
EPiC Series in Computer Science
Volume 35, 2015, Pages 119–130

LPAR-20. 20th International Conferences
on Logic for Programming, Artificial Intelli-
gence and Reasoning - Short Presentations

A New Proof of P-time Completeness of Linear Lambda

Calculus

Satoshi Matsuoka

National Institute of Advanced Industrial Science and Technology (AIST),
1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563 Japan

matsuoka@ni.aist.go.jp

Abstract

We give a new proof of P-time completeness of the Linear Lambda Calculus, which was originally

given by H. Mairson in 2003. Our proof uses an essentially different Boolean type from the type that

Mairson used. Moreover the correctness of our proof can be machined-checked using an implementation

of Standard ML.

1 Introduction

In [5] Mairson gave a proof of P-time completeness of the Linear Lambda Calculus. It is an
excellent exercise of linear functional programming. The crucial point of the proof is that the
copy function of the truth values is representable by a linear term: this is relatively easy in the
Affine Lambda Calculus as shown in [5], but difficult in the Linear Lambda Calculus. So, the
key issue there is to avoid the use of the weakening rule. The issue was also treated from a
different angle in [6], which established typed Böhm theorem without the weakening rule.

In this paper we give a new proof of P-time completeness of the Linear Lambda Calculus.
Our proof is different from that of [5] with regard to the following points:

• In [5] Mairson used the base Boolean type BHM = p−◦ p−◦(p−◦ p−◦ p)−◦ p while we use
B = (p−◦ p)−◦(p−◦ p) ⊗ (p−◦ p). Although both have two normal forms, they are essen-
tially different because while BHM reduces to itself by the linear distributive transformation
given in Section 3 of [6] (which was called third order reduction in [6]), B reduces to

Bred = p−◦ p−◦(p−◦ p)−◦(p−◦ p−◦ p)−◦ p,

which has six normal forms.

• All the two variable functions that are representable over BHM without any polymorphism
are only exclusive or and its negation, but in B they are all the boolean functions except
for exclusive or and its negation, i.e., fourteen functions.

• Our proof is also an interesting application of the linear distributive transformation.
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As in [5], our proof is also machine-checkable: all the linear λ-terms in this paper are also
well-formed expressions of Standard ML [9]. So the reader may confirm the correctness of our
proof using an implementation of Standard ML. We used the interactive system of Standard
ML of New Jersey. Although this correctness verification of our result is light-weight, but it
seems enough for the confirmation of our result. In particular such an effort has been rarely
tried in the literature in the Linear Lambda Calculus.

Since boolean functions and circuits have a lot of applications in (theoretical or practical)
computer science, our result has a lot of potential applications: for example, analysis of boolean
circuits, model checking, etc. In particular, when represented as MLL proof nets (see [4]), two
normal terms of B are planar proof nets (see Figure 1). Crossing numbers of proof nets over B
that represent boolean functions may have an interesting connection to the theory of boolean
function complexity. For example, the number of unary function over B is four. Among them,
while three functions can be represented as planar proof nets, one that corresponds to the not
gate is not (see Figures 2, 3, 4, and 5).

Figure 1: Two Normal Proofs of B (0 and 1)

One of advantages of our approach over other tools is that our boolean encoding is executable
as a functional program. Of course you can use BHM instead of B: one of advantages of B over
BHM is that we can encode more boolean functions without ML-polymorphism in B than that
of BHM, although both classes of representable functions are disjoint.

2 Typing Rules

We give our term assignment system for the Linear Lambda Calculus. Our system is based on
the Natural Deduction, e.g., given in [10, 2], which is equivalent to the system based on Sequent
Calculus or proof nets in [4] (see [10]). Its notation is unusual in the Linear Logic community,
but its purpose is to make our proof machine-checkable.

Types

A ::= ’a | A1*A2 | A1->A2

The symbol ’a stands for a type variable. On the other hand A1*A2 stands for the tensor
product A1⊗ A2 and A1->A2 for the linear implication A1−◦ A2 in the usual notation.
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Figure 2: Normal Proof of B−◦B (identity)

Figure 3: Normal Proof of B−◦B (negation)

Terms We use x,y,z for term variables, −→x ,−→y ,−→z for finite lists of term variables, and t,s

for general terms.

Term Assignment System

x:A ` x:A

x:A,−→y :Γ ` t:B
−→y :Γ ` fn x=>t:A->B

−→x :Γ ` t : A->B −→y :∆ ` s:A
−→x :Γ,−→y : ∆ ` ts:B
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Figure 4: Normal Proof of B−◦B (constant function)

Figure 5: Normal Proof of B−◦B (constant function)

−→x :Γ ` s:A −→y :∆ ` s:B
−→x :Γ,−→y : ∆ ` (s,t):A*B

−→x :Γ ` s:A*B x:A, y:B,−→y :∆ ` t:C
−→x :Γ,−→y :∆ ` let val (x,y)=s in t end:C

Moreover, function declaration
fun f x1 x2 · · · xn = t

is interpreted as the following term:
f = fn x1 => fn x2 => · · · => fn xn => t

Below we consider only closed terms (i.e., combinators)
` t:A.
The following proposition is proved easily by structural induction:

Proposition 2.1. If x1:A1,...,xn:An|-t:B then
fun f x1 x2 · · · xn = t
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is a well formed function declaration of Standard ML.

Term Reduction Rules Two of our reduction rules are
(β1): (fn x=>t)s ⇒β1

t[s/x]

(β2): let val (x,y)=(u,v) in w end ⇒β2
w[u/x,v/y]

Then note that if a function f is defined by
fun f x1 x2 · · · xn = t

and
x1:A1,...,xn:An|-t:B, |-t1:A1, . . ., |-tn:An

then, we have
f t1 · · · tn ⇒∗β1

t[t1/x1,. . .,tn/xn] .
We denote the reflexive transitive closure of a relation R by R∗. In the following →β denotes
the congruent (one-step reduction) relation generated by the two reduction rules above and the
following contexts:

C[] = [] | C[]t | tC[] | (t,C[]) | (C[], t) | fn x=>C[]

| let val (x, y) = C[] in t end | let val (x, y) = t in C[] end

In order to establish a full and faithful embedding from linear λ-terms to IMLL proof nets, we
introduce further reduction rules. Basically we follow [1]. The following are η-rules:
(η1): fn x=>(t x) ⇒η1 t

(η2): let val (x,y) = t in (x,y) ⇒η2 t

In the following→βη denotes the congruent (one-step reduction) relation generated by the four
reduction rules above and any context C[]. But these reduction rules are not enough: different
normal terms may correspond to the same normal IMLL proof net. In order to make further
identification we introduce the following commutative conversion rules. Before doing this, we
introduce another contexts C0[], whose set is a subset of C[]:

C0[] = [] | C0[]t | tC0[] | (t,C0[]) | (C0[], t)

Then we define the commutative conversion relation ↔c:

c1. let val (x,y)=(let val (x’,y’)=t in s end) in u end

↔c let val (x’,y’)=t in (let val (x,y) =s in u end) end

c2. fn z=> let val (x,y)=t in u end ↔c let val (x,y)=t in fn z=> u end

where z 6∈ FV (t)
c3. C0[let val (x,y)=t in u end] ↔c let val (x,y)=t in C0[u] end

where FV (C0[]) ∩ {x, y} = ∅
c4. let val (x,y)=t in (let val (x’,y’)=u in v end) end

↔c let val (x’,y’)=u in (let val (x,y)=t in v end) end

where FV (u) ∩ {x, y} = ∅ and FV (t) ∩ {x’, y’} = ∅

Let =c be the congruent equivalence relation generated by ↔c and any context C[]. Then we
define →βηc be the least relation satisfying the following rule:

t =c t’ t’→βη u’ u’ =c u

t→βηc u

Then the following holds.

Proposition 2.2 (Church Rosser[1]). if t →βηc t’ and t →βηc u’ then for some w =c w’,
t’→βηc w and u’→βηc w’.
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Furthermore we can easily prove that →βηc is strong normalizable as shown in [1]. We can
conclude that we have the uniqueness property for normal forms under →βηc up to =c.

3 Review of Mairson’s Proof

In this section we review the proof in [5] briefly. Below by normal forms we mean normal forms
with regard to →βηc. The basic construct is the following term:
- fun Pair x y z = z x y;

val Pair = fn : ’a -> ’b -> (’a -> ’b -> ’c) -> ’c

Using this, we define True and False:
- fun True x y = Pair x y;

val True = fn : ’a -> ’b -> (’a -> ’b -> ’c) -> ’c

- fun False x y = Pair y x;

val True = fn : ’a -> ’b -> (’b -> ’a -> ’c) -> ’c

Note that these are the normal forms of BHM. In order to define the term Copy, we need two
auxiliary terms:
- fun I x = x;

val I = fn : ’a -> ’a

- fun id B = B I I I ;

val id = fn : ((’a -> ’a) -> (’b -> ’b) -> (’c -> ’c) -> ’d) -> ’d

The formal argument B is supposed to receive True or False. It is easy to see that

id True →∗β I, id False →∗β I,

Then the term Copy is defined as follows:
- fun Copy P = P (Pair True True) (Pair False False)

(fn U => fn V =>

U (fn u1 => fn u2 =>

V (fn v1 => fn v2 =>

((id v1) u1, (id v2) u2)))))

We omit its type since it is too long. The formal argument P is supposed to receive True or
False. While the encoding in [5] uses continuation passing style, the above term does not since
we have the ⊗(= ∗)-connective and can do a direct encoding using this connective. Then
Copy True;

val it=(fn,fn):(’a -> ’b -> (’a -> ’b -> ’c) -> ’c)*(’d -> ’e -> (’d -> ’e -> ’f) -> ’f)

Copy False;

val it=(fn,fn):(’a -> ’b -> (’b -> ’a -> ’c) -> ’c)*(’d -> ’e -> (’e -> ’d -> ’f) -> ’f)

(in fact, since SML/NJ does not allow any function values, it gives warnings, but the results
are basically the same). These are (True,True) and (False,False) respectively since

Copy True →∗β ((id False) True, (id False) True)

Copy False →∗β ((id True) False, (id True) False)

The basic observations here are that

• the type of the formal argument P of Copy is unifiable with that of both True and False;

• the types of Copy True and Copy False are desirable ones, i.e., both have BHM⊗BHM as
a instance.

Since the and gate can be defined similarly and more easily and the not gate without any
ML-polymorphism, it is concluded that all the boolean circuits can be defined over BHM.
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4 A Partial Solution

In this section we present our failed attempt. Let the following two terms be True’ and False’:
fun True’ x y f = Pair x (f y);

val True’ = fn : ’a -> ’b -> (’b -> ’c) -> (’a -> ’c -> ’d) -> ’d

fun False’ x y f = Pair (f x) y;

val False’ = fn : ’a -> ’b -> (’a -> ’c) -> (’c -> ’b -> ’d) -> ’d

Both are normal forms of Bred = p−◦ p−◦(p−◦ p)−◦(p−◦ p−◦ p)−◦ p, which has six normal
forms. Below we define a copy function for them as in the previous section. In order to do that,
we need several auxiliary terms:
fun not’ f x y g h = f y x g (fn u => fn v => (h v u));

val not’ = fn

: (’a -> ’b -> ’c -> (’d -> ’e -> ’f) -> ’g)

-> ’b -> ’a -> ’c -> (’e -> ’d -> ’f) -> ’g

The term not’ represents the not gate for the new boolean values.
fun swap f g = f (fn u => fn v => g v u);

val swap = fn : ((’a -> ’b -> ’c) -> ’d) -> (’b -> ’a -> ’c) -> ’d

We note that

swap (Pair False’ True’) g =β (Pair False’ True’)(fn u => fn v => g u v)

=β g True’ False’ =β Pair True’ False’ g

The term newid is similar to id, but receives four arguments:
fun newid B’ = B’ I I I I;

val newid = fn

: ((’a -> ’a) -> (’b -> ’b) -> (’c -> ’c) -> (’d -> ’d) -> ’e) -> ’e

The term constNot is also similar to id, but always returns not’:
fun constNot B’ = B’ I not’ I I;

val constNot = fn

: ((’a -> ’a)

-> ((’b -> ’c -> ’d -> (’e -> ’f -> ’g) -> ’h)

-> ’c -> ’b -> ’d -> (’f -> ’e -> ’g) -> ’h)

-> (’i -> ’i) -> (’j -> ’j) -> ’k)

-> ’k

The formal argument B’ in newid and constNot is supposed to receive True’ and False’. We
can easily see

newid True’ →∗β I, newid False’ →∗β I,

constNot True’ →∗β not, constNot False’ →∗β not

Under the preparation above, we can define Copy’ as follows:
fun Copy’ P’ = P’ (Pair False’ True’) (Pair False’ True’) swap

(fn U => fn V =>

U (fn u1 => fn u2 =>

V (fn v1 => fn v2 =>

((constNot v1) u1, (newid v2) u2))));
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Again we omit the type. The formal parameter P is supposed to receive True’ or False’. Then

Copy’ True’ →∗β ((constNot True) False, (newid False) True)

→∗β (True, True)

Copy’ False’ →∗β ((constNot False) True, (newid True) False)

→∗β (False, False)

Unfortunately we could not find a term that represents the and gate over True’ and False’.
Without ML polymorphism, only projections and constant functions are representable in Bred,
which does not includes the and gate. Moreover unlike [5], with ML polymorphism, a term for
the and gate can not be obtained as a simplified version of Copy’ over Bred in a naive way. Note
that in our encoding we can not swap the order of two arguments: we can only choose which
argument is applied to the swap function. That’s why the and gate is not representable over
Bred by imitating the method in [5]. This indicates that our encoding is quite different from
that of [5].

So, we must find a similar, but different substitute. Fortunately we have found a solution
described in the next section.

5 Our Solution

Our solution uses the type B = (p−◦ p)−◦(p−◦ p)⊗ (p−◦ p), which has two normal forms:
fun True’’ x = (fn z => z, fn y => x y);

val True’’ = fn : (’a -> ’b) -> (’c -> ’c) * (’a -> ’b)

fun False’’ x = (fn y => x y, fn z => z);

val False’’ = fn : (’a -> ’b) -> (’a -> ’b) * (’c -> ’c)

The linear distributive transformation (which was called third-order reduction in [6]) turn B
into Bred. The next term is its internalized version:
fun LDTr h x y f z

= let val (k, l) = h f in z (k x) (l y) end;

val LDTr = fn

: (’a -> (’b -> ’c) * (’d -> ’e))

-> ’b -> ’d -> ’a -> (’c -> ’e -> ’f) -> ’f

Then

LDTr True’’ =β True’, LDTr False’’ =β False’

Our term for the not gate for True’’ and False’’ is
fun not’’ h f = let val (k, l) = h f in (l, k) end;

val not’’ = fn : (’a -> ’b * ’c) -> ’a -> ’c * ’b

Then

not’’ True’’ =β False’’, not’’ False’’ =β True’’

Moreover we can write down a term for the and gate as follows:
fun and’’ f g h = let val (u, v) = g (fn k => h k) in

(let val (x, y) = f (fn w => v w) in

(fn s => x (u s), fn t => y t) end) end;

val and’’ = fn

: ((’a -> ’b) -> (’c -> ’d) * (’e -> ’f))

-> ((’g -> ’h) -> (’i -> ’c) * (’a -> ’b))
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-> (’g -> ’h) -> (’i -> ’d) * (’e -> ’f)

Note that the definition of and’’ does not use any ML-polymorphism. Then

and’’ True’’ True’’ =β True’’, and’’ False’’ False’’ =β False’’,
and’’ True’’ False’’ =β False’’, and’’ False’’ True’’ =β False’’

Next, we define a copy function for True’’ and False’’. In order to do that, we need a
modified version of constNot:
fun constNot’’ B’’ = B’’ I not’’ I I;

Then we can easily see

newid True’’ →∗β I, newid False’’ →∗β I,

constNot’’ True’’ →∗β not, constNot’’ False’’ →∗β not

Under the preparation above, we can define a copy function for B, which is a modified version
of Copy’ as follows:
fun Copy’’ P’’ =

LDTr P’’ (Pair False’’ True’’) (Pair False’’ True’’) swap

(fn U => fn V =>

U (fn u1 => fn u2 =>

V (fn v1 => fn v2 =>

((constNot’’ (LDTr v1)) u1, (newid (LDTr v2)) u2))));

Then

Copy’’ True’’ →∗β (True’’, True’’), Copy’’ False’’ →∗β (False’’, False’’)

Note that the linear distributive transformation is applied to the formal parameter P’’ in the
term. It transforms a term of the domain with high-order or tensor connectives to a term with
order less than fourth-order and without tensor connectives injectively. In general, while the
elimination of weakening rule (i.e., a kind of garbage collection) is easier with low order types,
it tends to be able to represent more boolean functions with higher order types or types with
tensor connectives. For example the number of two variable functions that are representable
over B is 14, but only 6 functions among them are representable over Bred. The role of the linear
distributive transformation is used to fill the gap. That’s why Copy’’ includes the subterm
LDtr.

From what precedes we can conclude that we can represent all the boolean circuits over B.
As described before, while the number of two variable functions that are representable over

B are fourteen, it is six over Bred. The difference is closely related to the fact that linear
distributive law A ⊗ (BOC)−◦(A ⊗ B)OC is provable in Linear Logic ([3]), but the inverse
(A⊗B)OC −◦A⊗ (BOC) is not. In order to pursue the topic further we need to introduce the
knowledge of proof nets and proof structures (e.g., see [7]).

6 Concluding Remarks

We note that we found the term and’’ manually using the proof net syntax (and then translating
the proof net into and’’), but Copy’ and Copy’’ interactively with Standard ML of New Jersey.

In this paper we showed that BHM is not the only choice in order to establish P-time
completeness of Linear Lambda Calculus. Let us call such a type like BHM and B a P-time
complete type.
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From our result a natural question comes up: which linear type other than BHM and B and
its two normal forms establishes P-time completeness of Linear Lambda Calculus? For example
it is unlikely that B′ = p−◦(p−◦ p)−◦(p−◦ p)−◦ p and its two normal forms establish that: at
least completely new ideas are needed to represent the and gate and copy function in B′. Since
B′ can represent only constant functions and projections without ML polymorphism as shown
in [6], ML polymorphism must be used for the goal. But it is an easy exercise to show that
BTWIST = (p⊗p)−◦(p⊗p) and its two normal forms are P-time complete by using [5] described
in Section 3 and the linear distributive transformation. Our answer is given in Appendix A.

After the completion of the first draft, we were informed that a proof of P-time completeness
of BTWIST ⊗ BTWIST was given in [11]. That encoding refers to the internal structure of
BTWIST ⊗ BTWIST using the symmetry of de Morgan duality of the “and” and “or” gates. We
note that in order to establish P-time completeness of BTWIST ⊗ BTWIST, another method is
possible.

Proposition 6.1. Let

〈Ty1, T1, F1, Copy1, not1, and1〉 and 〈Ty2, T2, F2, Copy2, not2, and2〉

be both P-time complete. Then 〈Ty1*Ty2, (T1,F2), (F1,T2)〉 is also P-time complete.

Proof. We can define not, Copy, and for Ty1*Ty2 as follows:
fun not (b1, b2) = (not1 b1, not2 b2);

fun Copy (b1, b2) =

let val (b11, b12) = Copy1 b1 in

let val (b21, b22) = Copy2 b2 in

((b11, b21), (b12, b22)) end end;

fun or2 b21 b22 = not2 (and2 (not2 b21) (not2 b22);

fun and b b’ =

let val (b11, b21) = b in

let val (b12, b22) = b’ in

(and1 b11 b12, or2 b21 b22) end end;

Note that the construction is an instance of the direct product construction of Boolean alge-
bras. Hence 〈Ty1*Ty2, (T1,T2), (F1,F2)〉 is also P-time complete, etc. Then we can conclude
that for example, B⊗ BHM as well as BTWIST ⊗ BTWIST is P-time complete.

It is also obvious that if T is a P-time complete type and T′ is a type, then T[T′/p] is P-time
complete.

As wrote before, however, we could not prove that Bred and its normal forms True’ and
False’ establish P-time completeness of Linear Lambda Calculus. But we also could not prove
that they cannot establish that. At this moment we do not have any idea to do that.

Finally, our type B and its generalization (p−◦ p)−◦
n︷ ︸︸ ︷

(p−◦ p)⊗ · · · ⊗ (p−◦ p) have further
interesting properties. For example we can establish weak typed Böhm theorem over B. But
the subject is beyond the scope of this paper, and will be discussed elsewhere.

7 Postscript

This result was obtain December 2012. But it has never been published. After that, a more
general result has been obtained in 2014 by extending the author’s previous result [6]. It is
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under submission (see [8]). In addition, a tool in order to deal with the Linear Lambda Calculus
has been developed by the author, which is available from

https://staff.aist.go.jp/s-matsuoka/PNCalculator/index.html

at this moment.
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A A P-time completeness proof for BTWIST

fun True0 (x, y) = (x, y);

val True0 = fn : ’a * ’b -> ’a * ’b

fun False0 (x, y) = (y, x);

val False0 = fn : ’a * ’b -> ’b * ’a

fun notTWIST0 B = fn p => let val (u, v) = p in B (v, u) end;

fun LDTrHM0 f x y g = let val (s, t) = f (x, y) in g s t end;

fun CopyTWIST0 P =

LDTrHM0 P (Pair True0 True0) (Pair False0 False0)

(fn U => fn V => U

(fn u1 => fn u2 =>

V (fn v1 => fn v2 =>

( (id (LDTrHM0 v1)) u1, (id (LDTrHM0 v2)) u2 ) ) ) );

fun andTWIST0 P Q
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= LDTrHM0 P Q False0

(fn u => fn v => (id (LDTrHM0 v) u));
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