
EPiC Series in Computing
Volume 54, 2018, Pages 196–207

ARCH18. 5th International Workshop on Applied
Verification of Continuous and Hybrid Systems

Verification of Continuous Time Recurrent Neural
Networks (Benchmark Proposal)

Patrick Musau and Taylor T. Johnson

Vanderbilt University, Nashville, Tennessee, USA
patrick.musau@vanderbilt.edu, taylor.johnson@vanderbilt.edu

Abstract

This manuscript presents a description and implementation of two benchmark prob-
lems for continuous-time recurrent neural network (RNN) verification. The first problem
deals with the approximation of a vector field for a fixed point attractor located at the
origin, whereas the second problem deals with the system identification of a forced damped
pendulum. While the verification of neural networks is complicated and often impenetra-
ble to the majority of verification techniques, continuous-time RNNs represent a class of
networks that may be accessible to reachability methods for nonlinear ordinary differential
equations (ODEs) derived originally in biology and neuroscience. Thus, an understanding
of the behavior of a RNN may be gained by simulating the nonlinear equations from a
diverse set of initial conditions and inputs, or considering reachability analysis from a set
of initial conditions. The verification of continuous-time RNNs is a research area that has
received little attention and if the research community can achieve meaningful results in
this domain, then this class of neural networks may prove to be a superior approach in
solving complex problems compared to other network architectures.
Category: Academic Difficulty: High

1 Context and Origins
Artificial Neural Networks have demonstrated an effective and powerful ability to achieve suc-
cess in numerous contexts, such as adaptive control [43], autonomous vehicles, evolutionary
robotics, pattern recognition, image classification, and nonlinear system identification and con-
trol [38] [18]. Despite this success, there have been reservations about incorporating them into
safety critical systems [23] due to their susceptibility to unexpected and errant behavior from
a slight perturbation in their inputs and initial conditions [42] [37]. Typically, neural networks
are viewed as "black boxes" since the underlying operation of the neuron activations is often
indiscernible to the creators of the network [10]. In light of these challenges, there has been sig-
nificant work towards obtaining formal guarantees about the behavior of neural networks [25].
However, the majority of verification schemes have only been able to deal with neural networks
that make use of piecewise-linear activation functions [7]. This is due to the great difficulty
exhibited in obtaining formal guarantees for even simple properties of neural networks. In fact,
neural network verification has been demonstrated to be an NP-complete problem, and while

G. Frehse (ed.), ARCH18 (EPiC Series in Computing, vol. 54), pp. 196–207

Verification of Continuous Time Recurrent Neural Networks (Benchmark Proposal) Musau and Johnson

techniques that make use of satisfiability modulo theories [35], mixed integer programming [41],
robustness testing [4], and linear programming [13] [37] have been able to deal with small net-
works, they are incapable of dealing with the complexity and scale of the majority of networks
present in real-life applications [23]. Moreover, the majority of verification approaches have
dealt only with feed-forward and convolutional neural network architectures.

One class of neural networks that has received particularly little attention in the verification
literature is the class of recurrent neural networks. Whereas both feed-forward networks and
recurrent networks have demonstrated an ability to approximate continuous functions to any ac-
curacy [16], recurrent neural networks have exhibited several advantages over their feed-forward
counterparts [26]. By allowing for the presence of feedback connections in their architecture,
recurrent neural networks are able to retain information about the past and capture a higher
degree of sophisticated dynamics using fewer neurons than their feed-forward counterparts [5].
In fact, recurrent neural networks have demonstrated a higher level of success in solving prob-
lems in which there is a temporal relation between events [32] such as capturing the behavior of
biological neurons [28], dynamical system identification [22], real time gesture recognition [3],
robotics [6, 8, 27, 30] and speech recognition [1]. Therefore, they represent a more attractive
framework than feed-forward networks in these domains [47]. However, due to the complexity
exhibited by their architecture as well as the non-linear nature of their activation functions the
verification approaches currently available in the research literature are incapable of being ap-
plied to these networks. Thus, there is an immediate need for methods and advanced software
tools that can provide formal guarantees about their operation [23], particularly in the context
of the system identification and the control of safety critical systems.

In light of this shortcoming, the following paper presents two benchmark problems for the
verification of a specific class of recurrent neural networks known as continuous-time recurrent
neural networks (CTRNNs). Since the dynamics of CTRNNs can be expressed solely by a set
non-linear ordinary differential equations (ODEs), the verification of such systems relies on an
ability to reason about the reachable set from a set of initial conditions and inputs [39]. The
two CTRNN benchmark problems we present are described as follows: the first is a network
without inputs employed for the approximation of a fixed point attractor described in [46], and
the second deals with a CTRNN used for the identification of a damped forced pendulum as
described in [12]. The problems elucidated in the paper are modeled using Simulink/Stateflow
(SLSF), Matlab scripts, and are available in the SpaceEx format1 [15]. We aim to provide
a thorough problem description to which the numerous tools and approaches for non-linear
systems present in the research community can be evaluated and compared [39]. This paper
serves as a first step towards recurrent neural network verification.

2 General Mathematical Model for Continuous Time Re-
current Neural Networks

The dynamics of a continuous-time recurrent neural network with n neurons is given by the
following system of ordinary differential equations:

dui

dt
= −ui

τi
+

n∑
j=1

wijf(uj(t) + θi) + Ii(t) (2.1)

1The benchmark models are available at https://github.com/verivital/CTRRN

197

https://github.com/verivital/CTRRN

Verification of Continuous Time Recurrent Neural Networks (Benchmark Proposal) Musau and Johnson

where: ui(t) denotes the internal state of the i-th neuron (i = 1 . . . , n), θi denotes a bias term
for the i-th neuron, τi denotes the time constant, wij denotes the connection strength between
the i-th and j-th neurons, Ii(t) denotes the input to the i-th neuron, and f(uj(t)) is the output
of the j-th neuron [19]. The function f is typically referred to as the activation function of a
neuron, and in most cases it is typically either the logistic sigmoid function or the hyperbolic
tangent function given by equations (2.2) and (2.3) respectively.

f(x) = 1
1 + e−x

(2.2)

f(x) = tanh(x) (2.3)
Equation (2.1) can be recast into matrix form as:

#̇»u (t) = −1
τ

#»u (t) + Wf(#»u (t) + #»

θ) + #»

I (t) (2.4)

where: #»u (t) = (u1 . . . un)T and #»

I (t) are n dimensional column vectors representing the neuron
states and inputs respectively, W = (wij) is a n × n weight matrix, and f : Rn → Rn is an
activation function mapping given by f(#»u (t)) = (f(u1) . . . f(un)) [19]. Additionally while nu-
merous feed-forward neural networks make use of the ReLU activation function, which exhibits
piecewise linear behavior, it is not typically employed in recurrent neural architectures since
the sigmoid and hyperbolic tangent functions often perform better [34]. A simple recurrent
architecture is displayed in Figure 2.1.

Figure 2.1: Simple Recurrent Neural Network Architecture

In order to train a CTRNN to approximate the finite time trajectories of a dynamical
system, the number of neurons n must be greater than the dimensionality of the function that
we wish to approximate [20]. Typically the weights, biases, and time constants in equation (2.4)
are modified using Genetic Algorithms [33] such as back-propagation through time, real-time
recurrent learning, the extended Kalman filter, phase space learning, and reservoir computing
[46]. In these schemes, the network is trained by minimizing the prediction error between the
network output and dynamical system output on a set of time series data collected from the
dynamical system. A common learning architecture is displayed in Figure 2.2. The algorithms
used in training CTRNNs are quite complex and difficult to implement, however they have
largely been successful in training networks to perform various tasks. An in-depth discussion of
these techniques is beyond the scope of this paper and we refer readers to the following paper
for further detail [33].

198

Verification of Continuous Time Recurrent Neural Networks (Benchmark Proposal) Musau and Johnson

Figure 2.2: Diagram describing the architecture used to train a neural network for system
identification

3 Description of Benchmarks
In this section, we present a description of the two benchmark problems proposed for veri-
fication. The first of these problems is a CTRNN with no inputs that captures the vector
field dynamics of a fixed point attractor. The approximation of attractors represents a class of
problems in recurrent neural network research known as fixed point learning [46] and networks
trained in this domain are typically associated with constraint satisfaction and associative mem-
ory [33]. Moreover, attractor networks have been extensively studied in neuroscience in an effort
to construct artificial neuron models of human memory and perception in an intuitive sense
capturing the way that humans remember names, objects, and ideas [31]. The second problem
describes the use of a CTRNN in the system identification of a forced damped pendulum. An
accurate identification of the plant model is a crucial part in designing robust controllers [21]
and in this problem [12], once the network has successfully been trained it is used calculate a
linearized state feedback for PID control.

3.1 Approximation of Fixed Point Attractor
In dynamical systems, a fixed point attractor is a point in the phase space where the trajectories
of a system converge to as time evolves from a given set of initial states [44]. For our problem
we consider a two-dimensional system with a fixed point located at the origin [46]. The vector
field for the attractor is given by the following function

F (x, y) = (a(x− p1), b(x− p2)) (3.1)

where p1 = p2 = 0, a = −0.2, and b = −0.3. To approximate the behavior of this vector field
during a 40 second time period, Adam Trischler et al. used two layer CTRNN that consisted
of a single hidden layer with m = 3 hidden neurons and an output layer with n = 2 output
neurons [46]. The recurrent connections are contained within the hidden layer as shown by
Figure 3.1. The CTRNN was trained using an algorithm proposed in [46] in which a feed-forward
representation of the recurrent neural network is trained using back-propagation and then
transformed back into a recurrent neural network. Thus, the differential equations specifying
the dynamics of the CTRNN are the same as 2.1 with the exception of the absence of an input
signal. They are given by:

#̇»u = −1
τ

#»u + Wf(#»u) (3.2)

#»u (0) = (#»q (0),B #»q (0) + #»

θ)T (3.3)

199

Verification of Continuous Time Recurrent Neural Networks (Benchmark Proposal) Musau and Johnson

Figure 3.1: CTRNN architecture used in approximation of fixed point attractor

where: #»q (0) is the initial condition for the fixed point attractor, B is am×nmatrix representing
the connections among the hidden neurons, τ = 106 is the time constant for each neuron, #»

θ
represents the bias term for the neurons in the hidden layer, and f(#»u) = tanh(#»u) is the
activation function used for each neuron [46].2 The weight matrix W(n+m)×(n+m) used in
equation (6) is constructed using two matrices A and B, where A is an n×mmatrix representing
the connections from the hidden neurons to the output neurons and B is the matrix described
as above. The matrices W, A, B, and bias vector #»

θ trained on the vector field in equation 3.1
are given by,

W =

0 A
0 BA

 A =

−1.20327 −0.07202 −0.93635
1.18810 −1.50015 0.93519

 B =

1.21464 −0.07202
1.18810 −1.50015
1.18810 −1.50015

#»

θ = (−7.56499 × 10−5, 1.34708 × 10−4,−6.24925 × 10−6)T . Since the network does not receive any
inputs, its trajectory is entirely dependent on the choice of initial conditions #»q (0). Simulating
the network is computationally inexpensive and largely depends on the choice of numerical
method used to discretize equation (3.2).

3.2 System Identification for Forced Damped Pendulum
The second problem we present is the approximation of a forced damped pendulum described
by the second-order differential equation:

ml2φ̈(t) + vφ̇(t) +mgl sin φ(t) = I(t) (3.4)

where m = 2.0 kg is the mass of the object suspended by the pendulum, v = 1.0 kg m2/s is the
damping coefficient, l = 1 m is the length of pendulum and I(t) is the driving signal at time
t [12]. To approximate the trajectories of this system, A. Delgado et al. designed a CTRNN
with a single hidden layer that consisted of five neurons whose dynamics are described by a set
of equations that are an adaptation of equation (2.1). Since the pendulum is driven by a driving
signal I(t), the CTRNN ODE model must include the influence inputs. However, the activation

2The time constant τ determines the activation speed of a particular neuron. A description of the influence
of time constants can be found in [48]

200

Verification of Continuous Time Recurrent Neural Networks (Benchmark Proposal) Musau and Johnson

of the neurons in the network may be influenced differently by the driving input signal [11] [29],
and to capture this reality, the authors in [12] incorporated a vector representing the connection
weights from the scalar input to each neuron denoted by #»Γ . Additionally, the authors did not
incorporate any biases in their CTRNN model. The dynamics of their model are described by:

˙#»u (t) = −1
τ

#»u (t) + Wf(#»u (t)) + #»ΓI(t) (3.5)

where #»Γ is an n× 1 column vector denoting the input connection weights and I(t) is the scalar
input signal. The authors trained the network using time series data that was collected by
supplying the pendulum model with random noise input data over a time period of 20 seconds.
The performance of the network was optimized using a chemotaxis learning algorithm [12], and
after training, the network parameters are given by:

W =

0.4684 −2.4994 0.4211 −0.2848 0.1995
1.3615 0.0642 0.0413 −1.8925 −1.6608

−0.8185 −0.9241 −0.0743 −0.1264 0.1484
−0.3257 1.2319 −1.0997 0.2192 −0.8547
−1.2444 0.4396 −0.5466 1.7342 −0.5953

#»Γ = (−0.005,−0.2111, 0.1689, 0.0645,−0.0413)T

#»u (0) = (−0.0097,−0.0065, 0.0171,−0.0097, 0.0025)T

4 Simulation of Models
We begin this section by discussing the results of simulating the CTRNN models presented in
section 3 in order to assess their fidelity in capturing the dynamical systems that they represent.
Figure 4.1 displays a 20 second simulation of the fixed point attractor system and its CTRNN
representation from a set of 100 initial points bounded by (x, y) ∈ [−1, 1]2. The results of
the simulation demonstrated that the CTRNN was able to faithfully capture the dynamics of
equation (3.1). In fact, the maximum separation between the trajectories of the neural network
#»y nn(t) ∈ R2, and the fixed point attractor #»y fpa(t) ∈ R2, on any of the 100 paths that we
considered was || #»y nn(t)− #»y fpa(t)||2 = 9.57× 10−3, as shown by Figure 4.3. Moreover, as the
trajectories of the CTRNN model approached the fixed point, the output of all the neurons
converged to zero causing the evolution of the network to halt. This indicates stability within
the region that we considered.

In a similar fashion, the CTRNN model of the forced damped pendulum displayed a high
level of model fidelity in representing a chaotic system [17]. The results of several simulations
using a series of sinusoidal input functions given by:

u(t) = c1(π2)sin(2πt
2.5) + c2(π2)sin(2πt

5.0) (4.1)

is displayed in Figure 4.2. The maximum separation at any moment between the trajectories of
the network model and the pendulum system was |ynn(t)− ydfp(t)| = 2.16× 10−3, as shown in
Figure 4.3 . Thus, although both models are low dimensional neural networks, they are good
representations of the dynamical systems that they seek to identify.

201

Verification of Continuous Time Recurrent Neural Networks (Benchmark Proposal) Musau and Johnson

Figure 4.1: Trajectories of the fixed point attractor and CTRNN for various initial points
(x, y) ∈ [−1, 1] × [−1, 1]. The black dots correspond to the outputs of the neural network at
various time instants while the colored lines represent the orbits of equation (3.1)

Figure 4.2: Four second simulation of the forced damped pendulum system and CTRNN

5 Observations
This is a novel research direction. To the best of the authors’ knowledge there are cur-
rently no verification approaches that deal with recurrent neural networks despite their success
in numerous contexts. The development of successful verification approaches will have a mon-
umental impact in the field of artificial intelligence, and in particular, in the design of neural
network control systems. Thus, the deliberate consideration of this problem by the research
community is considerably important.
Choice of CTRNN Architecture. There have been numerous proposed architectures for
recurrent neural networks, with varying levels of depth in terms of hidden layers, trained to
perform a myriad of tasks. While these networks have largely been successful, they are signifi-
cantly more difficult to train and gradient-descent based optimization methods suffer from the

202

Verification of Continuous Time Recurrent Neural Networks (Benchmark Proposal) Musau and Johnson

Figure 4.3: Simulation Error Plots for both CTRNN Models

vanishing and exploding gradient problem [36]. In response to this problem, researchers have
proposed the Long-Short Term Network (LSTM), the Gated Recurrent Unit (GRU), Memory
Networks, and other similar variants that have been broadly successful in mitigating the opti-
mization challenges faced by other architectures. Unfortunately, these architectures suffer from
high model complexity. In fact, LSTM architectures possess four times the number of trainable
parameters than classic recurrent neural network architectures with the same number of hidden
layers [36]. Thus in order to keep the size of the network models small, we chose to focus only
on CTRNNs.
Scalability: The number of variables in equation (2.1) increases linearly with the number of
neurons present in the network. However the number of connections among the neurons in-
creases quadratically and may lead to very large weight matrices. A typical real-world neural
network can contain hundreds of thousands to millions of neurons [24], thus an effective verifi-
cation approach will need to scale well with the dimensionality of large networks. Additionally,
it should be noted that changing the size of any neural network necessitates retraining the net-
work parameters. However in this work we do not focus on the learning process. Challenges:
Verifying continuous non-linear systems is a particularly difficult problem. In particular, the
performance of verification tools is dependent on the stiffness of the ODEs [40]. In our ex-
periments we attempted to generate reachtubes for the CTRNN models using Flow∗ [9] and
C2e2 [14], however both tools were not able to deal with the complexity exhibited by our models.
This further serves to demonstrate the need for novel reachability tools for CTRNNS.

Figure 5.1: Stateflow Model for Damped Forced Pendulum CTRNNs

203

Verification of Continuous Time Recurrent Neural Networks (Benchmark Proposal) Musau and Johnson

6 Outlook and Model Extensions

In this manuscript, we have presented a description and implementation of two challenging
continuous-time recurrent neural network benchmark problems. The interest in these problems
is that they serve as a first step in considering the verification of recurrent neural networks. The
verification of CTRNNs has not been studied extensively and in this domain, the verification
problem is reduced to an ability to reason about the reachable set of the non-linear differential
equations that specify their behavior. However, understanding the nature of these dynamics is
not an easy problem [45]. Still, if the research community can demonstrate an ability to formally
verify this class of neural networks, they can be used in numerous application domains beyond
system identification and fixed-point learning as discussed in this paper. Furthermore, CTRNNs
have an impressive ability to capture temporal information [1] and can be used to achieve
remarkable results in problem domains currently dominated by other network architectures.
The problems posed in this paper are easily scalable to a given level of complexity by increasing
the number of neurons used in implementing the CTRNNs.

There are several interesting possibilities for the extension of the proposed benchmarks and
future work, including:

• Analyzing the dynamics of a system in which a CTRNN is used in conjunction with a
controller as described in [21] and [2]

• Studying the effects of using various neuron activation functions on the dynamics of
CTRNNs,

• Considering the effects of different neural network training regimes on the reachable set

• Investigating the possibility of linearizing a specific subset of CTRNN models

• Considering multilayer CTRNNs as well as other recurrent neural network architectures.

• and evaluating the possible transformation of other neural network architectures into
CTRNNs

References

[1] Design and implementation of multipattern generators in analog vlsi. IEEE Transactions on Neural
Networks 17, 4 (July 2006), 1025–1038.

[2] Atuonwu, J. C., Cao, Y., Rangaiah, G. P., and Tade, M. O. Nonlinear model predictive
control of a multistage evaporator system using recurrent neural networks. In 2009 4th IEEE
Conference on Industrial Electronics and Applications (May 2009), pp. 1662–1667.

[3] Bailador, G., Roggen, D., Tröster, G., and Triviño, G. Real time gesture recognition
using continuous time recurrent neural networks. In Proceedings of the ICST 2Nd International
Conference on Body Area Networks (ICST, Brussels, Belgium, Belgium, 2007), BodyNets ’07,
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),
pp. 15:1–15:8.

[4] Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A. V., and Criminisi,
A. Measuring neural net robustness with constraints. CoRR abs/1605.07262 (2016).

[5] Beer, R. D. On the dynamics of small continuous-time recurrent neural networks. Adaptive
Behavior 3, 4 (1995), 469–509.

204

Verification of Continuous Time Recurrent Neural Networks (Benchmark Proposal) Musau and Johnson

[6] Birch, M. C., Quinn, R. D., Hahm, G., Phillips, S. M., Drennan, B., Beer, R. D., Yu, X.,
Garverick, S. L., Laksanacharoen, S., Pollack, A. J., and Ritzmann, R. E. A miniature
hybrid robot propelled by legs. In Proceedings 2001 IEEE/RSJ International Conference on In-
telligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium
(Cat. No.01CH37180) (2001), vol. 2, pp. 845–851 vol.2.

[7] Bunel, R., Turkaslan, I., Torr, P. H. S., Kohli, P., and Kumar, M. P. Piecewise linear
neural network verification: A comparative study. CoRR abs/1711.00455 (2017).

[8] Campo, Á., and Reyes, J. S. Evolution of adaptive center-crossing continuous time recurrent
neural networks for biped robot control. In ESANN (2010).

[9] Chen, X., Sankaranarayanan, S., and Ábrahám, E. Under-approximate flowpipes for non-
linear continuous systems. In Proceedings of the 14th Conference on Formal Methods in Computer-
Aided Design (Austin, TX, 2014), FMCAD ’14, FMCAD Inc, pp. 14:59–14:66.

[10] Cheng, C., Diehl, F., Hamza, Y., Hinz, G., Nührenberg, G., Rickert, M., Ruess, H., and
Troung-Le, M. Neural networks for safety-critical applications - challenges, experiments and
perspectives. CoRR abs/1709.00911 (2017).

[11] Chow, T. W. S., and Li, X.-D. Modeling of continuous time dynamical systems with input by
recurrent neural networks. IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications 47, 4 (Apr 2000), 575–578.

[12] Delgado, A., Kambhampati, C., and Warwick, K. Dynamic recurrent neural network for
system identification and control. IEE Proceedings - Control Theory and Applications 142, 4 (Jul
1995), 307–314.

[13] Ehlers, R. Formal verification of piece-wise linear feed-forward neural networks. CoRR
abs/1705.01320 (2017).

[14] Fan, C., Qi, B., Mitra, S., Viswanathan, M., and Duggirala, P. S. Automatic reachability
analysis for nonlinear hybrid models with c2e2. In Computer Aided Verification (Cham, 2016),
S. Chaudhuri and A. Farzan, Eds., Springer International Publishing, pp. 531–538.

[15] Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., and Maler, O. Spaceex: Scalable verification of hybrid systems. In
Computer Aided Verification (Berlin, Heidelberg, 2011), G. Gopalakrishnan and S. Qadeer, Eds.,
Springer Berlin Heidelberg, pp. 379–395.

[16] Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward networks are universal
approximators. Neural Networks 2, 5 (1989), 359 – 366.

[17] Hubbard, J. H. The forced damped pendulum: chaos, complication and control. Amer. Math.
Monthly 106 (1999), 741–758.

[18] Hunt, K., Sbarbaro, D., Zbikowski, R., and Gawthrop, P. Neural networks for control
systems-a survey. Automatica 28, 6 (1992), 1083 – 1112.

[19] ichi Funahashi, K., and Nakamura, Y. Approximation of dynamical systems by continuous
time recurrent neural networks. Neural Networks 6, 6 (1993), 801 – 806.

[20] Izquierdo-Torres, E. On the evolution of continuous time recurrent neural networks with
neutrality.

[21] Jesus, O. D., Pukrittayakamee, A., and Hagan, M. T. A comparison of neural network
control algorithms. In Neural Networks, 2001. Proceedings. IJCNN ’01. International Joint Con-
ference on (2001), vol. 1, pp. 521–526 vol.1.

[22] Kambhampati, C., Garces, F., and Warwick, K. Approximation of non-autonomous dynamic
systems by continuous time recurrent neural networks. In Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Chal-
lenges and Perspectives for the New Millennium (2000), vol. 1, pp. 64–69 vol.1.

[23] Katz, G., Barrett, C. W., Dill, D. L., Julian, K., and Kochenderfer, M. J. Reluplex:
An efficient SMT solver for verifying deep neural networks. CoRR abs/1702.01135 (2017).

205

Verification of Continuous Time Recurrent Neural Networks (Benchmark Proposal) Musau and Johnson

[24] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems 25, F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–
1105.

[25] Leofante, F., Narodytska, N., Pulina, L., and Tacchella, A. Automated Verification of
Neural Networks: Advances, Challenges and Perspectives. ArXiv e-prints (May 2018).

[26] Li, X.-D., Ho, J. K. L., and Chow, T. W. S. Approximation of dynamical time-variant systems
by continuous-time recurrent neural networks. IEEE Transactions on Circuits and Systems II:
Express Briefs 52, 10 (Oct 2005), 656–660.

[27] Matarić, M., and Cliff, D. Challenges in evolving controllers for physical robots. Robotics and
Autonomous Systems 19, 1 (1996), 67 – 83. Evolutional Robots.

[28] Miconi, T. Biologically plausible learning in recurrent neural networks reproduces neural dynam-
ics observed during cognitive tasks. eLife 6 (feb 2017), e20899.

[29] Miguel, C. G., d. Silva, C. F., and Netto, M. L. Structural and parametric evolution of
continuous-time recurrent neural networks. In 2008 10th Brazilian Symposium on Neural Networks
(Oct 2008), pp. 177–182.

[30] Nolfi, S., and Marocco, D. Evolving robots able to integrate sensory-motor information over
time. Theory in Biosciences 120, 3 (Dec 2001), 287–310.

[31] Parisi, G. Attractor Neural Networks. eprint arXiv:cond-mat/9412030 (Dec. 1994).
[32] Pascanu, R., Mikolov, T., and Bengio, Y. Understanding the exploding gradient problem.

CoRR abs/1211.5063 (2012).
[33] Pearlmutter, B. A. Gradient calculations for dynamic recurrent neural networks: a survey.

IEEE Transactions on Neural Networks 6, 5 (Sep 1995), 1212–1228.
[34] Pham, V., Bluche, T., Kermorvant, C., and Louradour, J. Dropout improves Recurrent

Neural Networks for Handwriting Recognition. ArXiv e-prints (Nov. 2013).
[35] Pulina, L., and Tacchella, A. Challenging smt solvers to verify neural networks. AI Commun.

25, 2 (Apr. 2012), 117–135.
[36] Salehinejad, H., Sankar, S., Barfett, J., Colak, E., and Valaee, S. Recent Advances in

Recurrent Neural Networks. ArXiv e-prints (Dec. 2018).
[37] Scheibler, K., Winterer, L., Wimmer, R., and Becker, B. Towards verification of artificial

neural networks. In MBMV (2015).
[38] Seyab, R. A., and Cao, Y. Nonlinear system identification for predictive control using continuous

time recurrent neural networks and automatic differentiation. Journal of Process Control 18, 6
(2008), 568 – 581.

[39] Sogokon, A., Ghorbal, K., and Johnson, T. T. Non-linear continuous systems for safety
verification (benchmark proposal). In 3rd Applied Verification for Continuous and Hybrid Systems
Workshop (ARCH) (Vienna, Austria, Apr. 2016).

[40] Sogokon, A., Ghorbal, K., and Johnson, T. T. Non-linear Continuous Systems for Safety
Verification (Benchmark Proposal). In ARCH@CPSWeek 2016, 3rd International Workshop on
Applied Verification for Continuous and Hybrid Systems, Vienna, Austria (Vienna, Austria, 2016),
G. Frehse and M. Althoff, Eds., vol. 43 of EPiC Series in Computing, EasyChair, pp. 42–51.

[41] Souradeep Dutta, Susmit Jha, S. S. A. T. Output range analysis for deep feed-forward neural
networks. http://www.cs.colorado.edu/~srirams/papers/output_range_analysis_NFM_2018.
pdf.

[42] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., and
Fergus, R. Intriguing properties of neural networks. CoRR abs/1312.6199 (2013).

[43] Tang, H., Tan, B. H., and Yan, R. Robot-to-human handover with obstacle avoidance via
continuous time recurrent neural network. In 2016 IEEE Congress on Evolutionary Computation
(CEC) (July 2016), pp. 1204–1211.

206

http://www.cs.colorado.edu/~srirams/papers/output_range_analysis_NFM_2018.pdf
http://www.cs.colorado.edu/~srirams/papers/output_range_analysis_NFM_2018.pdf

Verification of Continuous Time Recurrent Neural Networks (Benchmark Proposal) Musau and Johnson

[44] Taylor, R. L. V. Attractors: Nonstrange to chaotic.
[45] Tran, H.-D., Nguyen, L. V., and Johnson, T. T. Benchmark: A nonlinear reachability

analysis test set from numerical analysis. In ARCH@CPSWeek (2015).
[46] Trischler, A. P., and D’Eleuterio, G. M. T. Synthesis of recurrent neural networks for

dynamical system simulation. CoRR abs/1512.05702 (2015).
[47] You, Y., and Nikolaou, M. Dynamic process modeling with recurrent neural networks. AIChE

Journal 39, 10 (1993), 1654–1667.
[48] Yu, Z., Moirangthem, D. S., and Lee, M. Continuous timescale long-short term memory

neural network for human intent understanding. Frontiers in Neurorobotics 11 (2017), 42.

207

	1 Context and Origins
	2 General Mathematical Model for Continuous Time Recurrent Neural Networks
	3 Description of Benchmarks
	3.1 Approximation of Fixed Point Attractor
	3.2 System Identification for Forced Damped Pendulum

	4 Simulation of Models
	5 Observations
	6 Outlook and Model Extensions

