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Abstract

Identification of implicit structures in dynamic systems is a fundamental problem in Artificial In-
telligence. In this paper, we focus on General Game Playing where games are modeled as finite state
machines. We define a new property of game states called invariant projections which strongly corre-
sponds to humans’ intuition of game boards and may be applied in General Game Playing to support
powerful heuristics, and to automate the design of game visualizations. We prove that the computation
of invariant projections is ΠP

2 -complete in the size of the game description. We also show that invariant
projections form a lattice, and the lattice ordering may be used to reduce the time to compute invariant
projections potentially by a factor that is exponential in the schema size of game states. To enable
competitive general game players to efficiently identify boards, we propose a sound (but incomplete)
heuristic for computing invariant projections and evaluate its performance.

1 Introduction
One of the classical problems in Artificial Intelligence is to discover hidden or implicit structures
in dynamic systems. In this paper, we focus on the domain of General Game Playing (GGP) [6]
since it provides a general theoretical framework for modeling discrete dynamic systems.

In GGP, games are modeled as finite state machines, with one distinguished initial state and
one or more terminal states. The games in GGP are defined in a formal language called the
Game Description Language (GDL) [8]. Each game has a finite number of players; each player
has finitely many possible actions in a game state, and each state has an associated reward for
each player.

In GDL, game states are conceptualized as databases, and the notions of legality, reward,
termination, and state transitions are defined using logical rules. GDL allows games to be more
compactly represented than explicitly representing game states and actions. The compact
GDL representation of a game is enabled by representing a large number of game states and
actions using fundamental structures such as game boards (e.g. 8x8 grid in Chess), pieces
(e.g. pieces in Checkers), and patterns (e.g. lines and diagonals in Tic-Tac-Toe). However, the
characterization of these structures is implicit in the game’s GDL description.

Prior works in GGP [11, 14] have studied the problem of identifying game boards and
pieces. However, the proposed solutions rely on specific signatures of game states, and are not
applicable in a general setting. The applicability of these solutions is further limited by the
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assumption of a one-to-one relationship between positions on a game board and pieces, which
does not hold for games like Parchessi1.

In this paper, we present a novel approach towards identifying game structures. We in-
troduce a new property of game states, called invariant projections. Intuitively, invariant pro-
jections are components of game states that are identical across all game states. We formally
define invariant projections in Section 2.

In Section 3, we prove that computation of invariant projections of a game is ΠP
2 -complete

in the size of the game description. We show that invariant projections form a lattice, and
propose an algorithm called Prune that uses the lattice ordering to reduce the time to compute
invariant projections of game, often by a factor that is exponential in the game’s signature i.e.
schema size of the game.

Typically, general game players have limited time to reason about supplied games and to
compute their moves. To enable competitive general game players to feasibly compute invariant
projections, we propose a heuristic called VerifyIP that verifies whether or not a supplied
projection is invariant. VerifyIP is sound but not complete.

In Section 4, we evaluate the performance of VerifyIP and the effectiveness of the Prune
algorithm in reducing the search space of invariant projections. We empirically validate our
claim that invariant projections serve as an effective characterization of game boards, and
discuss potential applications of this characterization.

We discuss related work on identifying game structures in Section 5 and present future
directions of our work in Section 6.

2 Invariant Projections
In GGP, games are described using the Game Description Language (GDL). In the following,
we present an overview of GDL2. Then, we formally define invariant projections. We refer the
reader to [7, 8] for details regarding GDL.

Game Description Language. In GDL, game states are modeled as databases, and state
transitions as database updates. The GDL model of a game starts with objects that are assumed
to exist in the game and relations that describe the properties of objects or the relationships
amongst objects.

Objects and relations are referred to using strings containing letters, digits, and a few non-
alphanumeric characters (e.g. ‘_’). Examples of object and relation constants include x, king,
and cell. Variables have the same spelling as object and relation constants. However, variables
are distinguished from constants by prefixing variables with the character ‘?’ e.g. ?x.

The set of all objects and relations constitute a game’s schema. For a supplied schema,
a proposition is defined to be a structure consisting of an n-ary relation and n objects. The
propositional base for a game consists of all propositions that can be formed from the relations
and the objects in the schema.

In GDL, propositions are either base propositions which represent conditions that are true
in the state of a game, or effectory propositions which represent actions performed by game
players. A state of a game is an arbitrary subset of the game’s base propositions.

A game starts in the initial state. On each time step, each player has one or more legal
actions it can perform. As an action is performed, some base propositions become true and

1http://www.hasbro.com/common/instruct/Parchessi.pdf
2The version of GDL presented here is the prefix version that is used in the annual GGP competitions.
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others become false, leading to a new set of true propositions and, consequently, a new state and
possibly a new set of legal actions. This process repeats until the game enters a terminal state,
at which point the game stops and the players are awarded the number of points associated
with the terminal state.

prole aq : a is a role

pbase pq : p is a base proposition

pinput r aq : a is a feasible action for role r

pinit pq : proposition p is true in the initial state

ptrue pq : proposition p is true in the current state

pdoes r aq : role r performs action a in the current state

pnext pq : proposition p is true in the next state

plegal r aq : action a is legal for role r in the current state

pgoal r nq : current state has utility n for player r

terminal : current state is a terminal state

We present a partial GDL encoding of Tic-Tac-Toe in Figure ??.

GDL consists the following reserved keywords to denote game-independent relations.

prole aq : a is a role

pbase pq : p is a base proposition

pinput r aq : a is a feasible action for role r

pinit pq : proposition p is true in the initial state

ptrue pq : proposition p is true in the current state

pdoes r aq : role r performs action a in the current state

pnext pq : proposition p is true in the next state

plegal r aq : action a is legal for role r in the current state

pgoal r nq : current state has utility n for player r

terminal : current state is a terminal state

We present a partial GDL encoding of Tic-Tac-Toe below.

(role xplayer)

(role oplayer)

(<= (base (cell ?m ?n x)) (index ?m) (index ?n))

...

(base (control xplayer))

(base (control oplayer))

(<= (input ?r (mark ?m ?n)) (role ?r) (index ?m) (index ?n))

...

(index 1)

(index 2)

(index 3)

(init (cell 1 1 b))

...

(init (cell 3 3 b))

(init (control xplayer))

(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b)) (true (control ?w)))

...

(<= (next (cell ?m ?n x)) (does xplayer (mark ?m ?n)) (true (cell ?m ?n b)))

...

(<= open (true (cell ?m ?n b)))

(<= (goal xplayer 100) (line x) (not (line o)))

...

(<= terminal (line x))

(<= terminal (line o))

(<= terminal (not open))

In the above game description, the object constants xplayer and oplayer denote the roles in
Tic-Tac-Toe. Two relations are used to model the game states: (a) ternary relation cell that
relates a row number and a column number in the Tic-Tac-Toe grid with the marker on the
grid position, and (b) unary relation control to say whose turn it is to mark a cell. The base
propositions are characterized by enumerating all possible combinations of grid positions i.e.
row and column numbers, and grid contents i.e. marks x and o, and b (which denotes a blank
space).

Figure 1: Partial GDL Description of Tic-Tac-Toe

In Figure ??, the object constants xplayer and oplayer denote the roles in Tic-Tac-Toe.
Two relations are used to model the game states: (a) ternary relation cell that relates a row
number and a column number in the Tic-Tac-Toe grid with the marker on the grid position,
and (b) unary relation control to say whose turn it is to mark a cell. The base propositions are
characterized by enumerating all possible combinations of grid positions i.e. row and column
numbers, and grid contents i.e. marks x and o, and b (which denotes a blank space).

Figure 1: Game independent constants in GDL

GDL consists of certain reserved keywords to denote game-independent relations. These
keywords are listed in Figure 1.

We present a partial GDL encoding of Tic-Tac-Toe in Figure 2. We note that negation is
handled in GDL rules using negation-as-failure (NAF) semantics.

In Figure 2, the object constants xplayer and oplayer denote the roles in Tic-Tac-Toe.
Two relations are used to model the game states: (a) ternary relation cell that relates a row
number and a column number in the Tic-Tac-Toe grid with the marker on the grid position,
and (b) unary relation control to say whose turn it is to mark a cell. The base propositions are
characterized by enumerating all possible combinations of grid positions i.e. row and column
numbers, and grid contents i.e. marks x and o, and b (which denotes a blank space).

Initially, all grid positions are blank, and it is xplayer’s turn to move. The legality rule in
Figure 2 says that a player can mark a cell if the cell is blank and if it is the player’s turn to
mark the Tic-Tac-Toe grid. The update rule in Figure 2 encodes the following behavior: if the
xplayer player marks a blank cell, then this cell is marked with an x in the next state. The
xplayer player gets 100 points if there is a line of x marks and no lines of o marks. The game
terminates whenever either player has a line of marks, or if the board is not open, i.e. there
are no cells containing blanks.

Identification of Game Structures. Certain game structures are explicitly stated in a
game’s GDL description and can, therefore, be easily extracted. For example, identifying a
game’s players is extremely straightforward, since the players are enumerated using the relation
role. In addition to the game-independent relations in GDL, other relations and constants may
be used to model the game states and to characterize game structures such as game boards
and pieces (or markers). Such structures, which are modeled by game specific relations and
constants, are implicit in the GDL description. For example, in the GDL encoding of Tic-Tac-
Toe, the relation cell is used to characterize the relationship between the game board and the
markers placed by the players. However, the relation constant cell does not have a special
meaning within the game. The constant cell could be replaced consistently throughout the
game by some other constant without changing the semantics of the game.
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GDL consists the following reserved keywords to denote game-independent relations.

prole aq : a is a role

pbase pq : p is a base proposition

pinput r aq : a is a feasible action for role r

pinit pq : proposition p is true in the initial state

ptrue pq : proposition p is true in the current state

pdoes r aq : role r performs action a in the current state

pnext pq : proposition p is true in the next state

plegal r aq : action a is legal for role r in the current state

pgoal r nq : current state has utility n for player r

terminal : current state is a terminal state

We present a partial GDL encoding of Tic-Tac-Toe below.

(role xplayer)

(role oplayer)

(<= (base (cell ?m ?n x)) (index ?m) (index ?n))

...

(base (control xplayer))

(base (control oplayer))

(<= (input ?r (mark ?m ?n)) (role ?r) (index ?m) (index ?n))

...

(index 1)

(index 2)

(index 3)

(init (cell 1 1 b))

...

(init (cell 3 3 b))

(init (control xplayer))

(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b)) (true (control ?w)))

...

(<= (next (cell ?m ?n x)) (does xplayer (mark ?m ?n)) (true (cell ?m ?n b)))

...

(<= open (true (cell ?m ?n b)))

(<= (goal xplayer 100) (line x) (not (line o)))

...

(<= terminal (line x))

(<= terminal (line o))

(<= terminal (not open))

In the above game description, the object constants xplayer and oplayer denote the roles in
Tic-Tac-Toe. Two relations are used to model the game states: (a) ternary relation cell that
relates a row number and a column number in the Tic-Tac-Toe grid with the marker on the
grid position, and (b) unary relation control to say whose turn it is to mark a cell. The base
propositions are characterized by enumerating all possible combinations of grid positions i.e.
row and column numbers, and grid contents i.e. marks x and o, and b (which denotes a blank
space).

Figure 2: Partial GDL Description of Tic-Tac-Toe

In the remainder of this section, we define a new property of game states called invariant
projections. As we will show (in Section 4), invariant projections strongly correspond to game
boards and may be applied to construct effective game playing heuristics.

Projections. In GGP, a game state is any subset of the base propositions. Formally, a game
state ⊆ {p | (base p)}.
Definition 1. The structure 〈r, S〉 is a projection of a game if r is a relation, there exists a
base proposition that consists of r, and S is a non-empty subset of {1, 2, . . . , k} where k denotes
the arity of r.

Consider the game of Tic-Tac-Toe whose GDL description is presented in Figure 2. Base
propositions in the game description contain the ternary relation cell and the unary relation
control. Therefore, 〈cell, {1}〉, 〈cell, {1, 3}〉 and 〈control, {1}〉 are examples of projections.

Suppose that 〈r, S〉 is a projection, where r is a k-ary relation and S = {A1, A2, . . . , Am}.
Evaluating 〈r, S〉 on any game state produces a set of propositions that is identical to the
answers obtained by evaluating the following query q in the game state.

(⇐ (q ?XA1
?XA2

. . . ?XAm
) (r ?X1 ?X2 . . . ?Xk))

Example 1. Consider the projection 〈cell, {1, 3}〉 for Tic-Tac-Toe. Evaluating 〈cell, {1, 3}〉
on the game’s initial state results in the following propositions.
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(q 1 b)
(q 2 b)
(q 3 b)

The above propositions can be characterized using the following query.

(<= (q ?X ?Z) (cell ?X ?Y ?Z))

We denote the result of evaluating a projection t on a state s as π(t, s), and on the set of
all base propositions as πb(t).

Definition 2. An invariant projection of a game is a projection t such that all of the following
conditions hold.

• Property 1. If si denotes the initial state of the game, then π(t, si) = πb(t).
• Property 2. For every state s that is reachable from si, if s′ is a next state that can be

reached by executing a legal action on s, then π(t, s) = π(t, s′).

In the following example we present an invariant projection of Tic-Tac-Toe.

Example 2. Consider the projection t1 = 〈cell, {1}〉 in the game of Tic-Tac-Toe. For this
projection, πb(t1) = {(q 1), (q 2), (q 3)}. It is fairly straightforward to prove either by
enumerating all states of Tic-Tac-Toe that are reachable from the initial state, or by using
induction on the game rules that π(t1, s) = {(q 1), (q 2), (q 3)} for every game state s in
Tic-Tac-Toe. Therefore, t1 is an invariant projection.

An invariant projection 〈r, S〉 is maximal if there does not exist a set T such that S ⊂ T
and 〈r, T 〉 is invariant.

3 Computing Invariant Projections
In this section, we discuss the computation of invariant projections. First, we show that the
problem of deciding whether or not a projection is invariant is computationally hard.

Theorem 1. The problem of deciding invariant projections is ΠP
2 -complete in the size of the

game description.

Proof. Our proof proceeds in two parts. In the first part, we show that the problem of deciding
whether a supplied projection is invariant or not is ∈ ΠP

2 . In the second part, we prove that
our decision problem is ΠP

2 -hard.

Part 1. For the first part, it suffices to show that with access to an oracle that decides NP-
complete problems, counter-examples for our decision problem can be verified in polynomial
time.

Suppose we want to decide whether or not a supplied projection t is invariant. Let the initial
state of the game be si. If πb(t) 6= π(t, s), then t is not invariant. This condition can be verified
in time that is polynomial in the size of the game description because (i) πb(t) and π(t, si) can
be expressed as GDL queries (see Section 2), and (ii) query evaluation in GDL ∈ PTIME. In
the following, we assume that πb(t) = π(t, s).

To decide whether or not t is invariant, we guess a state s. We use an oracle3 to decide
whether or not s is reachable from si. From Definition 2, it follows that s is a counter-example

3The problem of deciding reachability in constraint graphs in NP-complete [10].
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for our decision problem if s is reachable from si, and π(t, s) 6= πb(t). Since π(t, s) 6= πb(t) can
be verified in time that is polynomial in the game description, the problem of deciding whether
or not a supplied projection is invariant is in ΠP

2 .

Part 2. To establish ΠP
2 -hardness, we present a polynomial time reduction from the problem

of deciding whether or not a 2-QBF (quantified boolean formula) is satisfiable to the problem
of deciding whether or not a projection is invariant. The former decision problem is well known
to be ΠP

2 -complete.
We assume that our input is a 2-QBF of the form ∀x1, x2, . . . xk ∃y1, y2, . . . , ym φ. In this

formula, x1, x2, . . . xk, y1, y2, . . . , and yms are boolean variables, and φ is a 3-CNF expression
over the boolean variables. Let the number of clauses in φ be w.

We transform the above 2-QBF into the GDL description of the following single player
game. Our game consists of k + 1 base propositions: (base x1), (base x2), . . ., (base xk)
and (base (cell 1)).

A game state that contains the proposition xi in a game state corresponds to a truth
assignment where the boolean variable xi is assigned the truth value true, and a game state
that does not contain xi corresponds to an assignment where xi is assigned the truth value
false.

The game player is denoted using the object constant p. In each state, p has k legal moves
i.e. to toggle xi for 1 ≤ i ≤ k.
(<= (legal p (toggle x1)))
...
(<= (legal p (toggle xk)))

Toggling xi flips its truth value in the next state. However, this action does not affect the truth
value of xj if i 6= j. We encode this behavior in our game as follows.

(<= (next ?x) (does p (toggle ?x)) (not (true ?x)))
(<= (next ?x) (does p (toggle ?y)) (true ?x) (distinct ?x ?y))

The initial state of game consists of only one proposition: (cell 1). We use a view called all
to characterize all possible truth assignments to the existentially quantified variables in φ. The
view all is defined as follows.

(<= (all ?A1 ?A2 ... ?Am) (y1 ?A1) (y2 ?A2) ... (ym ?Am))
(y1 t) (y1 f)
...
(ym t) (ym f)

For every clause ci in φ, we characterize the satisfying assignments of ci as a view called ci
in our game. Suppose the ith clause ci in φ is xj ∨ yk ∨ ¬yl. Then, the view ci is defined as
follows.

(<= (ci ?A1 ?A2 ... ?Am)
(all ?A1 ?A2 ... ?Am) (not (di ?A1 ?A2 ... ?Am)))

(<= (di ?A1 ... ?Ak-1 f ... ?Al-1 t ... ?Am)
(all ?A1 ... ?Ak-1 f ... ?Al-1 t ... ?Am) (not (true xj)))

For a supplied assignment of universally quantified variables, we indicate the existence of a
satisfiable assignment for φ using a view called phi which is defined as follows.

(<= phi (c1 ?A1 ?A2 ... ?Am) ... (cw ?A1 ?A2 ... ?Am))
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Finally, we add the following update rule which states that if (cell 1) and phi are true in
the current state, then (cell 1) is true in the next state.

(<= (next cell 1) (true (cell 1)) phi)

The generated instance in the above translation is to decide whether or not 〈cell, {1}〉 is an
invariant projection. We show that the above translation is indeed a reduction i.e. the supplied
2-QBF instance is satisfiable if and only if 〈cell, {1}〉 is an invariant projection of the above
game.

Suppose that the supplied 2-QBF instance is satisfiable i.e. φ is satisfiable for every truth
assignment to the universally quantified variables i.e. xi (1 ≤ i ≤ k). This means that propo-
sition phi is true in every game state, and as a consequence, for any game state s and a state
t that is reachable from s using a legal move, (cell 1) ∈ s =⇒ (cell 1) ∈ t. Therefore,
π(〈cell, {1}〉, s) = π(〈cell, {1}〉, t). Let si denote the initial state of the game. Since (cell 1)
∈ si, we have π(〈cell, {1}〉, si) = πb(〈cell, {1}〉). Therefore, 〈cell, {1}〉 is invariant.

Suppose that 〈cell, {1}〉 is an invariant projection. Then, for each of the 2k game states
which contain (cell 1), the view proposition phi is true. Since these 2k states correspond to
different truth assignments to the universally quantified variables, and phi being true corre-
sponds to φ being satisfiable, the supplied 2-QBF instance is satisfiable. Therefore, the problem
of deciding whether or not a projection is invariant is ΠP

2 -complete.
Computing all Invariant Projections. Suppose Verify is a procedure that takes as input
the GDL description of a game and a projection t, and outputs whether or not t is invariant.
A naive method for computing all invariant projections of a supplied game G is as follows. Let
the constant r denote a k-ary relation that appears in the set of base propositions, and let Pr

be the set of projections containing r. Then, the set of all invariant projections containing r =
{t | t ∈ Pr ∧Verify(G, t)}.

Note that in the above computation, 2k − 1 projections are verified. However, the above
approach may perform verifications that are redundant. We can prune the set of candidate
projections that need to be verified using the following result.

Theorem 2. If 〈r, S〉 is an invariant projection, then for every non-empty subset T ⊂ S, 〈r, T 〉
is also an invariant projection.

Proof. Suppose that r is a k-ary relation, and 〈r, S〉 is an invariant projection. Suppose that
S = {A1, . . . , Am} and T = {B1, . . . , Bl} is a subset of S.

From Section 2 we note that, π(〈r, T 〉, s) is equivalent to evaluating the following query q
on the game state.

(⇐ (q ?XB1
?XB2

. . . ?XBl
) (r ?X1 ?X2 . . . ?Xk))

The query q may be reformulated as follows.

(⇐ (q ?XB1 ?XB2 . . . ?XBl
) (q1 ?XA1 ?XA2 . . . ?XAm))

(⇐ (q1 ?XA1 ?XA2 . . . ?XAm) (r ?X1 ?X2 . . . ?Xk))

In the above reformulation, the set of answers obtained by evaluating q1 in state s is
π(〈r, S〉, s). Since 〈r, S〉 is invariant, q1 produces identical answers for the following pairs
of states: (a) initial state and the set of all base propositions, and (b) any state s that is
reachable from the initial state and its next reachable state s′. As a consequence of the above
reformulation, q also produces identical answers in the above pairs of states. Therefore, 〈r, T 〉
is also an invariant projection.
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Input: GDL description of a game G, a k-ary relation r
Initialization: S � t1, 2, . . . , ku, i � 1.
Set of candidate projections C1 = {xr, T y such that T is a singleton subset of S}
for projection t P C1 do

IP1 = {t such that t P C1 and Verify(G, t) is true}
end for
repeat

i � i ` 1
Ci = cartesian product of C1 and Ci´1

Prune from Ci projections of the form xr, T y if DS such that S � T , cardinality of S “ i´1,
and {xr, T y R IPi´1

IPi = {t such that t P Ci and Verify(G, t) is true}
until IPi “ H or c � k
Output: tIPj | 1 � j � iu

The strategy used in Prune for pruning candidate projections is identical to the strategy used
for pruning candidate item-sets in the Apriori Algorithm [1]. In the worst case, no candidate
projections may be pruned at all. However, as has been noted in [4] and validated by our eval-
uation in Section 4, pruning candidate projections for a k-ary relation may potentially decrease
the number of calls to the verification procedure by a factor that is exponential in k.

Practical Considerations: Even through Prune may e�ciently limit the search space for
invariant projections, an e�cient implementation of Verify is unlikely because of Theorem 1.
In competitive game playing [6], game players have limited time to reason about supplied games
(denoted by start clock) and to compute their moves (denoted by play clock). To enable the
use of invariant projections in competitive game playing, we propose a heuristic called VerifyIP
for computing invariant projections. VerifyIP outputs a supplied projection to be invariant if
it satisfies Definition 2 with the following relaxation to Property 2.

Property 2 (new): For every state s, if s1 is a next state that can be reached by executing a
legal action on s, then ⇡pt, sq = ⇡bptq ùñ ⇡pt, s1q “ ⇡bptq.
Theorem 3. (Soundness) If a projection is identified by VerifyIP to be invariant, then it also
satisfies Definition 2.

Proof. The proof of the above theorem is immediate since Property 2 (new) holds in all game
states, which includes the set of states reachable from the initial state.

We present an implementation of VerifyIP by representing the above characterization as an
ASP program in Figure 4.

In the VerifyIP procedure presented in Figure 4, the assertions in Step 1 restrict the models
of Ga. The first assertion ensures that all propositions that are true in a state are a subset
of the base propositions. The second rule encodes the constraint that exactly one action is
performed by a player, which is true of all GGP games. The last assertion enforces all actions
to be legal.

In Step 2 of VerifyIP, the relations pi_b, pi_i, pi_s, and pi_next characterize the compu-
tation of ⇡bptq,⇡pt, siq,⇡pt, sq, and ⇡pt,nextpsqq respectively, where si denotes the initial state
and s denotes a state in the game. The correctness of this characterization follows from the
definitions of projections presented in Section 2.

Figure 3: Prune procedure for computing invariant projections

Input: GDL description of a game G, a k-ary relation r
Initialization: S  {1, 2, . . . , k}, i 1.
Set of candidate projections C1 = {hr, T i such that T is a singleton subset of S}
for projection t 2 C1 do

IP1 = {t such that t 2 C1 and Verify(G, t) is true}
end for
repeat

i i + 1
Ci = cartesian product of C1 and Ci�1

Prune from Ci projections of the form hr, T i if 9S such that S ⇢ T , cardinality of S = i�1,
and hr, T i /2 IPi�1

IPi = {t such that t 2 Ci and Verify(G, t) is true}
until IPi = ? or i > k
Output: {IPj | 1  j  i}

The strategy used in Prune for pruning candidate projections is identical to the strategy used
for pruning candidate item-sets in the Apriori Algorithm [1]. In the worst case, no candidate
projections may be pruned at all. However, as has been noted in [4] and validated by our eval-
uation in Section 4, for k-ary relations, pruning candidate projections may potentially decrease
the number of calls to the verification procedure by a factor that is exponential in k.

Practical Considerations: Even though Prune may e�ciently limit the search space for in-
variant projections, an e�cient implementation of Verify is unlikely because of Theorem 1. In
competitive game playing [6], game players have limited time to reason about supplied games
(denoted by start clock) and to compute their moves (denoted by play clock). To enable the
use of invariant projections in competitive game playing, we propose a heuristic called VerifyIP
for computing invariant projections. VerifyIP outputs that a supplied projection is invariant if
it satisfies Definition 2 with the following relaxation to Property 2.

Property 2 (new): For every state s, if s0 is a next state that can be reached by executing a
legal action on s, then ⇡(t, s) = ⇡b(t) =) ⇡(t, s0) = ⇡b(t).

Theorem 3. (Soundness) If a projection is identified by VerifyIP to be invariant, then it also

Figure 3: Prune procedure for computing invariant projections

Pruning Candidate Projections. According to Theorem 2, invariant projections form a
lattice. We can use this lattice structure to prune the search space of invariant projections as
follows. Suppose 〈r, T 〉 is a projection. From Theorem 2, it follows that 〈r, T 〉 is not invariant
if there exists a set S such that S ⊂ T and 〈r, S〉 is not invariant. This pruning strategy is
presented as the Prune procedure in Figure 3. The set of candidate and invariant projections
in the ith step of Prune are denoted as Ci and IPi respectively.

We note that the strategy used in Prune for pruning candidate projections is identical to
the strategy used for pruning candidate item-sets in the Apriori Algorithm [1]. In the worst
case, no candidate projections may be pruned at all. However, as has been noted in [4], and
validated by our evaluation in Section 4, for k-ary relations, pruning candidate projections may
potentially decrease the number of calls to the verification procedure by a factor that is expo-
nential in k.

Practical Considerations. Even though Prune may efficiently limit the search space for in-
variant projections, an efficient implementation of Verify is unlikely because of Theorem 1. In
competitive game playing [6], game players have limited time to reason about supplied games
(denoted by start clock) and to compute their moves (denoted by play clock). To enable the
use of invariant projections in competitive game playing, we propose a heuristic called VerifyIP
for computing invariant projections. VerifyIP outputs that a supplied projection is invariant if
it satisfies Definition 2 with the following relaxation to Property 2.

Property 2 (new). For every state s, if s′ is a next state that can be reached by executing a
legal action on s, then π(t, s) = πb(t) =⇒ π(t, s′) = πb(t).

Theorem 3. (Soundness) If a projection is identified by VerifyIP to be invariant, then it also
satisfies Definition 2.

Proof. Proof of the above theorem is immediate since Property 2 (new) holds for all game states
including the set of states reachable from the initial state.

We present an implementation of VerifyIP by representing the above characterization as an
ASP program in Figure 4. In VerifyIP, the assertions in Step 1 restrict the models of Ga. The
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Input: GDL description of a game G, k-ary relation r, a projection t “ xr, ti1, i2, . . . , ijuy.
Let Ga – the encoding of G in ASP.
Step 1: Add to Ga the following assertions:

{true(X): base(X)}.

{does(R,M) : input(R, M)} 1 :- role(R).

:- does(R,M), not legal(R,M).

Step 2: Add to Ga the following rules:

pi_b(Xi1,Xi2,...,Xij) :- base(r(X1,X2,...,Xk)).

pi_init(Xi1,Xi2,...,Xij) :- init(r(X1,X2,...,Xk)).

pi_s(Xi1,Xi2,...,Xij) :- true(r(X1,X2,...,Xk)).

pi_next(Xi1,Xi2,...,Xij) :- next(r(X1,X2,...,Xk)).

initial :- pi_b(Xi1,Xi2,...,Xij), not pi_init(Xi1,Xi2,...,Xij).

initial :- pi_init(Xi1,Xi2,...,Xij), not pi_b(Xi1,Xi2,...,Xij).

current :- pi_b(Xi1,Xi2,...,Xij), not pi_s(Xi1,Xi2,...,Xij).

current :- pi_s(Xi1,Xi2,...,Xij), not pi_b(Xi1,Xi2,...,Xij).

nxt :- pi_b(Xi1,Xi2,...,Xij), not pi_next(Xi1,Xi2,...,Xij).

nxt :- pi_next(Xi1,Xi2,...,Xij), not pi_b(Xi1,Xi2,...,Xij).

variant :- not current, nxt.

variant :- initial.

:- not variant.

Output: True if the modified ASP program Ga is unsatisfiable i.e. t is invariant. Otherwise,
False.

4 Evaluation

In this section, we first evaluate the time taken by VerifyIP to verify whether or not a projection
is invariant, and the e↵ectiveness of the Prune procedure. We then validate our claim that
invariant projections strongly correspond to humans’ intuition of game boards. At the end of
this section, we discuss applications of invariant projections.

In our evaluation, we used GDL descriptions and stylesheets of 13 games that were selected
from the General Game Playing MOOC https://www.coursera.org/course/ggp, and the
AAAI-13 and the AAAI-15 General Game Playing competitions. A game’s stylesheet maps
a game state to a visualization. The game descriptions and stylesheets that are used in our
evaluation are accessible at http://gamemaster.stanford.edu. We performed our evaluation
on a 2.4 GHz Intel Core 2 Duo Processor with 4 GB RAM.

We evaluated the performance of our proposed heuristic for deciding invariant projections
and our pruning strategy as follows. For every game in our test suite, we computed all invariant
projections using a version of the Prune algorithm that decides invariant projections using
VerifyIP. We used the Clingo ASP Solver [5] to check for unsatisfiability of the ASP programs
generated by VerifyIP. We recorded the number of calls to VerifyIP, the total time to compute
all invariant projections, the maximum time to verify a whether or not a projection is invariant,
and the maximal invariant projections. These results are recorded in Table 1.

Typically, past GGP competitions set the value of the start clock between 40-60 seconds and
the value of play clock at 10 seconds. From Table 1, it is evident that the invariant projections
for every game in our test suite were computed well within the value of the start clock (= 40
seconds). For 10 games, the computation finished within the value of the play clock. These

Figure 4: VerifyIP heuristic for identifying invariant projections.

first assertion ensures that a game state is a subset of the set of all base propositions. The
second rule encodes the constraint that exactly one action is performed by a player, which is
true for all GGP games. The last assertion enforces every action to be legal.

In Step 2 of VerifyIP, the relations pi_b, pi_i, pi_s, and pi_next characterize the compu-
tation of πb(t), π(t, si), π(t, s), and π(t,next(s)) respectively, where si denotes the initial state
and s denotes a state in the game. The correctness of this characterization follows from the
definition of projections presented in Section 2.

Correctness of Implementation. In VerifyIP, if a supplied projection does not satisfy
Property 1 (from Definition 2), then there exists a model of Ga that satisfies initial. Anal-
ogously, if the projection does not satisfy Property 2 (new), then some model of Ga falsifies
current => nxt. If there exists a model of Ga that contains variant then at least one of Prop-
erty 1 or Property 2 (new) is violated. Therefore, if Ga is unsatisfiable, then t is an invariant
projection.

We note that deciding invariant projections using VerifyIP is computationally cheaper than
using Definition 2. In the former case, the decision problem is NP-hard; where as, in the latter
case, the decision problem is ΠP

2 -hard. In the worst case, the running-time of VerifyIP may
be exponential in the size of the propositional base. However, our evaluation of VerifyIP in
Section 4 indicates that the time taken to verify whether or not a supplied projection is invariant
is reasonable e.g. within the values of the start and play clocks used in past GGP computations.

The invariant projections that are decided by VerifyIP also satisfy the lattice structure as
stated in Theorem 2. This can be proved by extending the proof of Theorem 2 such that the
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query q1 produces identical answers for every pair of states s and s′, such that s′ is reachable
from s through a legal move. Thus, we can use the Prune procedure as presented in Figure 3 to
compute all invariant projections that satisfy Property 2 (new), by replacing calls to Verify(G, t)
in Prune with calls to VerifyIP(G, t).

4 Evaluation

In this section, first we evaluate the performance of VerifyIP, and the effectiveness of the
Prune procedure. Then, we validate our claim that invariant projections strongly correspond
to humans’ intuition of game boards. At the end of the section, we discuss applications of
invariant projections.

In our evaluation, we used GDL descriptions and stylesheets of 13 games that were selected
from the General Game Playing MOOC https://www.coursera.org/course/ggp, and the
AAAI-13 and the AAAI-15 General Game Playing competitions. A game’s stylesheet maps
a game state to a visualization. The game descriptions and stylesheets that are used in our
evaluation are accessible at http://gamemaster.stanford.edu. We performed our evaluation
on a 2.4 GHz Intel Core 2 Duo Processor with 4 GB RAM.

We evaluated the performance of our proposed heuristic for deciding invariant projections
and our pruning strategy as follows. For every game in our test suite, we computed all invariant
projections using a version of the Prune procedure that decides invariant projections using
VerifyIP. We used the Clingo ASP Solver [5] to check for unsatisfiability of the ASP programs
generated by VerifyIP. We recorded the number of calls to VerifyIP, the total time to compute
all invariant projections, the maximum time to verify a whether or not a projection is invariant,
and the maximal invariant projections. These results are recorded in Table 1.

Game Relation
(Arity)

Calls Timetotal Timemax Invariant Pro-
jection

alquerque cell (3) 4 3.76 1.13 〈cell, {1, 2}〉
chinesecheckers cell (2) 2 32.64 21.41 〈cell, {1}〉
chinook oddcell (3),

evencell (3)
8 24.45 5.73 〈oddcell, {1, 2}〉

〈evencell, {1, 2}〉
eightpuzzle cell (3) 6 0.5 0.1 〈cell, {1, 2}〉

〈cell, {3}〉
horseshoe cell (2) 2 0.02 0.01 〈cell, {1}〉
kono cell (3) 4 0.42 0.14 〈cell, {1, 2}〉
multiplehunter cell (4) 4 16.61 12.72 〈cell, {1}〉
multiplesukoshi cell (5) 16 1.06 0.13 〈cell, {1, 2, 3, 4}〉
multipletictactoe cell (4) 8 0.24 0.04 〈cell, {1, 2, 3}〉
reflectconnect cell (3) 4 5.59 1.8 〈cell, {1, 2}〉
sukoshi cell (3) 4 0.04 0.01 〈cell, {1, 2}〉
tictactoe cell (3) 4 0.04 0.01 〈cell, {1, 2}〉
yinsh cell (3) 4 1.5 0.81 〈cell, {1, 2}〉

Table 1: Evaluation of VerifyIP and Prune. The computation times reported are in seconds.
Calls represents the number of calls to VerifyIP.

Typically, past GGP competitions set the value of the start clock between 40-60 seconds and
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the value of play clock at 10 seconds. From Table 1, it is evident that the invariant projections
for every game in our test suite were computed well within the value of the start clock (= 40
seconds). For 10 games, the computation finished within the value of the play clock. These
results indicate that the VerifyIP heuristic may be feasibly incorporated in competitive game
players to decide invariant projections.

Furthermore, the results in Table 1 indicate that for a majority of the games, the space
of candidate projections is pruned by half using the Prune algorithm. For the game of mul-
tiplehunter, the Prune procedure reduced the number of calls to Verify by a factor that is
exponential in the schema size of the game. In this case, only 4 projections of the relation cell
were checked for invariance. Since, the arity of cell in multiplehunter is 4, a naive computation
would have verified 15 projections.

Since invariant projections are components of a game that do not change with gameplay, they
intuitively correspond to what humans think of as game boards. To validate this correspondence,
we computed invariant projections for all the games. We inspected each game’s stylesheet to
determine the projections that correspond to the game board, and checked whether or not
these projections are reported by our heuristic. For all the games, except multiplehunter, the
invariant projection reported by our heuristic was identical to the characterization of the game
board as presented in the game’s stylesheet. This suggests that invariant projections provide
an effective characterization of game boards.

For multiplehunter, 〈cell, {1}〉 was the reported invariant projection; however, the game’s
stylesheet uses the projection 〈cell, {1, 2, 3}〉 to characterize the game board. In the GDL de-
scription of multiplehunter, the state of every board position is not explicitly represented. The
game state consists of only those board positions that have a piece or marker placed on them.
In such cases, the intended board positions may, alternatively, be conceptualized as pieces that
are placed by players either directly, or indirectly as a result of placing other conventional pieces.

Applications of Invariant Projections. It has been shown in [3, 11, 14], that the identi-
fication of implicit game structures such as boards and pieces may be used to enable effective
game playing heuristics. The characterization of game boards in [3, 11, 14] is based on specific
signatures of the game states, and is therefore not applicable in a general setting. We discuss
this topic further in Section 5. Invariant projections may potentially broaden the applicability
of such game playing heuristics since invariant projections effectively characterize game boards
and the definition of invariant projections is game-independent.

The problem of verifying whether or not a projection is invariant is computationally hard.
The VerifyIP heuristic, which is sound but not complete, may be used to efficiently verify
whether or not a supplied projection is invariant. Another computationally cheap heuristic for
deciding invariant projections is to verify Definition 2 over a reasonably large subset of all game
states. However, such a heuristic generates complete but unsound invariant projections. Ac-
cording to [6], a large number of competitive general game players use Monte-Carlo Tree Search
(MCTS) algorithm. Since MCTS explores a large number of game states - Prune procedure
coupled with this heuristic may be applied in conjunction with the tree search to incrementally
compute and maintain invariant projections.

Invariant projections may also be used to automate the design of a game’s visualization
by automatically generating stylesheets for games. A game’s stylesheets can be automatically
generated from its GDL description by identifying implicit game structures such as boards and
pieces. Since, invariant projections strongly correspond to humans’ characterization of game
boards, invariant projections may be used to characterize game boards in a game’s visualiza-
tion. The Merlin system presented in [12] uses invariant projections to discover game boards
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and pieces. Merlin leverages the lattice property of invariant projections to decompose a sup-
plied game into different sets of boards and pieces, and subsequently generate different, poten-
tially new visualizations for games e.g. Trifecta http://stanford.edu/~abhijeet/trifecta/,
which is a card-based visualization of Tic-Tac-Toe.

5 Related Work

Prior works in GGP have studied the problem of identifying implicit game structures such
as boards, pieces, and latches. The proposal presented in [11] characterizes game boards by
focusing on a ternary relation called cell in game states. In this proposal, two arguments in
the cell relation correspond to the board positions, and the third argument corresponds to
an object placed on the board. A similar definition of game boards has been presented in [14].
However, the proposal presented in [14] allows cell to be an n-ary (n > 2) relation.

Our characterization of boards as invariant projection differs from the characterization of
boards presented in [11, 14] as follows. First, the characterizations presented in [11, 14] assume
that each board location contains at most one piece. However, this is not the case with our
characterization. For games like Parchessi, where multiple pieces of players may co-occupy
board positions, the prior definitions fail to capture the notion of a board. In fact it has been
noted in [11] that their proposed characterization may reject valid boards.

Second, each board location appears in all game states in our proposal. However, this is
not the case in prior definitions. Third, invariant projections allow multiple arguments in a
relation to characterize the contents of a board location (or pieces). This is, however, not the
case in prior definitions where only one argument may represent the contents of a board [11].
Consider a game whose states are captured in a 4-ary relation, where the first and the last two
arguments characterize the board locations and pieces respectively. The game boards for this
game prior cannot be identified using prior definitions of boards. Finally, in prior proposals,
special meaning is attached to the relation constant cell which is not a GDL keyword. This
is not the case in our approach.

Prior works [9, 13] in GGP have also addressed the problem of automatically proving
properties of games. The technique presented in [13] translates the properties of games as
Alternating-time Temporal Logic (ATL) formulae. Verification of these properties is shown to
be EXPTIME-complete, and is done by interpreting the corresponding ATL formulate over all
reachable states. The technique presented in [9] encodes properties of games as sequence state
invariants, and proves these properties using Answer Set Programming similar to our approach
in VerifyIP.

6 Conclusion and Future Work

In this paper, we define a new property of game states called invariant projections that strongly
corresponds to humans’ intuition of game boards. Invariant projections may be applied to iden-
tify game boards in enable effective game playing heuristics and in designing game visualizations.
One potential direction in which our work may be expanded is to model other game structures
and concepts such as pieces and their capture, and the type of game play. For example, config-
uration games e.g. 8-puzzle may be characterized as games that contain invariant projections
of the form 〈r, S〉 and 〈r, T 〉 where r is a k-ary relation, S∩T = ∅ and | S∪T |= k. Another in-
teresting future topic for investigation is whether identification of invariant projections may be
leveraged optimize game execution, analogous to loop invariant code motion [2] in compilers.
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