBI tend to
agree across clustering methods, but not across data sets. Only one marker gene (Jund) appears
in both data sets, and it is a marker gene for TBI cells in GSE101901 and for control cells in
GSE121654. These differences are probably due to the different brain regions (hippocampus
vs subcortical white matter), cell types (heterogenous vs microglia), or time after the TBI (1
day vs 7 days). There were no shared marker genes between LPC and saline injury cells in
the GSE121654 data set, suggesting that the type of injury may play a significant role in the
expression of certain genes.
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