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Mathematical Fuzzy Logic (MFL) started as the study of logics based on left-continuous t-norms,1

most prominently Łukasiewicz logic Ł, Gödel–Dummett logic G, Product logic Π, Hájek logic BL, and
the system MTL introduced by Esteva and Godo. In the last years, the scope of MFL has been progres-
sively expanded by considering weaker logical systems characterized by their completeness with respect
to a semantics of linearly algebras (such as chains endowed with a uninorm, or a non-commutative t-
norm to interpret &, or other kinds of linearly ordered residuated lattices).

There have been some proposals for a general framework to deal in a uniform way with this growing
family of logics. The first one appeared in [12] when Hájek and Cintula introduced that classes of
core and 4-core fuzzy logics, understood as axiomatic expansions of MTL and MTL4, resp. A wider
framework, encompassing weaker systems and stronger expansions, has been proposed in [3] based on
the notion of weakly implicative semilinear logic. In both approaches MFL retains what we can arguably
see as its defining feature, namely the study of systems of non-classical logics with a semantics based
on (linearly ordered) scales of degrees of truth. This is what makes these logics specially suited for the
study of gradual aspects of vagueness and imprecision, found in sentences like ‘it is heavily raining’ or
‘that man is tall’.

A conceptually different issue, that of uncertainty, has also been addressed inside MFL. The main
idea, introduced in [13] and later developed by Hájek in his monograph [11], is that one could use
probability to determine the truth degree of statements such as ‘tomorrow it will probably rain’ or ‘the
probability that tomorrow it will rain is high’. Indeed, one takes classical logic and its formulae ϕ to
describe crisp events, introduces a new modal operator P which can be applied on them to create atomic
modal formulae Pϕ which may be read as ‘probably ϕ’ (or better ‘the probability of ϕ is high’), and
finally these atomic modal formulae are combined by using the connectives of Łukasiewicz logic. What
we obtain is a two-layer modal fuzzy logic built on atomic formulae Pϕ whose truth values are given by
a probability measure. Several works have followed this idea with variations. In [9] Godo, Esteva and
Hájek replaced Łukasiewicz logic on the second layer by ŁΠ, but kept classical logic for non-modal
formulae. The logic ŁΠ, with its expanded language, enabled them to deal with conditional probability.
Flaminio and Montagna also considered conditional probability in [7], and Godo and Marchioni investi-
gated coherent conditional probabilities in [10]. Marchioni also proposed a class of logics of uncertainty
in [14] with different kinds of measures (besides probability) to quantify the uncertainty of events. In
all of these works classical logic has been kept as the underlying logic for non-modal formulae.

However, if one wants to deal with uncertainty and vagueness at once, i.e. with the probability of
vague events, as in ‘tomorrow it will probably rain heavily’, the two-layer paradigm can still be useful
provided that the underlying classical logic is substituted by a fuzzy logic. This idea has been also
investigated in some works, as [5] where finite Łukasiewicz systems Łn are taken as the logics of vague
events. Other recent works along these lines are surveyed in [6]. There has even been a first attempt at
an abstract theory of two-layer modal fuzzy logics in [15]; but it is restricted to the family of core fuzzy
logics which, as argued above, has become too narrow to contain the current scope of MFL.
∗The authors were supported by the Czech Science Foundation project P202/10/1826.

1For a more detailed historical account see [1].
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The primary aim of this paper is to provide a new general framework for two-layer modal fuzzy
logics that encompasses the current state of the art and paves the way for future development. Actually,
we will obtain much more than this. Indeed, we show how one can construct a modal logic (for an arbi-
trary modality, not necessarily read as a probability) over an arbitrary non-classical logic (under certain
technical requirements). Therefore, we need not assume that the starting logic is fuzzy, and we can de-
velop a general theory of two-layer modal logics, showing how the methods used in the fuzzy literature
can lead to completeness results using very few properties of the underlying logics. As a semantics, we
propose particular kinds of measured Kripke Frames and prove corresponding completeness theorems.
As an illustration we will obtain Hájek’s completeness result for Fuzzy Probability logic FP(Ł) over
Łukasiewicz logic as a particular corollary of our general approach.

1 The framework
This section presents the basic definitions and notational conventions for the paper (for further informa-
tion on Algebraic Logic notions see [8, 4]). The definitions of a propositional language L, the free term
algebra FmL over a denumerable set of generators (propositional variables), and finitary Hilbert-style
proof systems are as usual. Let us introduce the notion of propositional logic that we use in this paper.

Convention 1. Let L be a language containing at least a truth constant 1 and binary connectives →
and ∨. In this paper a propositional logic L inL is a finitary lattice-disjunctive weakly implicative logic
(as studied in [3]). In more details, this means that L is identified with the provability relation `L on
FmL given by a finitary Hilbert-style system such that:2

`L ϕ→ ϕ ϕ, ϕ→ ψ `L ψ ϕ→ ψ, ψ→ χ `L ϕ→ χ ϕ a`L 1→ ϕ

ϕ↔ ψ `L ◦(χ1, . . . χi, ϕ, . . . , χn)↔ ◦(χ1, . . . χi, ψ, . . . , χn) for every n-ary ◦ ∈ L and i < n.

`L ϕ→ ϕ ∨ ψ `L ψ→ ϕ ∨ ψ ϕ→ χ, ψ→ χ `L ϕ ∨ ψ→ χ

Γ, ϕ `L χ and Γ, ψ `L χ imply Γ, ϕ ∨ ψ `L χ

We recall now the basics of semantics. Note that our logics are algebraically implicative with a truth
definition given by the single equation x∨1 ≈ 1. Let us fix a logic L in a languageL; thenL-algebras are
algebras with signature L and homomorphisms from FmL to an L-algebra A are called A-evaluations.
For an L-algebra A we define the set FA = {x | x ∨A 1̄A = x}.

Definition 2. We say that A is an L-algebra, A ∈ L in symbols, if

• for each Γ∪ {ϕ} ⊆ FmL such that Γ `L ϕ, we have that for each A-evaluation e, if e[Γ] ⊆ FA, then
e(ϕ) ∈ FA,

• for each x, y ∈ A, if {x→A y, y→A x} ⊆ FA, then x = y.

L is in fact a quasivariety and it is the equivalent algebraic semantics of L in the sense of [2]. A
non-trivial L-algebra A is (finitely) subdirectly irreducible relative to L if for every (finite non-empty)
subdirect representation α of A with a family {Ai | i ∈ I} ⊆ L there is i ∈ I such that πi ◦ α is an
isomorphism. LR(F)SI denotes the class of all (finitely) subdirectly irreducible algebras relative to L. Of
course LRSI ⊆ LRFSI.

Definition 3. Let L be a logic and K ⊆ LRFSI. We say that L has (finite) strong K-completeness, SKC
(or FSKC resp.) whenever for each (finite) theory Γ∪ {ϕ} holds that Γ `L ϕ iff for each A ∈ K and each
A-evaluation e we have e(ϕ) ∈ FA whenever e[Γ] ⊆ FA.

2We write ‘ϕ↔ ψ’ for ‘{ϕ→ ψ, ψ→ ϕ}’, ‘T ` S ’ for ‘T ` ϕ for each ϕ ∈ S ’, and ‘T a` S ’ for ‘T ` S and S ` T ’.
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Algebraically we can say that L has FSKC (or SKC resp.) if K generates L as a (σ-)quasivariety.
Note that every logic has SLRSIC (and hence SLRFSIC). If L is a fuzzy logic, then LRFSI is the class of
L-chains.

2 The core theory
Let us fix two logics L1 and L2 in disjoint languages L1 and L2 such that � < L1 ∪ L2. Further we
fix two classes of algebras Ki ⊆ (Li)RFSI, i ∈ {1, 2}. We define three kinds of formulae of a two-level
language FmVar

L2(L1) over the set of variables Var:

• non-modal formulae from FmVar
L1

,

• atomic modal formulae of the form �ϕ, for ϕ ∈ FmVar
L1

,

• modal formulae resulting from atomic ones by connectives from L2.

Definition 4. The minimal L2-modal logic over logic L1 (denoted by L2(L1)) has formulae FmVar
L2(L1)

and an axiomatic system consisting of

• the axioms and rules of L1 for non-modal formulae,

• axioms and rules of L2 for modal formulae,

• and the following congruence rule for each pair of non-modal formulae ϕ and ψ:

ϕ↔ ψ ` �ϕ↔ �ψ (CONGR)

An n-ary modal rule has n non-modal premises and a modal conclusion. An L2-modal logic over a logic
L1 is an extension of L2(L1) by some modal rules.

We understand rules as schemata, i.e., for each substitution σ on FmVar
L1

, if ϕ1, . . . , ϕn ` Ψ is a modal
rule then σϕ1, . . . , σϕn ` σΨ is also a modal rule. We define the notion of proof in a modal logic in the
usual way. One can imagine that the proof consists of three separate parts: proving non-modal formulae,
application of the modal rules on proved non-modal formulae, and proving modal formulae.

Definition 5. A K1-based K2-measured Kripke frame is a system F = 〈W, (Aw)w∈W , B, µ〉 where W is a
set (of possible worlds), Aw ∈ K1 for each w ∈ W, B ∈ K2 and µ is a partial mapping µ :

∏
w∈W

Aw → B.

Note the difference from the ‘traditional’ approach: in order to prove the completeness theorems in
the full generality we cannot assume that all Aws are the same; we call such frames uniform and we will
see later in which cases we can restrict ourselves to such frames.

Definition 6. A Kripke model M over K1-based K2-measured Kripke frame F = 〈W, (Aw)w∈W , B, µ〉 is
a tuple M = 〈F, (ew)w∈W〉 where:

• ew : FmVar
L1
→ Aw is an Aw-evaluation,

• for each non-modal formula ϕ, the element ϕM ∈
∏

w∈W
Aw defined as ϕM(w) = ew(ϕ) belongs to the

domain of µ.

The truth value of atomic modal formulae is defined (uniformly for all worlds) as:

||�ϕ||M = µ(ϕM);

and the truth value of non-atomic modal formulae is (uniformly) computed by using operations from B.
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We say that M is a satisfies the (non-)modal formula Ψ (ψ resp.) whenever ||Ψ||M ∈ FB (or ew[ψ] ∈
FAw for each w ∈ W respectively).

Finally we say that F is a frame for an L2-modal logic over a logic L1 if all its additional modal
rules are valid in all Kripke models over F, i.e. the conclusion of a modal rule is satisfied in all models
of over F which satisfy all its premises.

Next we state the main theorem, the completeness of an L2-modal logic over a logic L1. We will see
that the form/strength of the completeness we obtain depends on the form/strength of the completeness
of the logics L2 and L1. The proof has two main ingredients: Hájek’s idea from [11] of a translation
of formulae and proofs from an L2-modal logic over a logic L1 into the logic L2 and the authors’
characterization of completeness properties from [3].

Theorem 7. Let L be an L2-modal logic over a logic L1 such that Li has SKiC. Then the following are
equivalent for each non-modal theory T , modal theory Γ, and a modal formula Φ:

• Γ,T `L Φ

• for each K1-based K2-measured Kripke frame F for L and each Kripke model M over F holds
that M satisfies Φ whenever it satisfies all formulae from Γ and T .

The same equivalence holds if L2 has FSK2C only but at the price of restricting to finite Γ and T and
additional assumptions that L1 is a locally finite and L has only finitely many additional modal rules.

Note that any L2-modal logic over a logic L1 enjoys completeness w.r.t. its (L1)RFSI-based (L2)RFSI-
measured Kripke frames and if L1 enjoys completeness w.r.t. a single algebra, then we can restrict
ourselves to uniform frames/models.

3 A case study: fuzzy probability logic over Boolean logic
As a case study we repeat the definition of Fuzzy Probability logic over Łukasiewicz logic Ł [13, 11],
denoted as FP(Ł) for short, and show how its completeness follows from our main theorem. Recall that
FP(Ł) is given by the following axiomatic system:

• axioms of classical propositional logic Bool for non-modal formulae and axioms Ł for modal
ones,

• modus ponens rules for both non-modal and modal formulae,

• axioms �ϕ→ (�(ϕ→ ψ)→ �ψ), �(¬ϕ)↔ ¬�(ϕ), and �(ϕ ∨ ψ)↔ [(�ϕ→ �(ϕ ∧ ψ))→ �ψ],

• modal rule ϕ ` �ϕ.

Clearly the logic FP(Ł) is an Ł-modal logic over Bool with only finitely many additional modal rules;
Bool is locally finite and enjoys S2C; and Ł enjoys FS[0, 1]ŁC. Thus we can use our main theorem. In
order to obtain exactly Hájek’s formulation we also observe that F = 〈W, (Aw)w∈W , B, µ〉 is a {2}-based
{[0, 1]Ł}-measured Kripke frame for FP(Ł) iff µ is finitely additive probability measure.

Theorem 8 ([11, Theorem 8.1.14]). Let T and Γ be finite non-modal and modal (resp.) theories in
FP(Ł) and let Φ be a modal formula. Then the following are equivalent:

• Γ,T `FP(Ł) Φ

• ||Φ||M = 1 for all Kripke models M, satisfying Γ and T , over all {2}-based [0, 1]Ł-measured Kripke
frames, where µ is a finitely additive probability measure.
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[1] L. Běhounek, P. Cintula, and P. Hájek. Introduction to mathematical fuzzy logic. In P. Cintula, P. Hájek,
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