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Abstract

This report presents results of a friendly competition for formal verification of contin-
uous and hybrid systems with linear continuous dynamics. The friendly competition took
place as part of the workshop Applied Verification for Continuous and Hybrid Systems
(ARCH) in 2018. In its second edition, three tools have been applied to solve three differ-
ent benchmark problems in the category ofbounded model checking of hybrid systems with
piecewise constant dynamics (in alphabetical order): BACH, HyDRA, and XSpeed. This
report is a snapshot of the current landscape of tools and the types of benchmarks they
are particularly suited for. Due to the diversity of problems, we are not ranking tools and
we also welcome more tools to join in this friendly competition in the future event.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for bounded model
checking of hybrid systems with piecewise constant dynamics aims at providing a landscape
of the current capabilities of verification tools. We would like to stress that each tool has
unique strengths—not all of the specificities can be highlighted within a single report. To
reach a consensus in what benchmarks are used, some tools may benefit more from the pre-
sented choice than others. Meanwhile, in order to invite more tools to join the competition,
the flow condition is restricted to the format of dx/dt = a, instead of more general form
of dx/dt ∈ [a, b]. The obtained results have been verified by an independent repeatability
evaluation. To establish further trustworthiness of the results, the code with which the
results have been obtained is publicly available at gitlab.com/goranf/ARCH-COMP.

G. Frehse (ed.), ARCH18 (EPiC Series in Computing, vol. 54), pp. 14–22
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This report summarizes results obtained in the 2018 friendly competition of the ARCH
workshop1 for bounded model checking of hybrid systems with piecewise constant dynamics.
More specifically, the flow condition is restricted to the format of dx/dt = a, instead of more
general form of dx/dt ∈ [a, b]. Tool developers run their tools summarized in Sec. 2 on different
benchmark problems presented in Sec. 3 and report the results obtained from their own machines
also in Sec. 3.

The results reported by each participant have not been checked by an independent authority
and are obtained on the machines of the tool developers. Thus, one has to factor in the
computational power of the used processors summarized in Sec. A as well as the efficiency of
the programming language of the tools. It is not the goal of the friendly competition to rank
the results, the goal is to present the landscape of existing solutions in a breadth that is not
possible by scientific publications in classical venues. Those would require the presentation of
novel techniques, while this report showcases the current state of the art.

The selection of the benchmarks has been conducted within the forum of the ARCH website
(cps-vo.org/group/ARCH), which is visible for registered users and registration is open for
anybody. All tools presented in this report use some form of reachability analysis. This,
however, is not a constraint set by the organizers of the friendly competition. We hope to
encourage further tool developers to showcase their results in future editions.

2 Participating Tools

The tools participating in the category Bounded Model Checking of Hybrid Systems with Piece-
wise Constant Dynamics are introduced below in alphabetical order.

BACH BACH [3, 2] is a bounded reachability checker for Linear Hybrid Automata (LHA)
model, Hybrid Systems with Piecewise Constant Dynamics (HPWC) in the term of ARCH
competition. The tool provides GUI for LHA modeling and also bounded reachability checkers
for both single automaton and automata network. Be different from classical bounded checkers
of LHA, which encodes the “complete” bounded state space of the system into a huge SMT
problem, BACH conducts the bounded checking in a “path-oriented” layered style. It finds
potential paths which can reach the target location on the graph structure first, then encodes
the feasibility of such path into a linear programming problem and solve it afterwards. In
this way, as the number of paths in the discrete graph structure of an LHA under a given
bound is finite, all candidate paths can be enumerated and checked one by one to tackle the
bounded reachability analysis of LHA. Furthermore, the memory usage is well controlled as
it only encodes and solves one path at a time. Meanwhile, BACH provides an efficient way
to locate the infeasible path segment core when a path is reported as infeasible to guide the
backtracking in the graph structure traversing to achieve good performance [13]. Such infeasible
path segments can also be used to derive complete state arguments under certain conditions [14].

HyDRA The Hybrid systems Dynamic Reachability Analysis (HyDRA) tool implements
flow-pipe construction based reachability analysis for linear hybrid automata. The tool is built
on top of HyPro [8, 12], a C++ library for reachability analysis. HyPro provides different
implementations of state set representations tailored for reachability analysis such as boxes,
convex polyhedra, support functions, or zonotopes, all sharing a common interface. This inter-
face allows to easily exchange the utilized state set representation in HyDRA. We use this to

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH
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extend state-of-the art reachability analysis by CEGAR-like parameter refinement loops, which
(among other parameters) allow to vary the used set representation. Furthermore, HyDRA
incorporates the capability to explore different branches of the search tree in parallel. Being in
an early state of development, HyDRA already shows promising results on some benchmarks,
although there is still room for improvements. An official first release is planned.

XSpeed The tool XSpeed implements algorithms for reachability analysis of continuous and
hybrid systems with linear dynamics. The focus of the tool is to exploit the modern multicore
architectures to enhance the performance through parallel computations. The algorithms in
XSpeed are based on symbolic states represented using support functions. The tool can analyze
hybrid automata models in the SpaceEx input format. It allows to compute the reachability in
bounded depth as well as reachability till fixed point. XSpeed realizes two algorithms to enhance
the performance of reachability analysis of purely continuous systems. The first is the parallel
support function sampling algorithm and the second is the time-slicing algorithm [10, 11]. The
performance of hybrid systems reachability analysis is enhanced using an adaptation of the G.J.
Holzmann’s parallel BFS algorithm in the SPIN model checker, called the AGJH algorithm [5].
In addition, a task parallel and an asynchronous variant of AGJH are also implemented in the
tool. The details of the algorithms in XSpeed can be found in [6]. The tool is available at
http://xspeed.nitmeghalaya.in/

3 Verification of Benchmarks

We have agreed on four benchmarks, each one of them having unique features. The Motor-
cade [9] instance used in the competition is a single model with small number of variables and
locations. Navigation [4] instance is much larger than Motorcade in the aspect of locations.
We also have Distributed Controller and TTEthernet from the HPWC category. Next, let us
briefly discuss the specificities and results of each benchmark problem.

Types of Inputs As the HBMC category focuses on HPWC model this year, all the three
benchmarks are HPWC models with dynamic laws in the form of dx/dt = a, instead of more
general form of dx/dt ∈ [a, b]. Therefore, the models used in the competition are a little different
from their original versions. This restriction may causes different behavior in some benchmarks
as well. For example, in NAV model, the point is supposed to move in different directions in
the original model with dx/dt ∈ [−a, a]. However, in our version, as it is fixed to dx/dt = a, it
can only goes in one direction.

3.1 Motorcade, a.k.a. Adaptive Cruise Controller

3.1.1 Model

The first automaton is a central arbiter for a automated motorcade in a highway introduced
in [9]. The system works as follows: when two vehicles come within a distance 4 of each other, a
collision may happen. Then the arbiter asks the approaching car to slow down and the leading
car to speed up. When the distance between the two vehicles involved in the possible collision
exceeds 4, the arbiter model goes back to the dynamics of the cruise mode.
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MOTORnn is the model of the system with nn cars. This model is considered safe with
respect to specification UBSnn (no collisions). The size of this model can be easily expanded
by introducing more cars into the system, which will increase new locations and variables in
the model. However, in order to make the benchmark suitable for most of the competitors, we
select systems with 5, 10, and 15 vehicles for competition. The model with 5 vehicles is shown
below in Fig.1.

 

𝑒0 

𝑥1 = 40, 𝑥2 = 35, 𝑥3 = 30,  

𝑥4 = 25, 𝑥5 = 20 

𝑒8 

𝑥3 − 𝑥4 ≥ 4 

𝑒11 

𝑥4 − 𝑥5 ≥ 4 

𝑒10 

𝑥4 − 𝑥5 ≤ 4 

𝑒7 

𝑥3 − 𝑥4 ≤ 4 

𝑒12 

𝑥4 − 𝑥5 ≤ 1 

𝑒9 

𝑥3 − 𝑥4 ≤ 1 

𝑒6 

𝑥2 − 𝑥3 ≤ 1 

𝑒3 

𝑥1 − 𝑥2 ≤ 1 

𝑒5 

𝑥2 − 𝑥3 ≥ 4 

𝑒4 

𝑥2 − 𝑥3 ≤ 4 

𝑣1 

𝑥1̇ = 8,𝑥2̇ = 8.5,𝑥3̇ = 9 

𝑥4̇ = 9.5,𝑥5̇ = 10 

2 ≤ 𝑥1 − 𝑥2 ≤ 10 

… 

2 ≤ 𝑥4 − 𝑥5 ≤ 10 𝑣4 

𝑥1̇ = 12.𝑥2̇ = 12, 𝑥3̇ =

12, 𝑥4̇ = 10, 𝑥5̇ = 9 

2 ≤ 𝑥1 − 𝑥2 ≤ 10 

… 

2 ≤ 𝑥4 − 𝑥5 ≤ 10 

𝑣5 

𝑥1̇ = 12,𝑥2̇ = 12, 𝑥3̇ =

12, 𝑥4̇ = 12, 𝑥5̇ = 10 

2 ≤ 𝑥1 − 𝑥2 ≤ 10 

… 

2 ≤ 𝑥4 − 𝑥5 ≤ 10 

𝑣6 

𝑣2 

𝑥1̇ = 12, 𝑥2̇ = 10,𝑥3̇ =

8,𝑥4̇ = 9,𝑥5̇ = 10 

2 ≤ 𝑥1 − 𝑥2 ≤ 10 

… 

2 ≤ 𝑥4 − 𝑥5 ≤ 10 

𝑒1 

𝑥1 − 𝑥2 ≤ 4 𝑒2 

𝑥1 − 𝑥2 ≥ 4 

𝑣3 

𝑥1̇ = 12,𝑥2 = 12̇ , 𝑥3̇ =

10, 𝑥4̇ = 8.5, 𝑥5̇ = 9.5 

2 ≤ 𝑥1 − 𝑥2 ≤ 10 

… 

2 ≤ 𝑥4 − 𝑥5 ≤ 10 

Figure 1: Motorcade-5 vehicles

3.1.2 Specification

The safety property, UBDnn, of this system is that no two vehicles collide with each other, in
another word, whether location Error vn+1 is reachable in bound 20.

3.1.3 Results

First of all, as different tools may have different settings, we have a specific column “remark”
listed in all the forms. If the tool is executed directly according to the specification, it will be
marked as “-”. Otherwise, the setting will be marked there.
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Table 1: Computation Times on the Motorcade Benchmarks with Default Bound 20.

instance
MOTOR05

UBD05
MOTOR10

UBD10
MOTOR15

UBD15

safety safe safe safe

# vars. 5 10 15

# locs. 6 11 16

tool computation time in [s] remark lang. machine

BACH 0.05 0.12 0.2 C++ MBACH

HyDRA 6.44 - - 2 threads, Time=40000, δ = 10 C++ MHyDRA

XSpeed 23.12 - - Bound=10, DIR=Box, δ = 10 C++ MXSpeed

Computation Times The computation times of various tools for the Motorcade benchmark
are listed in Tab. 1. The performance for XSpeed is given for an exploration till bound 10, using
a time step of δ = 10 and box template directions. XSpeed does not reach the target error state
in bound 10.

3.2 Navigation (NAV)

3.2.1 Model

The navigation example is also a single automaton. It models the motion of a point robot
in a n-dimensional cube. The cube is partitioned into mn rectangular regions and each such
region is associated with a vector field described by the flow equations. We use a generalization
method introduced in [4] to generate such a navigation mode, NAV m n. Similar with the
motorcade model, in order to generate a not too complex model, we set both m and n as 2, 3,
and 4 respectively. As the model is too large to put in the paper, we will omit the graphical
presentation here.

3.2.2 Specification

The specification, NBD m n, is to check whether there is a behavior of the system which
can reach the specific state in the farthest corner. In the benchmark model, Whether
l(n− 1) . . . (n− 1)︸ ︷︷ ︸

n−1

is reachable in bound 20.

3.2.3 Result

Computation Times The computation times of various tools for the NAV benchmark are
listed in Tab. 2. The results in XSpeed for NAV 2 2, NAV 3 3 are generated with a time-step
δ of 1e − 4 with BOX template directions. The reported time in XSpeed for the instances
NAV 2 2, NAV 3 3 are till the completion of bound 20. In the case of NAV 4 4 instance, the
XSpeed reported time is for a bound of 16, with δ = 0.01. The reported time in HyDRA
for the navigation instances have been computed using boxes as the state set representation,
δ = 1e− 4 and a jump bound of 20.
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Table 2: Computation Times on the NAV Benchmark with Default Bound 20.

instance
NAV 2 2
NBD 2 2

NAV 3 3
NBD 3 3

NAV 4 4
NBD 4 4

safety safe safe safe

# vars. 2 3 4

# locs. 4 27 256

tool computation time in [s] remark lang. machine

BACH 0.03 0.13 7.34 C++ MBACH

HyDRA 0.22 0.40 1.2 C++ MHyDRA

XSpeed 0.33 0.6 91.92 Bound=16 for NAV 4 4 C++ MXSpeed

3.3 Distributed controller

Model The benchmark is an extension of the benchmarks presented in [7], to which multiple
sensors with multiple priorities have been added. It models the distributed controller for a
robot that reads and processes data from different sensors. A scheduler component determines
what sensor data must be read according to the priority of the sensor. The controller has 1
continuous and n discrete variables, the scheduler has n continuous and n discrete variables,
and each sensor has 1 continuous variable. The controller has 4 locations, the scheduler has
1 + n, and each sensor has 4 locations. The product automaton has 4× (1 + n)× 4 locations,
n + 2 continuous variables and 2n discrete variables. Note that some tools, such as PHAVer,
do not support discrete variables and may model the discrete variables as continuous variables.

DISCnn The model with nn sensors. This model is considered safe with respect to specification
UBSnn.

Specification The system is considered safe if at no point in time all sensors send data
simultaneously.

UBSnn It is never the case that all nn sensors are in location send.

Results The computation times of various tools are listed in Tab. 3. The presented running
times for HyDRA account for a run with a maximal jump depth of 15 jumps.

3.4 TTEthernet

Model The TTEthernet protocol is a protocol for the remote synchronization of possibly
drifted clocks distributed over multiple components, taken from [1]. The system consists of two
compression masters (CM) and k synchronization masters (SM). Each CM has two clocks cmi,
each SM has one clock smi. Both CM and SM are modeled by a hybrid automaton with 4
locations each. The product automaton has 4 + k variables and 4k+2 locations.

TTESnn protocol with nn SM. This model is considered safe with respect to specification
UBDnn. The global time horizon is limited to 3000 ms.
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Table 3: Computation Times of the Distributed Controller with Default Bound 20.

instance
DISC04
UBS04

DISC05
UBS05

DISC06
UBS06

safety safe safe safe

#vars. 14 17 20

#locs. 80 96 112

tool computation time in [s] remark lang. machine

BACH 0.29 0.4 0.7 C++ MBACH

HyDRA 234 – – Bound=15 C++ MHyDRA

XSpeed - - - C++ MXSpeed

Table 4: Computation Times of the TTEthernet Benchmark with Default Bound 20.

instance
TTES05
UBD05

TTES07
UBD07

TTES09
UBD09

safety safe safe safe

# vars. 9 11 13

# locs. 16384 262144 4194304

tool computation time in [s] remark lang. machine

BACH 0.16 0.22 0.26 C++ MBACH

HyDRA 412 – – Bound=10 C++ MHyDRA

XSpeed - - - C++ MXSpeed

Specification The difference between the clocks of the SM should not exceed a threshold of
2max drift .

UBDnn For all i, j, smi − smj ≤ 2max drift , where max drift = 0.001 ms.

Results The computation times of various tools are listed in Tab. 4. The presented running
times for HyDRA account for a run with a maximal jump depth of 10 jumps.

4 Conclusion and Outlook

This report presents the results on the second friendly competition for the bounded model
checking of hybrid systems with piecewise constant dynamics as part of the ARCH’18 workshop.
The reports of other categories can be found in the proceedings and on the ARCH website: cps-
vo.org/group/ARCH.
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Compared with last year’s competition, this year we increase the number of benchmarks
and also enhance the difficulty of existing cases as well. Similar with last year’s result, a most
interesting observation of the results is that different techniques/tools have different specialities.
For example, BACH is a path-oriented BMC checker, while HyDRA and XSpeed are fixed-
point computation based. In the experiments, on case like Motorcade, which structure is not
very complex but may have many possible execution trajectories. BACH finishes the checking
quickly, while fixed-point computation based method may have difficulty in the computation.

On the other hand, the NAV model shows a different story. The structure of the model
is large. There are many potential paths on the structure of the model. However, due to the
restriction of the flow condition, only one way is possible according to the state computation.
Therefore, fixed-point computation based method runs also very quick on this case.

We would like to introduce more complex models with high dimension and/or large initial
set in the future event to see what kind of system can be analyzed by existing tools. We would
also like to encourage other tool developers to consider participation in the next year.
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A Specification of Used Machines

A.1 MBACH

• Processor: Intel(R) Core(TM)2 Quad CPU Q9500 @ 2.83GHz x 4

• Memory: 4 GB

• Average CPU Mark on www.cpubenchmark.net: 3636 (full), 1203 (single thread)

A.2 MLyse

A.3 MHyDRA

• Processor: Intel Core i7-4790K CPU @ 4.00GHz x 8

• Memory: 15.9 GB

• Average CPU Mark on www.cpubenchmark.net: 11185

A.4 MXSpeed

• Processor: Intel Core i7-4770 CPU @ 3.4GHz x 4

• Memory: 8 GB

• Average CPU Mark on www.cpubenchmark.net: 9806
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