
SAT Encodings for the Car Sequencing Problem

Valentin Mayer-Eichberger and Toby Walsh

NICTA and University of New South Wales
Locked Bag 6016, Sydney NSW 1466, Australia

{valentin.mayer-eichberger,toby.walsh}@nicta.com.au

Abstract

Car sequencing is a well known NP-complete problem. This paper introduces encodings of this

problem into CNF based on sequential counters. We demonstrate that SAT solvers are powerful in this

domain and report new lower bounds for the benchmark set in the CSPLib.

1 Introduction

Car sequencing is the first benchmark in the constraint programming library (prob001 in
CSPLib [9]). The associated decision problem (is there a production sequence for cars on the
assembly line satisfying the sliding capacity constraints?) has been shown to be NP-complete
[12][8]. To date, however, it has not received much attention from the SAT community. This is
disappointing as we show here that SAT is a very effective technology to solve such problems.
We introduce several CNF encodings for this problem that demonstrate the strength of SAT
solvers. Furthermore, we identify new lower bounds by a preprocessing technique and by SAT
solving.

The paper is organised as follows. First we formally introduce the car sequencing problem.
Then in Section 2 we define the CNF encodings and discuss their properties. A direct method
to compute lower bounds is explained in Section 3. In Section 4 we evaluate the CNF encodings
on the CSPLib benchmark and show results on the lower bounds.

1.1 Car Sequencing

Car sequencing deals with the problem of scheduling cars along an assembly line with capacity
constraints for different stations (e.g. radio, sun roof, air-conditioning, etc). Cars are parti-
tioned into classes according to their requirements. Let C and O be disjoint sets of classes and
options. To each class k ∈ C there is given a demand of cars dk to be scheduled. Each option
l ∈ O is limited to ul occurrences on each subsequence of length ql (denoted as a capacity con-
straint ul/ql), i.e. no more than ul cars with option l can be sequenced among ql consecutive
cars. To each class k ∈ C we denote the set Ok of options it requires and for convenience to
each option l ∈ O we denote Cl the set of classes that require this options. A solution is a valid
sequence of all cars.

Let n be the length of the total sequence. The following pseudo Boolean model is a basis
for our translation to CNF. We use 0/1 variables cki to denote that a car k ∈ C is at position
i, likewise oli for option l ∈ O. For the sequence it must hold:

• Demand constraints: ∀k ∈ C
n∑

i=1

cki = dk

D. Le Berre (ed.), POS-13 (EPiC Series, vol. 29), pp. 15–27 15



SAT Encodings for the Car Sequencing Problem Mayer-Eichberger and Walsh

• Capacity constraints: ∀l ∈ O with ratio ul/ql

n−ql∧
i=0

(

ql∑
j=1

oli+j ≤ ul)

And in all positions i ∈ {1 . . . n} of the sequence it must hold:

• Link between classes and options: for each k ∈ C and

∀l ∈ Ok : cki − oli ≤ 0

∀l ∈ O with l 6∈ Ok : cki + oli ≤ 1

• Exactly one car: ∑
k∈C

cki = 1

Example 1.1. Given classes C = {1, 2, 3} and options O = {a, b}. The demands (number of
cars) for the classes are 3, 2, 2 and capacity constraints on options are 1/2 and 1/5, respectively.
Class 1 has no restrictions, class 2 requires option a and class 3 needs options {a, b}. Given
these constraints the only legal sequence for this problem is [3, 1, 2, 1, 2, 1, 3], since class 2 and
3 cannot be sequenced after another and class 3 need to be at least 5 positions apart.

Car sequencing in the CSPLib contains a selection of benchmark problems of this form
ranging from 100 to 400 cars. Over the years different approaches have been used to solve
these instances, among them constraint programming, local search and integer programming
[14][10][11][6][15].

Car sequencing has also been treated as an optimisation problem, although the literature
does not agree on a common optimisation function and several versions have been proposed.
There are several variations for the optimisation function minimising the number of violated
capacity constraints. However, in this paper we use the definition of [13] which naturally
transforms to a sequence of decision problem and SAT solving can be directly applied: An
unsatisfiable car sequencing problem can be made solvable by adding empty slots (also called
dummy cars) to the sequence. The task is then to minimise the number of dummy cars needed
to generate a valid sequence.

We state the optimisation function for which we show lower bounds and for completeness
provide also the optimisation function to which we compare in Section 4:

1. Let z ∈ C be the class of additional cars that require no options with variable demand
dz ∈ N. The optimisation function is then

minimise dz

2. Let vli be 1 if the capacity constraint of option l is violated in the subsequence starting at
position i, otherwise 0. Then the optimisation function is

minimise
∑
l∈O

n−ql+1∑
i=1

vli

16



SAT Encodings for the Car Sequencing Problem Mayer-Eichberger and Walsh

2 Modelling the Car Sequencing Problem

In this section we introduce different ways to model the car sequencing problem in CNF. The
basic building blocks are cardinality constraints of the form

∑
i∈{1...n} xi = d and

∑
i∈{1...n} xi ≤

d.

First we describe how to translate cardinality constraints as a variant of the sequential
counter encoding proposed by [16]. Then we show how to enforce a global view by integrating
capacity constraint into the sequential counter. We then show that this combination of the
demand and the capacity constraints can be used both for classes and options and we define
three complete encodings for the car sequencing problem.

2.1 Sequential Counter Encoding

We describe how to encode a cardinality constraint of the form
∑

i∈{1...n} xi = d where xi are

0/1 variables and d ∈ N is a fixed demand. The key idea is to introduce auxiliary variables to
represent cumulative sums.

In this section we use two types of variables, for each position i

• xi is true iff an object (class or option) is at position i

• si,j is true iff in the positions 0, 1 . . . i the object exists at least j times (for technical
reasons 0 ≤ j ≤ d + 1).

The following set of clauses (1) to (5) define the sequential counter encoding:

∀i ∈ {1 . . . n} ∀j ∈ {0 . . . d + 1}:
¬si−1,j ∨ si,j (1)

xi ∨ ¬si,j ∨ si−1,j (2)

∀i ∈ {1 . . . n}∀j ∈ {1 . . . d + 1}:
¬si,j ∨ si−1,j−1 (3)

¬xi ∨ ¬si−1,j−1 ∨ si,j (4)

s0,0 ∧ ¬s0,1 ∧ sn,d ∧ ¬sn,d+1 (5)

The variables si,j represent the bounds for cumulative sums for the sequence x1 . . . xi. The
encoding is best explained by visualising si,j as a two dimensional grid with positions (horison-
tal) and cumulative sums (vertical). The binary clauses (1) and (3) ensures that the counter
(i.e. the variables representing the cumulative sums) is monotonically increasing. Clauses (2)
and (4) control the interaction with the variables xi. If xi is true, then the counter has to in-
crease at position i whereas if xi is false an increase is prevented at position i. The conjunction
(5) sets the initial values for the counter to start counting at 0 and ensures that the total sum
at position n is equal to d.

Example 2.1. The auxiliary variables si,j with d = 2 over a sequence of 10 variables. The cells
with U(L) and above(below) are set to false (true) by preprocessing. The question mark identifies
yet unassigned variables. Left: before variable assignments, right: after variable assignment x2

and x7 to true.

17



SAT Encodings for the Car Sequencing Problem Mayer-Eichberger and Walsh

3 U U U U U U U U U

2 U ? ? ? ? ? ? ? ? L

1 U ? ? ? ? ? ? ? ? L

0 L L L L L L L L L

si,j 0 1 2 3 4 5 6 7 8 9 10

3 U U U U U U U U U

2 U 0 0 0 0 0 1 1 1 L

1 U 0 1 1 1 1 1 1 1 L

0 L L L L L L L L L

si,j 0 1 2 3 4 5 6 7 8 9 10

xi 0 0 1 0 0 0 0 1 0 0 0

The encoding in [16] follows a similar idea and focuses on inequalities. The encoding here
can easily be adapted to represent such constraints by removing sn,d from the conjunction
(5). Then the counter accepts all assignments to x1 . . . xn with up to d variables set to true.
Comparing the resulting clauses there are small differences between the encoding proposed here
and the one in [16]. In particular, we use twice as many clauses and but ensure uniqueness by
means of the auxiliary variables, i.e. we ensure the same model count. Our encoding also has
similarities to the translation of cardinality constraints through Binary Decision Diagrams, see
[5].

2.2 The Capacity Constraint

We now show how to translate the interleaving capacity constraints to CNF. Each subsequence
of length q can have at most u true assignments. Thus, the capacity constraints are a sequence
of cardinality expressions.

n−q∧
i=0

(

q∑
l=1

xi+l ≤ u)

We will translate this expression to CNF in two ways. The straight forward way is to encode
a sequential counter for each subsequence separately. This will introduce independent auxiliary
variables for each subsequence. The second way is more elaborate and is explained in this
section.

The idea is to encode a more global view into the demand constraint by integrating the
capacity of each subsequence into the counter. We intend to encode the global view on the
following expression:

(

n∑
i=1

xi = d) ∧
n−q∧
i=0

(

q∑
l=1

xi+l ≤ u)

Interestingly, we can reuse the auxiliary variables of the sequential counter and impose the
following set of clauses:
∀i ∈ {q . . . n}, ∀j ∈ {u . . . d + 1}:

¬si,j ∨ si−q,j−u (6)

The clauses restrict the internal counting not to exceed the capacities constraints and the
encoding detects dis-entailment on the conjunction of the demand constraint and the capacity
constraints by unit propagation. In particular, these binary clauses improve propagation when
branched on auxiliary variables. The following example will demonstrate the way the binary

18



SAT Encodings for the Car Sequencing Problem Mayer-Eichberger and Walsh

clauses of (6) work. It also demonstrates how much propagation is missing if the capacity
constraints would be translated separately.

Example 2.2. See tables in Figure 1 for a visualisation of the variables. We construct the grid
for capacity constraints with ratio 4/8 and a demand of d = 12 on a sequence of 22 variables.
Unit propagation will force x7, x8, x15 and x16 to be false prior to search. The second table
examines the variables after decisions x1 and x13 to true and x12, x14 and x21 to false.

It is easy to see that the number of auxiliary variables is not more than n · d. Since clauses
(1) to (5) and (6) are generated for each auxiliary variable, the encoding consists of 3·n·d binary
clauses and 2 · n · d ternary clauses. Note that many clauses become unit in preprocessing, this
number increases the stricter the capacity constraints are. E.g. in Example 2.2 with n = 20,
d = 12 and 4/8 there are effectively only 24 unassigned variables after the first unit propagation.

In the following example we show a situation where clauses (6) do not prune all values with
unit propagation, whereas translating each capacity constraint to a counter would do so.

Example 2.3.

Let n = 5, d = 2 with a capacity constraint of 1/2,
and let x3 be true, then unit propagation does not force
x2 nor x4 to false. Setting them to true will lead to a
conflict through clauses (4) and (6) on positions 2, 3
and 4.

3 U U U
2 U U . . L
1 U . . L L
0 L L L

si,j 0 1 2 3 4 5
xi . . 1 . .

The encoding presented here is in fact similar to a special case of the encoding of the
gen-sequence constraint in [2]. One difference lies in their auxiliary variables qji that encode

the equality
∑i

l=1 xl = j. This also changes the size and shape of the clauses and will have
different behaviour when branching on auxiliary variables.

2.3 Link Cars and Options

For a complete CNF translation of car sequencing we need to link classes and options. This is
done by the following clauses.
∀i ∈ {1 . . . n}: ∧

k∈C
l∈Ok

¬cki ∨ oli (7)

∧
k∈C
l 6∈Ok

¬cki ∨ ¬oli (8)

∧
l∈O

(
¬oli ∨

∨
k∈Cl

cki

)
(9)

Clause (7) and (8) follow directly from the pseudo Boolean model, whereas we add (9) to
ensure more propagation when e.g. branched negatively on a set of variables of classes such
that a support for an option is lost and its variable should be false.

Furthermore, for each position an additional sequential counter is used to restrict the number
of cars to exactly one.

19



SAT Encodings for the Car Sequencing Problem Mayer-Eichberger and Walsh

Figure 1: The grid of variables of Example 2.2. Notation for bottom row: normal font =
decision variable, bold = propagated, in brackets = propagated previously. Notice the amount
of propagation due to the clauses (6), the interesting two cases are shown by an arrow. These
values would not have been found by unit propagation without the clauses (6). (Configuration
of this example taken from [15]).

13 U U U

12 U ? ? L

11 U ? ? L

10 U ? ? L

9 U U U U U ? ? L

8 U ? ? L L L L L

7 U ? ? L

6 U ? ? L

5 U U U U U ? ? L

4 U ? ? L L L L L

3 U ? ? L

2 U ? ? L

1 U ? ? L

0 L L L

si,j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

xi 0 0 0 0

13 U U U

12 U 0 0 L

11 U ? 1 L

10 U ? 1 L

9 U U U U U ? 1 L

8 U 0 1 L L L L L

7 U 1 1 L

6 U 1 1 L

5 U U U U U 1 1 L

4 U ? 1 L L L L L

3 U 1 1 L

2 U 1 1 L

1 U 1 1 L

0 L L L

si,j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

xi 1 1 1 0 (0) (0) 1 1 1 0 1 0 (0) (0) 0 1

20



SAT Encodings for the Car Sequencing Problem Mayer-Eichberger and Walsh

2.4 The Complete Model

The demand constraints for classes are translated through cardinality constraints. In fact, we
can identify for each option l ∈ O the implicit demand by adding up the demand of all classes
Cl that require this option.

dl =

n∑
i=1

oli =
∑
k∈Cl

dk

Moreover, for each class we may use one capacity constraint of its options as this restriction
applies also to the class. To maximise pruning we choose the strictest capacity constraint with
minimal (u/q), e.g. 1/5 restricts more than 2/3. With this setting the translation of classes
and options can be uniformly done by the same type of constraints - a demand constraint and
consecutive overlapping capacity constraints. In the following we refer to capacity constraints
both for options and classes.

We define three CNF encodings E1, E2 and E3. All three encode the demand constraint
by a sequential counter with clauses (1) to (5). The link between classes and options for all
three models is encoded by clauses (7),(8) and (9). As we have seen in Example 2.2 and 2.3,
unit propagation prunes different values on the translation of the capacity constraints. This
motivates us to demonstrate the difference in the experimental section:

• E1 translates each capacity constraint separately by the clauses (1) to (5) with a fresh set
of auxiliary variables.

• E2 translates the capacity constraints by clauses (6) and thus reuses the variables of the
sequential counter on the demand constraint.

• E3 uses both E1 and E2.

3 Lower Bounds by Preprocessing

The idea to this method goes back to the proof in [8] to show a lower bound of 2 for the
instance 19/97. Here we will restate this technique to apply the method on all problems from
the benchmark in [11].

We start with instance 300-04 as an example. The demands and options are given in Table
1 .

There are two classes, 21 and 23, that require options 0, 1, 2 and 4 and sum of demands is
9. First observation is that all other classes share at least one option with these two classes.
Secondly cars of class 21 and 23 have to be put at least 5 apart, so they cannot share a neighbour.
Furthermore, they cannot be neighbour to any of the classes that have a 1/q restriction. This
leaves us with the classes that only share the option 1 and for each car at most one adjacent car
can have restriction 2/3. Since the first and the last car in the sequence can have any neighbour
with that restriction, the number of cars that share no option is at least 9− 2 = 7. Since there
are no such cars, the lower bound for this problem is 7.

A similar argument can be made for classes 21, 22, 23 that share options 0, 1 and 2. Here the
collective demand is 20 and the supply of cars that have neither of these options is 20− 13 = 7.
This gives a lower bound of 5, which is weaker than the first case.

We unify the two cases into a method that can then be used to compute lower bounds.
Given a set of options B ⊆ O that contain the following capacity constraint: at least one of the
form 1/q where q ≥ 3 and at most one with 2/r where r ≥ 3 and arbitrary many 1/s for s ≥ 2.

21



SAT Encodings for the Car Sequencing Problem Mayer-Eichberger and Walsh

Table 1: Instance 300-04

class 0 1 2 3 4 5 6 7 8 9 10 11
demand 9 4 22 2 1 62 31 4 24 4 3 36
0: 1/2 - - - - - - - - - - - x
1: 2/3 - - - - - x x x x x x -
2: 1/3 - - x x x - - - x x x -
3: 2/5 - x - - x - x x - - x -
4: 1/5 x x - x x - - x - x x -

class 12 13 14 15 16 17 18 19 20 21 22 23
demand 3 25 3 8 5 2 6 21 5 7 11 2
0: 1/2 x x x x x x x x x x x x
1: 2/3 - - - - - - x x x x x x
2: 1/3 - - - x x x - - - x x x
3: 2/5 - x x - - x - x x - x x
4: 1/5 x - x - x x x - x x - x

If the total demand for this set is dB , then there have to be at least dB − 2 cars that do not
require any of these options in B. The reason for this is as in the example above. Cars that
have all options in B are at least 3 positions apart and thus cannot share an adjacent car. Cars
that share at least one option with B can at most occupy one side since the weakest restriction
is 2/r and consequently for a valid sequence cars that contain no option in B are needed. Edge
cases (start and end of the sequence) are removed and thus we need dB−2 cars with no options
in B. A lower bound is then the difference of demand and availability of such cars.

4 Evaluation

First we will compare the SAT encodings of Section 2 with pseudo Boolean solvers on the
CSPLib instances. Then we show our results for lower and upper bounds. Our focus is on the
9 traditional instances plus the 30 hard instances proposed by [11] and we leave out the set of
70 easy satisfiable instances. All instances have the same set of options: 1/2, 2/3, 1/3, 2/5 and
1/5. The largest instances is 400 cars with 25 classes and a maximal demand per class of 58.

We have written a command line tool that generates CNF in DIMACS format from a problem
description as provided by the CSPLib. The tool translates the specification by different sets
of clauses and computes the lower bounds from the preprocessing as defined in Section 3. It is
freely available at github.com/vale1410/car-sequencing. For our experiments we choose the
well-known SAT solver Minisat [4] of version 2.2.0, that represents a canonical implementation
of state-of-the-art CDCL solvers. All experiments are done on Linux 64bit, Intel Xeon CPUs
at 2.27GHs.

22



SAT Encodings for the Car Sequencing Problem Mayer-Eichberger and Walsh

4.1 The Decision Problem

We compare to the pseudo Boolean solver (PB) Minisat+ version 1.0-2 [5] and to the answer set
programming solver Clasp 2.1.3 [7], referred to as PB and ASP respectively. Both approaches
offer native cardinality constraints. We use for PB and ASP the basic model of Section 2 and
add the redundant constraint for the implicit demand on options. Apart from the encoding of
cardinality constraints this should be equivalent to model E1.

Clasp solves hardly any instance with the standard configuration. Instructing Clasp to
ground all cardinality constraints to normal rules improves the number of solved instances
(using the switch --trans-ext=all), so we will report here with this switch turned on. Apart
from that we use the standard configuration for all solvers.

Clasp and Minisat+ apply different translations for cardinality constraints. Clasp applies
an encoding based on counters and Minisat+ uses encodings through adders, sorting networks
and binary decision diagrams [5]. In Table 2 we compare the size of the resulting formula of the
different approaches. Note that ASP and PB do not differ from model E1 in terms of higher
level constraint. So the difference in size is mainly caused by the encoding of the cardinality
expressions. We see that the internal translation of Minisat+ prefers a more compact encoding
and Clasps encoding is the largest. The sizes of the direct CNF models do not vary much
since the difference is in whether to use clauses (6) and/or separate encodings of the capacity
constraints.

Table 2: Comparison of number of variables and clauses after translation to CNF. Values (in
thousands) are average over the instances of the same length (100 to 400 cars).

Length Variables Clauses
E1 E2 E3 ASP PB E1 E2 E3 ASP PB

100 27 21 27 90 14 91 83 99 243 54
200 73 60 73 335 33 256 259 291 946 127
300 136 118 136 747 48 495 524 573 2195 197
400 223 199 223 1308 63 827 907 972 3879 271

We show in Table 3 the results for the selected benchmark on models E1, E2, E3, ASP
and PB with a timeout of 1800sec. The instances that can be solved by at least one method
are shown and grouped into satisfiable and unsatisfiable. In total 11/39 instances cannot be
solved by any approach. We see that the models E1 to E3 perform considerably better than
the one generated through Minisat+ or Clasp (Running Clasp as a SAT solver on our models
is comparable to Minisat). This indicates that the internal treatment of cardinality expressions
of both tools is inferior compared with Minisat on our encodings.

There is a tendency of model E3 to solve satisfiable instances faster than the other two
models, whereas model E1 is stronger in finding UNSAT proofs. Since E3 is a superset of E1,
the additional clauses cost some performance in finding unsatisfiability proofs. On the other
hand the increased propagation due to the global view is a factor for faster solving times for
satisfiable instances, since E2 and E3 dominate here clearly. Interestingly Minisat+ which in
general performs poor, does in some cases find UNSAT proofs faster than all other methods.
Overall, the results show clearly that it is crucial how cardinality constraints are translated and
automatic translations should be handled with care.

23



SAT Encodings for the Car Sequencing Problem Mayer-Eichberger and Walsh

Table 3: Comparison of the SAT, ASP and PB model. The upper table gives the satisfiable
instances and the lower gives the unsatisfiable instances, that were solved by at least one of
the models. (Average of three runs with different seeds, * indicates that not all runs solved the
instance).

Inst(SAT) E1 E2 E3 ASP PB
4/72 0.14 0.17 0.05 6.78 -
16/81 0.38 0.08 0.14 13.25 -
41/66 0.06 0.04 0.04 2.55 123.41
26/82 0.95 0.16 0.21 80.06 654.80
200-01 30.43 47.70 15.35 1141.87 -
200-07 6.32 2.39 1.46 1478.01 -
300-01 143.76 10.62 5.98 810.23 -
300-07 59.86 28.39 8.24 - -
400-05 623.30* 768.97 846.41 - -
400-06 445.36 24.79 16.29 - -
400-10 884.91 18.99 13.50 - -

Inst(UNSAT) E1 E2 E3 ASP PBO
6/76 72.55 117.28 57.55 929.87 289.68
10/93 11.40 6.48 11.08 331.31 -
21/90 119.83 74.01 95.18 - -
36/92 16.97 18.67 41.34 277.63 -
200-03 137.21 24.02 30.81 - -
200-04 69.64 475.76 16.83 - 1.84
200-05 254.03 1337.39* 1172.38* - -
200-09 358.81 - 504.26 - 3.77
200-10 2.10 3.36 2.53 3.91 2.32
300-03 99.03 - 214.41 949.55 -
300-04 3.17 30.57 2.03 46.60 4.40
300-08 18.52 799.16 50.98 123.22 13.54
300-05 0.37 2.73 0.62 - -
300-10 1.08 25.15 0.96 1282.09 904.31
400-03 37.05 30.31 31.47 - -
400-04 13.03 185.32 6.33 130.33 14.47
400-09 25.75 470.60 32.90 557.60 5.19

4.2 The Optimisation Problem

Moving to the optimisation version of car sequencing we show in Table 4 the best known lower
bounds (LB) and upper bounds (UB) found by the preprocessing and SAT solving. The column
LB(pre) contains the lower bounds determined by the preprocessing as explained in Section 3.
The next four columns show the lower bounds and upper bounds and the time to compute the
last instance. For the bounds the number of additional empty slots ranges from 0 to the best
known upper bound in literature. Each run was limited to 1800 seconds and we picked the best
results among model E1 to E3. In the last two columns we compare the bounds that have been
published previously to the best of our knowledge.

24



SAT Encodings for the Car Sequencing Problem Mayer-Eichberger and Walsh

Note that lower and upper bounds (LB*,UB*) in the literature are subjected to different
definitions of the optimisation function and cannot directly be compared. Our result show that
in many cases the different definitions force the same upper and lower bound, in others we
find that they are incomparable. See 400-03 for conflicting lower and upper bound between
the definitions, this was also reported in [6]. Instance 300-5 indicates that our version of the
optimisation function allows smaller upper bounds due to a large gap between UB and UB*.
For some instances there is still a large gap between lower and upper bound, and room for
improvement. The method for computing lower bound from Section 3 is powerful and reports
for many of the instances higher lower bounds than the SAT approach. Combining the two
methods 21/30 of the new instances are solved to optimality.

5 Conclusion and Future Work

We have introduced CNF encodings for the car sequencing problem based on sequential coun-
ters and demonstrated that SAT solvers perform well on the instances of the CSPLib. This
specialised translation has advantages over automatic translations of cardinality constraints as
done in Minisat+ and Clasp. Furthermore, for one type of the optimisation problem of car
sequencing we have shown new lower and upper bounds and provide the SAT community with
a set of hard benchmarks. Our approach is still work in progress and in the following we identify
our next steps and future work.

To identify the precise advantages of our encodings we will extend the comparison to other
CNF encodings for cardinality constraints, like parallel counters and various types of sorting
networks [3][1]. We will also contrast our work in more depth with [2]. We have pointed out
some properties of the presented encodings and we plan to lift this analysis to a theoretical
level and prove consistency properties.

Our experimental analysis still lacks comparison to related paradigms as constraint program-
ming, local search and integer programming. We plan to extend the evaluation by comparing
these approaches.

We believe there is a generalisation to the method in Section 3 to arbitrary sets of op-
tions. Our results show evidence that such a structure can be beneficial in determining lower
bounds. The analysis of subsets of options and their collective demand might not only help
in preprocessing but also lead to interesting redundant constraints that can heavily improve
early pruning in the search tree. The generation of such constraints is based on an exponential
method in the number of options, but typically this numbers is small compared to the length
of the sequence.

Acknowledgement

We want to thank the reviewers for their comments that helped us improving the paper. We also
want to thank Mohamed Siala, Emmanuel Hebrard and Nina Narodytska for fruitful discussions
on the car sequencing problem. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the Australian
Research Council through the ICT Centre of Excellence program.

25



SAT Encodings for the Car Sequencing Problem Mayer-Eichberger and Walsh

Table 4: Lower and upper bounds found by preprocessing (pre), by the SAT solving and the
best known bounds from the CSPLib.

(pre) (SAT) (known)
LB LB sec UB sec LB* UB*

4/72 0 0.07 0 0.07 0 0
6/76 6 209.77 6 0.10 1 6
10/93 1 18.93 3 0.53 1 3
16/81 0 - 0 0.07 0 0
19/71 2 - - 2 1.50 2 2
21/90 2 1 93.80 2 0.11 1 2
36/92 1 38.55 1 0.07 1 2
41/66 0 - 0 0.06 0 0
26/82 0 - 0 0.14 0 0
200-01 0 - 0 7.46 0
200-02 2 - - 2 0.86 2
200-03 3 1323.05 3 110.33 3
200-04 7 1 17.59 7 1.04 7
200-05 1 639.42 3 39.63 6
200-06 6 - - 6 0.69 6
200-07 0 - 0 0.69 0
200-08 8 - - 8 20.17 8
200-09 10 1 189.14 10 2.32 10
200-10 17 16 213.88 17 3.51 19
300-01 0 - 0 24.83 0
300-02 - - 6 39.89 12
300-03 13 2 872.06 13 77.76 13
300-04 7 6 795.68 7 12.20 7
300-05 2 12 1145.39 16 1247.82 27
300-06 2 - - 2 1559.76 2
300-07 0 - 0 6.33 0
300-08 8 1 102.26 8 1.01 8
300-09 7 - - 7 141.56 7
300-10 3 9 863.15 13 115.67 21
400-01 - - - - 1
400-02 15 - - 15 112.36 15
400-03 10 1531.53 9
400-04 19 5 25.85 19 222.68 19
400-05 0 - 0 302.19 0
400-06 0 - 0 2.76 0
400-07 - - - - 4
400-08 4 - - - - 4
400-09 4 1253.59 5 53.49 5
400-10 0 - 0 27.05 0

26



SAT Encodings for the Car Sequencing Problem Mayer-Eichberger and Walsh

References

[1] Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodŕıguez-Carbonell. Cardinality
Networks: a theoretical and empirical study. Constraints, 16(2):195–221, 2011.

[2] Fahiem Bacchus. GAC Via Unit Propagation. In CP, pages 133–147, 2007.

[3] Michael Codish and Moshe Zazon-Ivry. Pairwise Cardinality Networks. In LPAR (Dakar), pages
154–172, 2010.

[4] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In SAT, pages 502–518, 2003.

[5] Niklas Eén and Niklas Sörensson. Translating Pseudo-Boolean Constraints into SAT. Journal on
Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.

[6] Bertrand Estellon, Frédéric Gardi, and Karim Nouioua. Large neighborhood improvements for
solving car sequencing problems. RAIRO - Operations Research, 40(4):355–379, 2006.

[7] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp : A conflict-
driven answer set solver. In LPNMR, pages 260–265, 2007.

[8] Ian P. Gent. Two Results on Car-sequencing Problems. In Report APES-02-1998, 1998.

[9] Ian P. Gent and Toby Walsh. CSPLIB: A Benchmark Library for Constraints. In CP, pages
480–481, 1999.

[10] Jens Gottlieb, Markus Puchta, and Christine Solnon. A Study of Greedy, Local Search, and Ant
Colony Optimization Approaches for Car Sequencing Problems. In EvoWorkshops, pages 246–257,
2003.

[11] M. Gravel, C. Gagné, and W. L. Price. Review and Comparison of Three Methods for the Solution
of the Car Sequencing Problem. The Journal of the Operational Research Society, 56(11):1287–
1295, 2005.

[12] Tamás Kis. On the complexity of the car sequencing problem. Operations Research Letters,
32(4):331 – 335, 2004.

[13] Laurent Perron and Paul Shaw. Combining Forces to Solve the Car Sequencing Problem. In
CPAIOR, pages 225–239, 2004.

[14] Jean-Charles Régin and Jean-Francois Puget. A Filtering Algorithm for Global Sequencing Con-
straints. In CP, pages 32–46, 1997.

[15] Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. An Optimal Arc Consistency Algo-
rithm for a Chain of Atmost Constraints with Cardinality. In CP, pages 55–69, 2012.

[16] Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In CP,
pages 827–831, 2005.

27


	Introduction
	Car Sequencing

	Modelling the Car Sequencing Problem
	Sequential Counter Encoding
	The Capacity Constraint
	Link Cars and Options
	The Complete Model

	Lower Bounds by Preprocessing
	Evaluation
	The Decision Problem
	The Optimisation Problem

	Conclusion and Future Work

