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Abstract

We propose a computational approach to approximate the value function and control poli-
cies for a finite horizon stochastic reach-avoid problem as follows. First, we formulate an
infinite dimensional linear program whose solution characterizes the optimal value function
of the stochastic reach-avoid. Next, we introduce sum-of-squares polynomials to approxi-
mate the solution of this linear program through a semidefinite program. We compare our
proposed tool to alternative numerical approaches via several case studies.

1 Introduction

Finite horizon reach-avoid problems are a special class of reachability problems in which the
goal is to reach a given target set within a time horizon while avoiding an unsafe set [1]. It
is known that reach-avoid problems for discrete time stochastic hybrid systems (DTSHS) can
be cast as control problems for a Markov decision process (MDP) [2]. In this framework, the
objective is to synthesize a control policy that maximizes the reach-avoid probability over the
trajectory of the MDP. One can formulate this problem using a dynamic programming (DP)
recursion by introducing indicator functions for the so-called target (reach) and unsafe (avoid)
sets [2]. A straightforward way to numerically approximate the value function of the reach-
avoid DP recursion is by constructing a grid for the continuous state and control spaces. Under
suitable assumptions on the MDP kernel, gridding approaches provide performance guarantees
on the resulting approximate solution [3, 4], but their complexity grows exponentially with the
dimension of continuous states (curse of dimensionality) [3].

In an attempt to overcome the limitation of gridding based approximations, the authors in
[9] used an optimization based approximation method for the reach-avoid value function and
the optimal policy. Their approach was based on formulating the reach-avoid DP recursion as
an infinite dimensional linear program (LP). Under suitable assumptions, the optimizer of this
LP is the reach-avoid value function [6]. To numerically solve the infinite dimensional LP, they
introduced Gaussian radial basis functions to restrict the decision space corresponding to the
value function to a finite dimensional space and utilized randomized sampling to ensure the
infinite constraints probabilistically [19]. Even though the approach in [9] pushes the limit of
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numerical solutions further than the state-of-the-art, it is still computationally intensive and
the probabilistic upper bounds provided are elusive when used for verification purposes.

We consider the same infinite dimensional linear programming formulation [9] and introduce
a new approximation scheme based on polynomial basis functions. The infinite constraints of
the LP can then be equivalently formulated as polynomial non-negativity constraints on semi-
algebraic sets, defined by the target and unsafe sets of the reach-avoid problem. We then use
a sufficient condition to reformulate polynomial non-negativity based on sum-of-squares (SOS)
polynomials. Consequently, the problem of approximating the stochastic reach-avoid probabil-
ity becomes equivalent to a semidefinite program (SDP). An advantage of the formulation is
that we provide a guaranteed upper bound (as opposed to the probabilistic ones obtained in
[9, 10]) for the approximated value function of the reach-avoid problem. In order to further
investigate the scalability of our proposed method, we use recent results based on alternative re-
laxations of SOS polynomials involving diagonally dominant sum-of-squares (DSOS) and scaled
diagonally dominant-sum-of-squares (SDSOS) polynomials [16, 17].

The paper is organized as follows. In Section 2 we review the basics of stochastic reach-avoid
problem for discrete time stochastic hybrid control systems. We define the value function of the
reach-avoid problem through a DP recursion and formulate an equivalent infinite dimensional
LP. In Section 3 we choose polynomial basis functions for the approximation of the infinite di-
mensional LP and reformulate the resulting semi-infinite LP as a semidefinite program through
sum-of-squares polynomials. In Section 4 we evaluate the performance of the proposed ap-
proach in terms of accuracy and computational complexity with several numerical examples.
In Section 5 we summarize our work and discuss future directions.

2 Stochastic Reach-Avoid Problem

Let X ⊆ Rn, U ⊆ Rm and W ⊆ Rp be respectively the state space, control space and
uncertainty space of a stochastic system. Consider a Markov Decision Process (MDP) with
dynamics described by xk+1 = f(xk, uk, wk) with xk ∈ X, uk ∈ U, wk ∈ W and the discrete
time index k ∈ N. We assume the stochastic nosie wk is independent identically distributed
with Borel measurable stochastic kernel Q. Let K′ ⊂ X be a given safe set and K ⊆ K′ be
the target set that the system needs to reach within a finite time horizon T = {0, . . . , T}. For
notational convenience, introduce X̄ := K′ \K. The sets X,U,W,K,K′ are assumed to be Borel
measurable. We consider deterministic Markov policies at each time step k, ψk : X → U. The
reach-avoid problem for the MDP is defined as follows.

Definition 1 (Reach-avoid problem). Given a time horizon T, find the policies ψ∗ =
(ψ∗0 , . . . , ψ

∗
T−1) such that starting from any initial state x0 ∈ X̄, the probability to hit the target

set K within time horizon T while staying inside the safe set K′ at all prior times is maximized.

The value function V ∗k : X → R of the reach-avoid problem at every time k ∈ T can be
characterized by a dynamic programming (DP) recursion [2] of the form:

V ∗T (xT ) = 1K(xT ),

V ∗k (xk) = sup
uk∈U

{
1K(xk) + 1K′\K(xk) · Ew[V ∗k+1(f(xk, uk, wk))]

}
, (1)

where 1A(x) = 1 whenever x ∈ A and 1A(x) = 0 otherwise, for A ⊂ X. At every state xk,
the function V ∗k (xk) returns the maximum probability of reaching the set K within the time
interval [k, T ] [2]. Moreover, using the functions V ∗k one can define the optimal control policy
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at each time k ∈ T as

ψ∗k(x) = arg max
uk∈U

{
1K(xk) + 1K′\K(xk) · Ew[V ∗k+1(f(xk, uk, wk))]

}
. (2)

The optimal policy ψ∗, over the horizon is then defined as ψ∗ = {ψ∗0 , . . . , ψ∗T−1}. We assume
continuity of f in u and compactness of U, to ensure that the optimal policy is attained. Fur-
thermore, it follows that the value function is bounded and Borel measurable.

Let us define the Bellman operator Tu : F → F as Tu[V ](x) := 1K(x) + 1K′\K(x) ·
Ew[V (f(x, u, w))], where F is the space of real-valued bounded Borel measurable functions
on X. Let ς denote a probability measure on X, interpreted as a state relevance weight. Given
V ∗k+1, the value function V ∗k can be found (up to a set of ς-measure zero) as a solution of the
following infinite dimensional linear program (LP) [5, 9, 11].

min
V(·)∈F

∫
X
V(x)ς(dx)

subject to V(x) ≥ Tu[V ∗k+1](x), ∀ (x, u) ∈ X× U
(3)

Retrieving the solution of (3) is an NP-Hard problem [13], motivating the need to develop
numerical approximation methods. In the following Section, we restrict the decision space F
to polynomial basis functions and reformulate the infinite LP as a semi-infinite LP that can be
addressed using well-known results from polynomial optimization research. We consequently
obtain a pointwise upper bound on the reach-avoid value function. Once an approximate
(upper-bounding) polynomial value function is found at each k ∈ T, we define an associated
approximate control policy by solving another polynomial optimization problem.

3 Approximated LP with Polynomials

Adopting polynomials to approximate the value function of stochastic control problems
through semidefinite programming (SDP) has been discussed in [12]. Here, we apply this
approach for the reach-avoid problem at hand. We start by assuming that the value function
at each time step k is approximated as Vk(x) ≈ V̂k(x) =

∑N
i=1 ci,kmi(x) where mi(x) are

N =
(
n+r
r

)
monomials up to degree r, in n variables and ci,k are their respective coefficients.

Using this form of polynomial basis, the infinite dimensional decision space in (3) is equivalently
restricted to the space of polynomials of order r in n variables, F̂ = Rrn[x]. The decision variable
in the resulting optimization problem is the vector of N coefficient ci,k ∈ R, of the monomials.

In order to ensure the constraints in (3) can be formulated as a polynomial non-negativity
constraint, we make the following assumptions.

Assumption 1. The dynamics of the system f(x, u, w) have a polynomial representation.

Assumption 2. The sets X,K,K′,U are semi-algebraic.

Assumption 3. Moments of the noise E[wα] =
∫
Rp w

αQ(w)dw and the state relevant weight
ς up to a sufficient order (dependent on the order of the polynomial value function and the
dynamics) are given.

Under the above assumptions, the linear objective in (3) is by definition a linear function of the
polynomial coefficients ci,k. Furthermore, the infinite constraints in (3) can be equivalently writ-

ten as a non-negativity constraint on the approximating polynomial V̂k(x) =
∑N
i=1 ci,kmi(x).
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The resulting semi-infinite linear program is given by

min
V̂k(x)∈Rn

r [x]

∫
X
V̂k(x)ς(dx)

subject to

{
V̂k(x)− Ew[V̂ ∗k+1(f(x, u, w))] ≥ 0, ∀ (x, u) ∈ X̄× U
V̂k(x)− 1 ≥ 0, ∀ x ∈ K

(4)

The objective function
∫
X V̂k(x)ς(dx) can be written as a scalar product between the coefficient

vector ck = [c1,k, . . . , cN,k] ∈ RN of V̂k(x) and moments ηςα :=
∫
X x

ας(dx). Since the dynamics

are assumed to be polynomial, V̂ ∗k+1(f(x, u, w)) is a polynomial in x, u and w. Consequently,

the expectation Ew[V̂ ∗k+1(f(x, u, w))] can be computed using moments of the noise distribution,
which are available/computed up to the required order. Notice that until now we reduced the
infinite dimensional LP to a yet intractable semi-infinite LP.

To ensure non-negativity of the approximating polynomial described by infinite constraints
in (4) in a computationally tractable way, we restrict the decision space to sum-of-square (SOS)
polynomials. Since checking for polynomial SOS is a semidefinite programming problem, the
semi-infinite LP can be formulated as a SDP. To further improve computational tractability
of the resulting SDP, recent research has been devoted to specific subsets of SOS polynomials,
namely diagonally dominant (DSOS) and scaled diagonally dominant (SDSOS) polynomials
[16, 17]. DSOS and SDSOS result in converting the SDP-based relaxations with attractive
linear program and second order cone programs (SOCP) with lower complexity than the SDP.

The optimization program (4) is initialized at k = T , by approximating 1K(x) as tightly as
possible with a polynomial V̂ ∗T (x). Problem (4) is solved T − 1 times, resulting in polynomial
upper bounds on the value functions at each time step. Algorithm 1 describes the procedure
for approximating the maximum reach-avoid probability with polynomial basis functions.

Algorithm 1 Approximating the Value Function (offline computation)

1: Input Data:

• Semi-algebraic set description for X,K,K′,U.

• Polynomial dynamics f(x, u, w).

• Moments E[wα] =
∫
Rp w

αQ(w)dw.

2: Design Parameters:

• Degree of polynomials V̂k(x).

• Polynomial family: SOS/DSOS/SDSOS.

• Polynomial p̂K(x) ≥ 1K(x), ∀ x ∈ X.

• State-relevance measure ς.

3: Initialize V̂ ∗T (x)← p̂K(x)
4: for k = T − 1 : 0 do
5: Compute the cost function

∫
X V̂ (x)ς(dx) as a linear function of the polynomial coeffi-

cients using moments of ς.
6: Compute Ew[V̂ ∗k+1(f(x, u, w))] as a polynomial in (x, u) by substituting monomials wα

with corresponding moments E[wα].
7: Solve SDP/LP/SOCP (based on choice of polynomial family) to construct V̂ ∗k .
8: end for

Given the sequence of approximated value functions V̂ ∗1 (x), . . . , V̂ ∗T (x), define the polynomial
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ξk(x, u) = Ew[V̂ ∗k+1(f(x, u, w))]. The approximated optimal reach-avoid policy is computed as:

ψ̂∗k(xk) = arg max
u∈U

ξk(xk, u). (5)

Given x ∈ X, above is a polynomial maximization problem. A solution to (5) can be found by
solving a hierarchy of convex linear matrix inequality (LMI) relaxations (Lasserre Hierarchy)
[13]. Algorithm 2 describes the procedure for computing the policy online.

Algorithm 2 Approximate Policy (online computation)

1: for k = 0 : T − 1 do
2: Measure the current state of the system xk
3: if xk /∈ X̄ then
4: return
5: else
6: Compute ξk(x, u) = Ew[V̂ ∗k+1(f(x, u, w))]
7: Set x← xk and solve u∗ = arg maxu∈U{ξk(xk, u)} as Laserre hierarchy of order %
8: if Laserre hierarchy is infeasible then
9: Increase order of Lasserre hierarchy %← %+ 1

10: else
11: ψ̂∗k(xk) = u∗

12: end if
13: end if
14: end for

4 Numerical Analysis

In this section we evaluate the introduced approximation method through numerical ex-
amples. For each example, we follow a two step procedure: we first construct a sequence of
polynomial functions that upper bound the value function of the reach-avoid problem using
Algorithm 1 and then use Monte Carlo simulations to evaluate the reach-avoid probability of
the control policies constructed using Algorithm 2. Upper bounds are constructed in MATLAB
using the SPOT toolbox [16] that supports polynomial optimization and offers the functionality
required to reformulate the relaxed semi-infinite LP in Problem (4) as an LP, SOCP or SDP,
according to whether the decision space has been restricted to DSOS, SDSOS or SOS polynomi-
als, respectively. The approximate control policies were computed using the Gloptipoly toolbox
[15]. For the cases where the polynomial ξk(xk, u) or the control constraint set U had sparse
structure (several monomials with zero coefficients), the computational time of solving (5) was
reduced using the toolbox SparsePOP [18]. All the resulting convex programs were solved using
MOSEK on an Intel i7-2600K CPU clocked @ 3.5 GHz with 16 GB of RAM memory.

4.1 Benchmark Problem for Performance Bound

Consider the following 2D discretized system (n = 2) with cubic dynamics:

x(k + 1) =

[
x1(k) + τ · [x1(k) · (ϑ− x1(k)2 − x2(k)2)− x2(k)] + u1(k) + w1(k)
x2(k) + τ · [x2(k) · (ϑ− x1(k)2 − x2(k)2) + x2(k)] + u2(k) + w2(k)

]
. (6)
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The sampling rate is chosen to be τ = 0.1 and the noise is assumed to be Gaussian wk ∼
N (0n×1, 0.001·In×n). Depending on the sign of parameter ϑ, we can identify a Hopf bifurcation.
With ϑ = 0.5, the noise-free system has three equilibria, two of which are stable and one which
is unstable. We choose the safe set as K′ = {x ∈ Rn : ‖x‖2 ≤ 1}, so that the stable equilibria
are not in K′, and the target set as K = {x ∈ Rn : ‖x‖2 ≤ 0.1} in order to contain the unstable
equilibrium. The input space is set to U = {u ∈ Rm : ‖u‖2 ≤ 0.1}, m = n and the reach-avoid
specification is defined over a time horizon of T = 7 discrete time steps.

(a) DSOS (b) SDSOS (c) SOS

Figure 1: Error between grid-based and polynomial-based value functions, V̂ ∗0,~(·)− V ∗0 (·).

We chose quartic polynomials and a uniform state relevance measure ς(x) supported on X
in Algorithm 1. In order to evaluate the quality of the polynomial approximation we computed
the solution to the DP in (1) on uniformly discretized grids with 101 × 101 grid points for the
state space X = {x ∈ R2 : ‖x‖∞ ≤ 1}, and 317 grid points for U = {u ∈ R2 : ‖u‖2 ≤ 0.1},
respectively. Computing the dynamic programming based (DP) value functions on the grid from
time k = T to time k = 0, denoted by V ∗k , required 638 seconds. In contrast, the polynomial-

based approximations V̂ ∗k , were computed in less than 11 seconds. The difference V̂ ∗0 (·)−V ∗0 (·)
shown in Figure 1 corresponds to the pointwise difference (computed on grid elements of the set
X̄) between the grid based and polynomial based value functions. The mean error ε̄ reported in
Table 1, is computed over system states with reach-avoid probability higher than 0.1 in order
to avoid bias from areas where both methods predict near-zero success probability.

Using the grid-based and DSOS/SDSOS/SOS approximate value functions, we also com-
puted the associated control policies using Algorithm 2. We considered the grid-based policy as
reference and compared it with the policies derived from the other three methods (SOS, DSOS,
SDSOS polynomials) using Monte Carlo simulations to generate sample system trajectories.

We denote by ψ∗ the policy obtained from the grid-based approach and by ψ̂~ the policy ob-
tained by using one of the methods DSOS/SDSOS/SOS, labeled with the index ~. To estimate
the performance of the different control policies, we sampled 100 initial states x0, uniformly
from X̄ and rejected states with low reach-avoid probability predicted by both methods. For
the remaining ones, we generated 100 different disturbance trajectory realizations applying the
corresponding control policies. The difference in performance V (ψ∗) − V̂ (ψ̂~) is reported in
Table 1. One can observe that the approximate control policy based on the polynomials yields
satisfactory performance (see Table 1) even though the average error between the value func-
tion of the gridding and that of each of the polynomial based approaches is not close to zero.
This observation motivates using polynomial approximations to address control synthesis for
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reach-avoid problems of higher dimensions where gridding the continuous spaces is intractable.

Method ~ average error ε̄ V (ψ∗)− V̂ (ψ̂~)

DSOS 0.363 0.0134
SDSOS 0.295 0.0241

SOS 0.186 -0.0090

Table 1: Average error in value functions and performance of the resulting policies.

4.2 Computational Analysis

We focus here on the computational efforts needed to approximately solve a reach-avoid
problem using quartic DSOS/SDSOS/SOS polynomials. We introduce the identity system

xk+1 = In×n · xk + In×m · uk + wk, (7)

with Gaussian noise wk ∼ N (0n×1, 0.001 · In×n) in order to easily change the dimensions of
the problem (variables n, m) and keep the system behavior throughout the problems similar.
We approximate the reach-avoid problem for a finite time horizon of T = 5 with the safe,
target and input sets as introduced in Section 4.1, with appropriate n,m dimensions. Table
2 depicts the CPU times of different computational phases when Algorithm 1 and Algorithm
2 are executed. The column “Setup” refers to all the operations required before solving the
SDP in (4). “Optimization” refers to the time required to construct the approximating value
functions and “Controller Synthesis” corresponds to the time required to setup the polynomial
(5) needed to extract control actions from the value function approximations, averaged between
DSOS/SDSOS/SOS methods. Online policy extraction CPU times are reported in Table 3. We
have compared the grid-based control policy, the policy based on a standard Lasserre SDP
relaxation [13] solved in Gloptipoly and a policy constructed using the sparse Lasserre SDP
relaxation solved in SparsePOP [18]. The reported times correspond to the times averaged over
the horizon T to maximize (5) given a fixed initial condition and a sequence of disturbances.

n = m Setup Optimization Controller Synthesis

- - SOS DSOS SDSOS -
2 0.22 s 1.75 s 0.17 s 0.23 s 0.17 s
4 1.89 s 0.44 s 0.42 s 0.43 s 0.54 s
6 2.55 s 1.21 s 1.01 s 2.59 s 1.82 s
8 6.54 s 22.70 s 3.87 s 4.42 s 5.44 s
10 23.69 s 153.17 s 8.28 s 11.08 s 14.35 s

Table 2: Computational analysis for approximating value function through DSOS/SDSOS/SOS.

We have reported different CPU times required for each task of the process in Tables 2 and
3 as function of the dimension. We observe that DSOS/SDSOS polynomials confirm to be
more scalable than SOS as Table 2 shows. Sparsity exploitation provides a more scalable policy
extraction in higher dimensions as confirmed in Table 3.
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m # of grid elements of U Gridding U Dense SDP Sparse SDP

2 317 0.003 s 0.094 s 0.365 s
4 49’689 0.18 s 0.56 s 0.59 s
6 5’257’045 145.48 s 3.28 s 0.87 s
8 out of memory N/A (∞) 16.30 s 1.90 s
10 out of memory N/A (∞) 66.30 s 6.74 s

Table 3: Computational analysis of approximating policy comparing control space gridding,
dense polynomial maximization and sparse polynomial maximization, both relaxed as SDP.

4.3 Performance Analysis on Large Scale Problems

Here, we focus on evaluating the performance of approximate control policies in reach-avoid
problems of high dimensions. Due to curse of dimensionality the gridding based approach for
computing the optimal value function and policy cannot serve as a benchmark. Consequently,
as a basis of comparison we use the approach in [11] where radial basis functions (RBFs),
instead of polynomials, are used to construct a semi-infinite LP (4) and to reformulate the
infinite constraint in (4) using a conservative S-procedure. We compare the performance of
the RBF approach to the tool presented in this paper. In all simulations we consider quartic
polynomials and average the performance of approximate control policies over 50 discrete-time
controllable linear time invariant systems of dimension dim(X × U) = 8. System matrices are
generated randomly with eigenvalues restricted to |λi| ∈ [0.75, 1], ∀ i = 1, . . . , n in order to
avoid stable systems that converge quickly to the origin without any control authority. The
target, avoid and input sets are the same as those described in Section 4.1.

For each system we computed the average difference in performance between the two ap-
proximate control design approaches. The first controller is based on polynomial basis and
is the result of executing Algorithms 1 and 2 for the DSOS/SDSOS/SOS methods while the
second controller is based on RBFs and the method outlined in [11]. In Table 4 we denote by

V̂ (ψ̂~)− V̂ (ψ̂RBF) the mean difference of the closed loop value functions of each method. We

denote by ψ̂~ the policy obtained by using one of the methods DSOS/SDSOS/SOS, labeled

with the index ~ and by ψ̂RBF the policy obtained from the RBF based approach. The com-
putation is done similar to the problem discussed in Section 4.1. In particular, we sampled
100 initial states x0 uniformly from X̄. Then, we generated 100 different disturbance trajectory
realizations applying the different control policies to the resulting states over the time hori-
zon. Based on these experiments, the RBF approach yields tighter reach-avoid value function
bounds. However, a limitation with this approach as discussed in [11] is that it can handle
problems of dimension ≤ 8 and only linear systems with additive Gaussian mixture noise.

Method V̂ (ψ̂~)− V̂ (ψ̂RBF) σRBF

DSOS − 0.123 ± 0.090
SDSOS − 0.108 ± 0.074

SOS − 0.097 ± 0.067

Table 4: Average performance difference and standard deviation between polynomials and RBF
approach for dim(X× U) = 8.
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5 Conclusion

We proposed a novel approximation scheme to construct polynomial upper-bounds to reach-
avoid value functions. Using these approximate value functions we synthesized approximate
controllers for problems of higher dimension than what has been reported in the literature.
Future work will address developing a complete toolbox for handling reach-avoid control prob-
lems for Markov Decision Process and discrete time stochastic hybrid systems by integrating
features from the various tools available in the polynomial optimization literature. Moreover,
we are planning to extend the work to include a basis selection step that exploits symmetry
and reduces the number of monomials used. The automated use of such insights will result in
sparsity and consequently reduced total computational time.
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