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Abstract 

The concepts of mutual inclusion and mutual exclusion are critical for concurrency 

control in distributed systems. Mutual exclusion is a property which ensures that at most 

one process can execute  in its critical section at any given time. For example, other 

processes are not allowed to enter their critical sections when a given process is updating 

a shared variable in its critical section. If up to k processes can enter their critical sections, 

this is called k-exclusion. In contrast, mutual inclusion imposes restrictions on processes 

from leaving their critical sections. For example, to ensure reliability in a server farm, a 

certain number of servers may need to be available to service requests. If at least m 

processes must be available, this is called m-inclusion. Model checking is essential to 

verify and validate correctness and safety properties of distributed algorithms. The paper 

presents token-based models that can be used to verify and validate k-mutual exclusion 

and m-mutual inclusion algorithms where k refers to the maximum number of processes 

in their critical sections and m is the minimum number that must remain in their critical 

sections. Verification criteria includes the maximum number of messages that must be 

exchanged to enter or leave a critical section, deadlock freedom, and timing parameters. 

In addition, a model that includes both k-exclusion and m-inclusion is presented to 

demonstrate the feasibility of evaluating both mutual exclusion and mutual inclusion in 

the same model. Models are developed in UPPAAL, an environment for modeling, 

validation, and verification of real-time systems represented using timed automata.  

1 Introduction  

In modern systems, many problems require multitasking – multiple tasks running at the same time. 

Multiple tasks (or processes) in a distributed system may access a resource simultaneously or execute 

a given function at the same time. The instructions used to update a shared resource are commonly 

referred to as a critical section (CS). If execution within each critical section is not controlled, more 

than one process may try to update a shared resource at the same time which may cause inconsistencies 
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in the shared resource. Algorithms that guarantee at most one process is allowed in its CS at any given 

time are called mutual exclusion algorithms. Mutual exclusion is an example of concurrency control. 

Dijkstra first raised this question in 1965 [1]. In some cases, up to k processes can execute in their 

critical sections simultaneously, this is called k-exclusion. In the simplest case, 1-exclusion is just 

mutual exclusion. Distributed mutual inclusion is complementary to distributed mutual exclusion. 

Mutual exclusion restricts processes entering their critical sections, while mutual inclusion restricts 

processes from leaving their CS. For 1-inclusion, also called mutual inclusion, at least one task must be 

in its CS at all times. For instance, to provide higher system availability, we may require more than one 

server task to be available to process requests. Due to this complementary relationship, it is easier to 

speculate on algorithms to solve the inclusion problem based on similar principles after the problem of 

mutual exclusion is solved. Combining k-exclusion and m-inclusion, mutual exclusion and mutual 

inclusion may be generalized and expressed as a (k, m) – exclusion, inclusion algorithm. For example, 

(1,0) – exclusion, inclusion is ordinary mutual exclusion. In a distributed environment, message passing 

is typically used to achieve mutual exclusion [2]. Distributed mutual exclusion algorithms can be 

divided into centralized algorithms and distributed algorithms. Distributed algorithms can be divided 

into token-based algorithms and permission-based algorithms [3]. This paper focuses on token-based 

distributed algorithms. Possession of a token allows a process to enter or leave its critical section. 

Different tokens are used for inclusion and exclusion.  

UPPAAL is a toolbox for verification of real-time systems jointly developed by Uppsala University 

and Aalborg University. It has been applied successfully in case studies ranging from communication 

protocols to multimedia applications [5]. The tool is designed to verify systems that can be modeled as 

timed automata networks extended with integer variables, structured data types, and channel 

synchronization. The timed automata are finite state machines with real-valued clocks. It uses a dense 

time model in which the time variable is evaluated as a real number, and all clocks are synchronized. 

In UPPAAL, a system is simulated as a parallel network of several such timed automata. UPPAAL 

includes a simulator for random and guided simulation of the timed automata. A model checker is 

provided to verify safety and liveness properties. Properties are expressed in a subset of Computation 

Tree Logic (CTL). For an invariant property p, the expression A[] p means that on all paths (A), the 

property p is always ([]) satisfied. For a liveness property p, or to test for reachability, the expression 

E<> p means that on some path (E) the property p is eventually (<>) satisfied.  

Several mutual exclusion algorithms and mutual inclusion algorithms form the basis for this work. 

The algorithms in the area of mutual exclusion are divided into two categories, token-based and 

permission-based. The works [1, 3, 6, 9] are permission-based where in a process is restricted from 

entering its critical section until permission is obtained from a quorum of processes. For token-based 

algorithms, such as [9, 11], a process is restricted from entering the critical section until a token within 

the scope of the system is obtained, giving the process the right to enter its critical section. For k-

exclusion, a set of k tokens can be passed in a logical ring to enforce k-exclusion [8]. Thiare extended 

the algorithm to achieve self-stabilization [9]. The focus of this paper will be on token-based ring 

algorithms for k-exclusion and m-inclusion.  

2 Token-based Ring Algorithms  

Token-based ring algorithms are used on networks logically arranged as rings. The token in the 

network is the entity that controls concurrency in the network to ensure that the system is devoid of any 

race conditions, a condition where multiple tasks (or processes) try to access and modify the same 

shared resource. UPPAAL models are designed for both k-exclusion and m-inclusion.  

Assumptions  

Both of the algorithms rely on a common set of assumptions:  
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1. No loss of messages between different processes (also called nodes or tasks).  

2. No delay in transmission of tokens between different processes (nodes).  

3. Messages arrive in order.   

2.1 Token Ring k-Exclusion Algorithm  

The algorithm and correctness properties of the Token Ring k-Exclusion Algorithm [4, 6, 9, 10] are 

listed below:   

  

Algorithm  

1. All processes (nodes) form a logical ring structure. Tokens are passed between nodes in a 

clockwise (or counterclockwise) direction to a neighbor.  

2. A node that receives a token has the right to enter its CS.  

3. A token is transmitted to the next node after a node leaves its CS.  

4. If a node does not need to enter its CS, any received token is passed directly to the next node 

without delay.  

5. For k-exclusion, k exclusion tokens circulate in the ring.  

  

Properties  

1. Safety: At any instant, at most k nodes can be in their critical sections.  

2. Liveness: A node that wants to enter its critical section should eventually be allowed to enter.  

3. Fairness: Each node gets a fair chance to execute in its CS. Fairness is only biased by the 

logical ordering imposed by the ring. The property means the CS execution requests are 

executed in the order of their arrival (a logical clock determines time) in the system.   

2.2 Token Ring m-Inclusion Algorithm  

The algorithm and correctness properties of the Token Ring m-Inclusion algorithm [4] are as 

follows:  

  

Algorithm  

1. All processes (nodes) form a logical ring structure. The tokens pass between the nodes in a 

clockwise (or counterclockwise) direction to a neighbor.  

2. A node that receives a token has the right to leave its CS.  

3. A token is transmitted to the next node after a node enters its CS.  

4. If a node does not need to leave its CS, any received token is passed directly to the next node 

without delay.  

5. For m-inclusion, m inclusion tokens circulate in the ring.  

  

Properties  

1. Safety: At any instant, at least m tasks must be executing in their critical sections.  

2. Liveness: A task that wants to leave its CS should eventually be allowed to leave.  

3. Fairness: Each process gets a fair chance to execute outside the CS. Fairness is only biased 

by the logical ordering imposed by the ring. This property means that requests to leave CS 

are executed in the order of their arrival (a logical clock determines time) in the system. 

Model Checking Mutual Inclusion and Mutual Exclusion Algorithms Zhao, Margapuri and Neilsen

62



3 Model Checking and Analysis  

3.1 k-Exclusion Model for Model Checking  

The distributed model is a ring network modeled in UPPAAL with five nodes where at most two 

nodes (k = 2) may simultaneously enter the critical section. The variable ‘nb’ records neighbors of each 

node, and three channels to communicate with a passive observer used to verify properties. The variable 

‘count’ records the number of nodes in the CS. The structure ‘S’ records the information at each node, 

including ‘requesting’, ‘numTokens’ and ‘inCS’. Initially, nodes 0 and 2 hold tokens. Each of the nodes 

starts in the Non-CS state. The model description in UPPAAL is as shown in Figure 1.  

  

  
Figure 1: Model Description for k-Exclusion  

The model is defined using two templates: Node and Observer. The Node template provides the 

state machine that models the k-exclusion algorithm, as shown in Figure 2. In the Non-CS state, if a 

token reaches a node that does not request for one, the token is passed to the node’s neighbor. However, 

if a token reaches a requesting node, the node may enter the CS. Whenever a node enters its CS, it sets 

variables S[id].inCS to 1 and S[id].requesting to 0. In the event a node in its CS receives another token, 

the token is passed to the neighboring node. The model implemented as part of the work restricts the 

amount of time that a node may spend in the CS to 10-time units. At the end of the 10-time units, the 

node leaves the CS, passes the token to the neighboring node and sets variable, S[id].inCS to 0. The 

count of the number of nodes in the CS is incremented when a node enters its CS, and it is decremented 

when a node leaves its CS.  
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Figure 2: Model of Node for k-Exclusion  

The Observer template models a process used to verify a liveness property of the model. It is used 

to verify that a node requesting access to a token receives the token in at most 40-time units. As shown 

in Figure 3, the observer may enter the ‘BAD’ state if a requesting node does not receive the token 

within 40-time units. Each node has its own observer, and each observer uses its own local clock x to 

time the delay between a node requesting and entering its CS.  

  
Figure 3: Model of Observer for k-Exclusion  

3.1.1 Verification of Properties  

The ETL for k-Exclusion is shown in Figure 4 and the justification for the verification of each 

of the properties is as described below.  

1. A[] (not deadlock): No deadlocks in the system.  

2. E<> (N2.CS && S[2].numTokens== 1): On some path, eventually node 2 may enter the CS  

3. A[] (count <= k): At most k nodes may enter their CS at same time.  

4. E<> (N2.CS && N1.CS): Two nodes can enter their CS, k = 2.  

5. A[] (not Obs1.BAD): A node  requesting to enter waits for at most 40-time units before entering 

the CS.  
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Figure 4: k-Exclusion Properties Verified in UPPAAL  

3.2 m-Inclusion Model Checking  

The idea of m-inclusion is that at least m tasks must be present in the critical section at any given 

point in time. It is fair to state that inclusion is complementary to exclusion in terms of behavior. As a 

result, the distributed UPPAAL model for inclusion closely follows that of the model for exclusion and 

is a ring network with five nodes where at least one node (m = 1) is required to execute in the critical 

section at any given point in time. In other words, at most four nodes may leave the critical section 

simultaneously. Figure 5 shows the declarations for the UPPAAL model that achieves m-inclusion. The 

variable ‘count’ records the number of nodes out of the CS and variable ‘outCS’ tracks the status of the 

node. Initially, nodes 0, 1, 2 and 3 are initialized with tokens and each of the nodes starts in the CS 

state. Figure 6 shows the state machine that achieves m-inclusion. The state machine is similar to that 

of exclusion’s with the only difference being that the states ‘CS’ and ‘Non-CS’ are swapped. The 

observer to ensure that the model does not enter a bad state is the same as the observer used for k-

exclusion as shown in Figure 3. This demonstrates that inclusion and exclusion are complementary to 

each other and lays the basis to achieving inclusion and exclusion in one model as described in section 

3.3.  

  

  
Figure 5: Declarations for m-Inclusion Distributed UPPAAL Model  
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Figure 6: Model of Node for m-Inclusion  

3.2.1 Verification of Properties  

The ETL for m-Inclusion is shown in Figure 7 and the justification for the verification of each 

of the properties is as described below.  

1. E<> (N2.CS && N1.CS): Eventually on some path, two (or j) nodes are allowed to enter their 

CS at the same time.  

2. A[] (count <= j): On any given path, at most j nodes may enter the CS at the same time.  

3. A[] (not obs1.BAD): On any given path, a node requesting to enter CS waits for at most 

40time units before entering the CS.  

4. A[] (not deadlock): On any given path, there are no deadlocks in the system.  

  
Figure 7: ETL for Verification in UPPAAL  
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3.3 (k, m)-Exclusion, Inclusion Model Checking  

In k-exclusion, the token meant for exclusion is used to enter the CS. The idea of m-inclusion is 

similar to that of k-exclusion except that an inclusion token is acquired to leave the CS. Figure 8 shows 

the declarations for (3, 2)-Exclusion, Inclusion where at least two nodes and at most three nodes may 

be in their CS. The variable n indicates the number of nodes, k, the number of tokens for k-exclusion 

and m, the number of tokens for m-inclusion equal to (n – m). Note that since we want two nodes to 

always be in their critical sections, we limit the number of inclusion tokens to n-m.  

In the model as shown in Figure 9, two types of tokens are sent with calls to passToken() and 

passOutToken(). PassToken() passes tokens to allow a node enter the CS and passOutToken() passes 

tokens to allow a node to leave the CS. The idea is that a node that wishes to enter the CS sets the 

variable, ‘requesting’, to 1. Upon receiving the ‘enter’ token as it passes through the network, the node 

enters the CS. Similarly, a node that wishes to exit the CS sets the variable, ‘requestingOut’, to 1 and 

exits the CS upon receiving the ‘exit’ token as it passes through the network. The ‘requesting’ and 

‘requestingOut’ variables are set to 0 upon an entry and exit of the CS respectively.  

 

  
Figure 8: Model Description for (3, 2)-Exclusion, Inclusion with Five Nodes  

3.3.1 Verification of Properties  

The ETL for (k, m)-Exclusion, Inclusion is shown in Figure 10 and the justification for the 

verification of each of the properties is as described below.  

1. E<> (N1.CS && N2.CS && N3.CS): Eventually on some path, the nodes N1, N2 and N3 are 

allowed to enter the CS at the same time.  

2. A[] (countIn <= k) && (countIn >= m): Always on all paths, a minimum of m nodes and a 

maximum of k nodes are present in the CS.  

3. E<> (countIn > k): Eventually on some path, more than k nodes are present in the CS. The 

property is not satisfied as verified by the verifier.  

4. A[] (countIn + countOut == 5): Always on all paths, a node is either in CS or outside of CS but 

never in an intermediary state. Hence, the sum of countIn and countOut equals the number of 

nodes in the system.  

5. A[] (not deadlock): Always on all paths, there are no deadlocks in the system.  
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Figure 9: UPPAAL Model for (k, m)-Exclusion, Inclusion  

 

                  
Figure 10: ETL for Verification in UPPAAL  

4 Future Work and Conclusion  

While the traditional centralized approach for mutual exclusion has the advantages such as high 

fairness, the approach suffers from problems such as single point of failure. As a result, the networks 

encounter a bottleneck in processing requests. In order to avoid the issues, distributed algorithms that 

combine mutual exclusion and inclusion are proposed to expand upon the scope of token-based 
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algorithms. As part of future work, a self-stabilizing approach for k-exclusion using logical rings and 

byte tokens is in the works. The algorithms using the aforementioned approaches are implemented and 

verified using the software prototyping and verification tool UPPAAL to demonstrate the fault tolerance 

and stability of the algorithms. The implemented models are available at 

https://github.com/VenkatMargapuri/Model-Checking-Token-Based-Algorithms and any interest to 

collaborate is welcome. 
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