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Abstract
We consider two classes of computations which admit taking linear combinations of execution

runs: probabilistic sampling and generalized animation. We argue that the task of program learning
should be more tractable for these architectures than for conventional deterministic programs. We
look at the recent advances in the “sampling the samplers” paradigm in higher-order probabilistic
programming. We also discuss connections between partial inconsistency, non-monotonic inference,
and vector semantics.

1 Introduction
One of the key challenges of program learning is that software tends to be too brittle and insufficiently
robust with respect to minor variation.

Biological systems tend to be much more flexible and adaptive with respect to variation. In par-
ticular, biological cells are capable of functioning at wide ranges of the level of expression of various
proteins, which are machines working in parallel. Regulation of the level of expression of specific
proteins is a key element of flexibility of biological systems. It is argued in evolutionary developmen-
tal biology that the flexible architecture together with conservation of core mechanisms is crucial for
the observed rate of biological evolution [16, 22]. It is suggested that morphology evolves largely by
altering the expression of functionally conserved proteins [12].

To incorporate regulation of expression into a system of genetic programming one might evolve
programs describing systems of parallel computational processes. Then one might take the CPU allo-
cation and other computational resources given to a particular computational process as computational
equivalent of the level of expression of a particular protein.

Of course, many of the architectures for parallel computations are brittle as well, with delicate
mechanisms of writing to shared memory and locks. To achieve flexibility one should use parallel
architectures which minimize those delicate interdependencies.

Computational architectures which admit the notion of linear combination of execution runs are
particularly attractive in this sense. Then one can regulate the system simply by controlling coefficients
in a linear combination of its components.
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In this paper we consider two computational architectures which admit linear combinations of exe-
cution runs.

One such architecture is probabilistic sampling. If one has two samplers generating points of two
distributions with a uniform speed, so that the notion of “a number of points generated per unit of time”
is well defined for both of them, one can obtain a sampler generating a linear combination of those two
distributions with arbitrary positive coefficients simply by running those two samplers in parallel with
appropriate relative speeds.

We argue that it should be easier to learn probabilistic programs than to learn deterministic programs
due to the fact that probabilistic programs admit linear combinations of execution runs. We also discuss
the techniques to allow negative coefficients in those linear combinations later in the text.

There is a lot of affinity between methods of evolutionary programming and methods of probabilis-
tic sampling. Evolutionary schemas can be considered as particular sampling methods, while many
sampling schemas have strong evolutionary flavor (more details in Section 2).

This means that instead of thinking in terms of genetic programming for probabilistic programs
one might think about program learning in terms of the “sampling the samplers” paradigm, namely in
terms of probabilistic programs sampling other probabilistic programs (generative models producing
other generative models as their points). This “sampling the samplers” paradigm manifests itself, in
particular, in recent work on learning probabilistic programs by Yura Perov and Frank Wood [33] and
also in recent advances in compositional concept learning obtained by Brenden Lake [24]. We review
these and some other recent advances in higher-order probablistic programming in Section 3.

1.1 Negative Coefficients

Another computational architecture which admits linear combinations of execution runs is generalized
animation. We define a generalized (monochrome) image as a map from a set (called the set of points)
to reals. We define a generalized (monochrome) animation as a map from time (discrete or continuous)
to generalized images. Linear combination of images is defined point-wise. The secondary structure on
the set of points might vary. To obtain a conventional monochrome image the secondary structure typi-
cally assigns coordinates from a discretized rectangle to points. For display purposes, zero is normally
associated with gray level in the middle between the most dark and the most bright possible values.
This approach allows the use of both positive and negative coefficients in the linear combinations of
generalized images and animations.

Conventional color images and music are examples of generalized animations, and the use of linear
combinations of those is standard in video and audio mixing software.

One feature shared between animations and probabilistic programs is that complex behaviors can
often be expressed by very short programs. Many software experiments including our own work with
simulated reflection in water waves [9, 15] demonstrate that interesting and expressive dynamics can
result from simple programs.

Another feature animations seem to share with sampling architecture is that they tend to be non-
brittle, and that their mutations and crossover tend to produce meaningful results in the evolutionary set-
ting [13]. This architecture provides a direct way to incorporate aesthetic criteria into software systems.
This architecture can also leverage existing animations, digital and physical (such as light refections and
refractions in water), as computational oracles.

A lot of expressive power of this architecture comes from the ability to have non-standard secondary
structures on the set of points. Points can be associated with vertices or edges of a graph, grammar
rules, positions in a matrix, etc. One should be able to formulate mechanisms of higher-order animation
programming via variable illumination of elements of such structures.
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1.2 Negative Probability

In order to enable both positive and negative coefficients for probabilistic sampling one can allow sam-
pling via two parallel sampling channels: a positive one and a negative one.

There is evidence that signed functions are sampled via parallel positive and negative channels in
neural system, for example, in retina (see pages 65 and 173 of [29]). The idea that some of the brain
functioning might be understood as Markov Chain Monte Carlo sampling was developed in recent years
and led to fruitful applications to the computational schemes robust with respect to noise and benefiting
from presence of noise and thus suitable for implementation in low-powered circuits (see [27] and
references therein). The combination of this idea and of the evidence for sampling via parallel positive
and negative channels is suggestive.

One way to understand and formalize this situation is via allowing negative values for probabilities
and probability densities. Quasiprobability distributions allowing both positive and negative probability
values have long history. Their first prominent use comes in phase space formulation of quantum me-
chanics via Wigner quasiprobability distribution in 1940s [31, 18]. The intuition behind the notion of
negative probability is discussed in detail in [14]. More recently, negative probabilities are finding use
in quantum algorithms [30].

In denotational semantics of probabilistic programs, Dexter Kozen found it fruitful to replace the
space of probability distributions with the space of signed measures [23]. This allowed him to express
denotations of probabilistic programs as continuous linear operators with finite norms. The probabilistic
powerdomain was embedded into the positive cone of the resulting Banach lattice.

1.3 Partial Inconsistency, Non-monotonic Inference, and Vector Semantics

Addition of the elements expressing partial degrees of contradiction results in an embedding of an ap-
proximation domain into a vector space in yet another important case, the interval numbers, by extending
them with pseudosegments [a,b] with the contradictory property that b < a.

The resulting spaces tend to be equipped with two Scott topologies dual to each other, which enables
both upwards and downwards computable inference steps, and thus facilitates non-monotonic reasoning.

The resulting mathematical landscape is a field directly adjacent to the main topic of this paper. We
review this field and present some of our own results there in Section 4.

1.4 Almost Continuous Transformations of Dataflow Programs

Because probabilistic sampling and generalized animation are both stream-based, dataflow program-
ming is a natural framework for this situation. Dataflow architecture is convenient for program learning,
because syntax of dataflow programs would typically be more closely related to their semantics than the
syntax of more conventional programs.

The ability to take linear combinations of execution runs allows us to introduce the notion of almost
continuous transformation of dataflow programs [9]. This architecture is applicable to probabilistic sam-
pling and to generalized animation. We implemented an open source software prototype demonstrating
the use of those techniques for ordinary animations [15].

This architecture allows us to evolve dataflow programs in almost continuous fashion while those
evolving programs are running. This makes it possible to sample almost continuous trajectories in the
space of dataflow programs, in addition to the usual practices of sampling the syntax trees of programs,
thus enabling new evolutionary and probabilistic schemas of program learning.
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1.5 Dataflow Graphs as Matrices
Adopting a discipline of bipartite graphs linking nodes obtained via general transformations and nodes
obtained via linear transformations makes it possible to develop and evolve dataflow programs over these
classes of computations by continuous program transformations. The use of bipartite graphs allows us
to represent the dataflow programs from this class as matrices of real numbers and evolve and modify
programs by continuous change of these numbers [10].

The representation of programs as matrices of real numbers makes the task of program learning
more similar to the task of machine learning for more narrow and conventional classes of models.

2 Parallels between Methods of Evolutionary Programming and
Probabilistic Sampling

The connections between probabilistic programming and genetic programming are much tighter than it
is usually acknowledged.

Many variants of MCMC are evolutionary in spirit. Acceptance/rejection of the samples corresponds
to selection. Production of new samples via modifications of the accepted ones corresponds to mutations
to produce offspring from the survivors.

The Bayesian Optimization Algorithm changes the procedure of producing the next generation in
genetic algorithms from pairwise crossover to resampling from the estimated distribution of the indi-
viduums selected for fitness [32]. This scheme of crossover is used by the seminal MOSES system [26].
This is similar in spirit to population-based methods of sampling.

3 Some Recent Advances in Higher-Order Probabilistic Program-
ming

We are seeing very rapid progress in probabilistic programming in recent years.
What particularly catches our attention is a series of results solving various computer vision prob-

lems as Bayesian inverse problems to computer graphics rendering, starting with [28].
For an example of a powerful model learning scheme for probabilistic programs using matrix de-

composition and a context-free grammar of models see [19].
The term “higher-order probabilistic programming” usually means a higher-order functional pro-

gramming language implementing sampling semantics. Recently we are seeing examples of research
implementing higher-order sampling schemas in a more narrow and focused sense of the word: sam-
plers which generate other samplers, probabilistic programs sampling the space of probabilistic pro-
grams.This is a particularly important development for program learning.

A recent work on learning probabilistic programs within the “sampling the samplers” paradigm by
Perov and Wood allows, in particular, “compilation” of probabilistic programs so that the resulting sam-
plers just sample the posterior directly without sampling the whole joint distribution (another possible
name for this procedure which comes to mind is “partial evaluation”, although neither term is quite
adequate for this novel procedure). The work is done using the new Anglican engine which implements
a probabilistic programming language similar to Venture, but is written in Clojure (which should en-
able better parallelization and better performance scaling with more hardware) and uses a higher-order
PMCMC (“Particle Markov Chain Monte Carlo”) sampling scheme, where efficient high-dimensional
proposal distributions for MCMC are generated by particle filters. The work follows earlier successes
of Maddison and Tarlow in capturing frequent context-dependent syntactic patterns of code from open
source repositories within generative models (see [33] and references therein).
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Another important work done with the use of multilevel “generative models emitting generative
models” architecture is the research by Lake in compositional concept learning [24]. The typical tasks
performed are learning the letters of synthetic alphabet and spoken Japanese-like words. The author
claims that this is the first time when a machine learning system combines learning from one or a few
examples (rather than from big data corpora) with learning rich conceptual representations.

4 Partial Inconsistency, Non-monotonic Inference, and Vector Se-
mantics

The traditional mathematical view is that there is only one kind of contradiction and that all contradic-
tions imply each other and everything else. However, there is also rich tradition of studying various
kinds of graded or partial contradictions.

There are a number of common motives appearing multiple times in various studies of graded in-
consistency. These common motives link a variety of independently done studies together and serve as
focal elements of what we call the partial inconsistency landscape [5]. We list many of these common
motives and some of their interplay.

An especially important motive is that in the presence of partial inconsistency many otherwise im-
poverished algebraic structures become groups and vector spaces. In particular, domains for denota-
tional semantics tend to acquire group and vector space structure when partial inconsistency is present.

Known applications include handling of inconsistent information and non-monotonic and
anti-monotonic inference. Perhaps even more importantly for the advanced AI, vector semantics is
likely to offer new powerful schemes for program learning, as we are arguing in this paper.

We provide a necessarily incomplete overview of this field here and present some of our results. For
more details, see [6] and other materials in [3].

4.1 Focal Elements of the Partial Inconsistency Landscape
• Various forms of negative measure (negative length and distance, negative probability and signed

measures, negative membership and signed multisets)

• Bilattices

• Bitopology

• Domains with group and vector space structures

• Bicontinuous domains

• The domain of arrows, DOp×D or COp×D

• Non-monotonic and anti-monotonic inference

• Modal and paraconsistent logic and possible world models

• Hahn-Jordan decomposition or “bilattice pattern”:
x = (x∧0)+(x∨0) or x = (x∧⊥)t (x∨⊥)

4.2 Partially Inconsistent Interval Numbers
Interval numbers are segments [a,b] on the real line where a ≤ b. One can extend interval numbers by
adding pseudosegments [a,b] with the contradictory property that b < a. This structure was indepen-
dently discovered many times and is known under various names including Kaucher interval arithmetic,
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directed interval arithmetic, generalized interval arithmetic, and modal interval arithmetic (a compre-
hensive repository of literature on the subject is maintained by Evgenija Popova [34]). The first mention
known to us is by Warmus in 1956 [40]. Our group tends to call this structure partially inconsistent
interval numbers.

There are two partial orders on partially inconsistent interval numbers. The informational order, v,
is defined by reverse inclusion on interval numbers: [a,d]v [b,c] iff a≤ b and c≤ d. The same formula
is used for partially inconsistent interval numbers. The material order is component-wise: [a,b]≤ [c,d]
iff a≤ c and b≤ d.

Addition on interval numbers (and partially inconsistent interval numbers) is defined component-
wise: [a1,b1]+ [a2,b2] = [a1 +a2,b1 +b2].

The operation of weak minus is defined as −[a,b] = [−b,−a]. Addition and weak minus are mono-
tonic with respect to v.

Consider −[a,b] + [a,b] = [−b,−a] + [a,b] = [a− b,b− a]. If a < b, then the strict inequality,
[a−b,b−a]@ [0,0], holds. So if a < b, −[a,b]+ [a,b] approximates [0,0], but is not equal to it, hence
interval numbers with weak minus don’t form a group.

If one allows pseudosegments, one can define the component-wise true minus: −[a,b] = [−a,−b].
Partially inconsistent interval numbers with the component-wise addition and the true minus form a
group (and a 2D vector space over the reals). The true minus maps precisely defined numbers, [a,a], to
precisely defined numbers, [−a,−a]. Other than that, the true minus maps segments to pseudosegments
and maps pseudosegments to segments. The true minus is anti-monotonic with respect to v.

4.3 Bilattices
A bilattice is a set equipped with two lattice structures defining two partial orders, the material order,≤,
and the informational order, v, and Ginsberg involution1 monotonic with respect to v, anti-monotonic
with respect to ≤, and preserving appropriate lattice structures. Additional axioms are often imposed.

Bilattices were introduced by Matthew Ginsberg [17] to provide a unified framework for a variety of
inferences schemes used in AI, such as non-monotonic inference, inference with uncertainty, etc. They
are now ubiquitous in the studies of partial and graded inconsistency.

The simplest example of a bilattice is the four-valued logic: f <⊥< t, f <>< t, ⊥@ f @>,⊥@
t @>.

Partially inconsistent interval numbers form a bilattice. Sometimes one wants both orders to form
complete lattices. This can be achieved by allowing a and b to also take −∞ and +∞ as values, or by
confining a and b within a segment [A,B], in both cases sacrificing the property of partially inconsistent
interval numbers being a group.

If we consider all partially inconsistent interval numbers without infinities or allow a and b to take
−∞ and +∞ values, or if we confine a and b within segment [−A,A], then Ginsberg involution is the
weak minus. If we confine a and b within a segment [A,B], then Ginsberg involution maps [a,b] to
[A+B−b,A+B−a]. One important case here is [A,B] = [0,1].

4.4 Bitopology and Non-monotonic Inference
Asymmetric topology such as Scott topology generated by a partial order v is often used in computer
science to encode monotonic inference and limits of monotonic inference. For example, the upper
topology on the real line consists of the open rays (a,+∞) (take a = −∞ and a = +∞ to represent
the whole space and the empty set). This topology encodes the processes generating monotonically
non-decreasing sequences of reals, x1 ≤ x2 ≤ . . . , and their limits.

1an involution is a function f such that f ( f (x)) = x for all x in the domain of f
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Scott continuous functions are functions respecting this structure. More specifically, Scott continu-
ous functions between two spaces with Scott topologies are monotonic functions preserving appropri-
ately defined limits. A classic exposition of these ideas is [37].

For an exposition of inference in Scott domains see, for example, Chapter 5 of [4]. Because Hasse
diagrams depict partially ordered sets in such a fashion that the larger elements are above the smaller ele-
ments, we say that the standard monotonic inference in Scott domains is directed upwards (the elements
become larger in the process of inference).

If there are two Scott topologies on the same set with associated partial orders pointing into opposite
directions, one can infer both upwards and downwards, thus enabling non-monotonic inference.

In our example, one can also consider the lower topology on the real line consisting of the open rays
(−∞,b), and this is the second Scott topology, encoding the processes generating monotonically non-
increasing sequences of reals, y1 ≥ y2 ≥ . . . , and their limits. Switching between these two topologies
one can encode non-monotonic sequences.

A space with two topologies is called a bitopological space, and a space with Scott topologies
generated by v and w with certain additional properties is called a bicontinuous domain [21].

4.5 Order Reversal and the Domain of Arrows
Consider a bicontinuous domain, (X ,v,w). The partial order w which is the order opposite to v then
defines the dual space, XOp = X∗ = (X ,w,v), which is also a bicontinuous domain.

For a bicontinuous domain (X ,v,w) we say that v is pointing upwards (“the main partial order of
the space”) and w is pointing downwards (“the auxiliary or dual order of the space”).

If we think informally about an arrow from space X to space Y , then our intuition tells us that the
arrow is greater if it “points more upwards”, that is, if its right end is higher, and its left end is lower.

Formalizing this intuition we define the space of arrows from X to Y as X∗×Y .
If we consider real numbers R with the standard order, v=≤, then partially inconsistent interval

numbers are a space of arrows pointing from the right ends of the segments to the left ends of the
segments, R×R∗.

If R is modified to become a domain, R (by adding −∞ and +∞ as values or by taking a finite
segment), we call R×R∗ a domain of arrows.

There are two ways to describe Scott topology in terms of generalized distances. One is via asym-
metric quasi-metrics, with d(x,y) = 0 if and only if x v y. Another is via dropping the d(x,x) = 0
requirement which leads to relaxed and partial metrics. Quasi-metrics of this kind are monotonic with
respect to one of the variables and anti-monotonic with respect of another variable. So the only way to
have these generalized distances to be Scott continuous as functions from X ×X to the domain repre-
senting distances is via the route of relaxed and partial metrics [11].

In the bicontinuous situation, quasi-metrics can be understood as (Scott continuous) order-preserving
maps from the domain of arrows, X∗×X , to the domain representing distances.

Order-reversing involutions (x v y⇔ f (y) v f (x) and f ( f (x)) = x) play a prominent role in this
context. From the viewpoint of domain theory, order-reversing involutions should be thought of as
order-preserving maps X → X∗ (or X∗ → X). Hence order-reversing involutions are order-preserving
maps X∗×X → X×X∗ (and vice versa) on the domain of arrows.

4.6 Bitopology and Partial Inconsistency
There are at least three ways bitopologies occur in studies of partial inconsistency. The connections
between partial inconsistency and bitopological Stone duality via the notion of d-frame (Jung-Moshier
frame) are explored in [20] (see also [25]). A fuzzy bitopology valued in lattice L is a fuzzy topology
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valued in the bilattice L2 (in particular, an ordinary bitopology is a topology valued in the four-valued
logic) [36]. Finally, in the context of bitopological groups and the anti-monotonic group inverse the
following situation is typical: two topologies, T and T−1, are group dual of each other (i.e. the group
inverse induces a bijection between the respective systems of open sets), the multiplication is continuous
with respect to both topologies, and the group inverse is a bicontinuous map from (X ,T,T−1) to its
bitopological dual, (X ,T−1,T ) [1].

All these motives are prominent for the case of partially inconsistent interval numbers [6].

D-frames. Partially inconsistent interval numbers over reals extended with ±∞ are isomorphic to the
d-frame of the (lower, upper) bitopology on the reals.

Consider the (lower, upper) bitopology on the real line, that is the bitopology where the first topology
is the lower topology, and the second topology is the upper topology (see Section 4.4). Define the
bilattice isomorphism between the d-frame elements, i.e. pairs 〈L,U〉 of the respective open sets, and
partially inconsistent interval numbers. A pair 〈L,U〉 is a pair of open rays, 〈(−∞,a),(b,+∞)〉 (a and
b are allowed to take −∞ and +∞ as values). This pair corresponds to a partially inconsistent interval
number [a,b]. Consistent, i.e. non-overlapping, pairs of open rays (a ≤ b) correspond to segments.
Total, i.e. covering the whole space, pairs of open rays (b < a) correspond to pseudosegments.

Group dual topologies. The minus operation on real numbers is bicontinuous from the (lower, upper)
bitoplogy to the (upper, lower) bitopology and vice versa. The corresponding map between the d-
frames is very similar to the weak minus (Ginsberg involution), except that the order of bitopological
components also needs to be swapped to respect bitopological duality in this case (partially inconsistent
interval numbers are a Cartesian product of lower and upper bounds; swapping can be thought of as
changing the order of components in this Cartesian product).

In a similar fashion, the true minus operation on the partially inconsistent interval numbers is bi-
continuous between a (T,T−1) bitopology on the partially inconsistent interval numbers and its dual
(T−1,T ) bitopology. (Here T and T−1 must be group dual topologies of each other, e.g. the Scott
topology corresponding to v and the Scott topology corresponding to w.)

Rodabaugh correspondence. Any real-valued fuzzy bitopology can be represented as fuzzy topology
valued in partially inconsistent interval numbers.

The open sets of the upper topology on the reals is a particular representation of real numbers
extended with ±∞, the same is true about the open sets of the lower topology on the reals. Consider
a particular form of real-valued fuzzy bitopology, namely the multivalued bitopology where the first
multivalued topology is valued in the lower topology, and the second multivalued topology is valued in
the upper topology, that is a (lower, upper)-valued bitopology.

Consider the following mild generalization of the correspondence described in [36]. (L,M)-valued
bitopology can be understood as L×M-valued topology via LX ×MX ∼= (L×M)X isomorphism.

Hence the (lower, upper)-valued bitopology can be understood as the topology valued in the (lower,
upper) d-frame, i.e. the topology valued in partially inconsistent interval numbers over reals extended
with ±∞. Further discussion of the intuition involved here is in the slides 37-38 of [6].

4.7 Paraconsistent Version of Fuzzy Mathematics
It seems that mathematics of partial inconsistency should be bilattice-valued. The Rodabaugh corre-
spondence is one of the indications of that, as L×M is naturally a bilattice, with the informational
order, vL×M , being obtained from the product (L,vL)× (M,vM) and the material order, ≤L×M , being
obtained from the product of L by the dual of M, (L,vL)× (M,wM).
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While the fuzzy mathematics in general is lattice-valued, the situations where the lattice is [0,1] or
otherwise based on real numbers remain important. Similarly, while mathematics of partial inconsis-
tency is in general likely to be valued in bilattices, the particular situations where the bilattice is based
on partially inconsistent real numbers (whether confined within [0,1], [−1,1], or [−∞,+∞]) are likely
to play important roles.

The paraconsistent equivalent of real-valued fuzzy mathematics is mathematics valued in partially
inconsistent interval numbers.

4.8 Partial and Relaxed Metrics

The standard partial metric on the interval numbers is p([a1,b1], [a2,b2])=max(b1,b2)−min(a1,a2) [8].
Hence the self-distance for [a,b] is b−a. If we extend this formula to pseudosegments, the self-distance
of pseudosegments turns out to be negative.

Partial metrics can be understood as upper bounds for “ideal distances”. One often has to trade
the tightness of those bounds for nicer sets of axioms. E.g. the natural upper bound for the distance
between [0,2] and [1,1] is 1, and there is a weak partial metric which yields that. However, if one wants
to enjoy the axiom of small self-distances, p(x,x)≤ p(x,y), one has to accept p([0,2], [1,1]) = 2, since
p([0,2], [0,2]) = 2.

A similar trade can be made for lower bounds. The standard interval-valued relaxed metric produces
the gap between non-overlapping segments as their lower bound, but takes 0 as the lower bound for the
distance between overlapping segments (hence 0 is also the lower bound for self-distance). If one settles
for a less tight lower bound and allows the lower bound to be negative in those cases, one can obtain a
distance with much nicer properties: l([a1,b1], [a2,b2]) = max(a1,a2)−min(b1,b2).

We think about the pair 〈l, p〉 as a relaxed metric valued in partially inconsistent interval numbers.
The self-distance of [a,b] is [a−b,b−a] and the self-distance of a pseudosegment is a pseudosegment.

The map [a,b] 7→ [b,a] expressing the symmetry between segments and pseudosegments also trans-
forms 〈l, p〉 into 〈p, l〉.

4.9 Signed Measures and Signed Multisets

One way to think about p([a,b], [a,b]) = b−a is to say that a pseudosegment has a negative length.
We can also revisit the correspondence between the elements of the (lower, upper) bitopology d-

frame, {〈(−∞,a),(b,+∞)〉}, and the partially inconsistent interval numbers. Consider the characteristic
function mapping the real line to 1 and subtract from it the characteristic functions of (−∞,a) and
(b,+∞). If [a,b] is a segment, the result is the characteristic function of that segment (valued 1 for the
points belonging to the segment and 0 for the points outside the segment). If [a,b] is a pseudosegment
and if we allow for the overlap between (−∞,a) and (b,+∞) to be subtracted twice, the result is the
generalized characteristic function, which equals to -1 in the open interval (b,a) and equals to 0 outside
(b,a). So we obtain a signed multiset here allowing negative degree of membership.

This construction is topologically asymmetric in the following sense. Algebraically we can say
that totally defined numbers [a,a] belong to both segments and pseudosegments, or to neither. But
topologically (and via characteristic functions), this symmetry must be broken. We break it in favor of
the “natural” viewpoint: totally defined numbers are segments, and not pseudosegments. But one could
also break it in favor of the dual viewpoint, by considering dual d-frames of closed sets (and stipulating
that characteristic functions of segments take value 1 only on their interiors).
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4.10 Negative Probability and Vector Semantics
One can think about probabilistic programs as transformers from the probability distributions on the
space of inputs to the probability distributions on the space of outputs. Dexter Kozen showed that it
is fruitful to replace the space of probability distributions by the space of signed measures [23]. One
defines ν < µ iff µ−ν is a positive measure. The space of signed measures is a vector lattice (a Riesz
space) and a Banach space, so people call this structure a Banach lattice. Denotations of programs
are continuous linear operators with finite norms. The probabilistic powerdomain is embedded into the
positive cone of this Banach lattice. The structure of Hilbert space on signed measures can be obtained
via reproducing kernel methods (see Chapter 4 of [2]).

4.11 Hahn-Jordan Decomposition and the Bilattice Pattern:
x = (x∧0)+(x∨0) or x = (x∧⊥)t (x∨⊥)

The Hahn-Jordan decomposition, µ+ = µ ∨ 0,µ− = µ ∧ 0,µ = µ+ + µ−, holds, due to the fact that
x = (x∧0)+(x∨0) is a theorem for all lattice-ordered groups.

Defining ν v µ iff ν+≤ µ+ and ν−≤ µ−, one also obtains µ = µ+tµ−, making this an instance of
the “bilattice pattern”, x = (x∧⊥)t (x∨⊥). The “bilattice pattern” appears independently in a variety
of studies on partial inconsistency [5].

It looks like the right degree of generality here might be lattice-ordered monoids with an extra axiom,
x = (x∧0)+(x∨0).

4.12 Possible Worlds Indexed by Measures
William Wadge explored various ways to index possible worlds in the context of intensional logic and
data flow programming [39]

In our case, possible worlds would be indexed by measures, which is quite attractive and feels
natural: a world is distinguished by how often one observes various phenomena, and we do sampling
observations to figure out what kind of world we currently inhabit.

In a classical situation one would normally consider probability measures for this role, but in a
quantum situation signed quasi-probability distributions or complex-valued amplitudes would naturally
play this role.

4.13 Distances Between Programs
On one hand, Anthony Seda and Máire Lane note that there is a natural norm for Kozen semantic spaces,
which allows us to define a conventional metric on program denotations and hence a conventional dis-
tance between programs [38].

On the other hand, in the context where everything is a function of a measure (possible worlds
are indexed by measures), the standard constructions of generalized distances (partial metrics, relaxed
metrics, and quasi-metrics) over Scott domains which tend to be parametrized by measures (see, for
example, Section 7 of [7]) look quite natural.

We tend to view the dependency of those constructions on a measure as an obstacle which needs to
be overcome, but perhaps it is actually a desirable feature.

4.14 Computational Models with Involutions

We are currently looking at various computational models involving involutions.
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Given a domain of arrows X ×X∗, a sequence (x1,y1),(x2,y2), . . . is called a monotonic sequence
with involutive steps, if for any n ∈ N either xn v xn+1 and yn w yn+1 (in which case the step n is called
monotonic) or xn = yn+1 and yn = xn+1 (in which case the step n is called an involution).

One can define a notion of convergence robust with respect to the insertion of pairs of involutive
steps and prove that if (x,y) is a limit under this notion, then x = y.

Architectures based on involutive steps are rather prominent in the context of reversible and quantum
computations. For example, the well-known Grover’s quantum algorithm can be described as a sequence
of reflections of subsets of a plane [35].

Architectures where the state of an abstract machine is an image on the plane, and an involutive
computational step selects a line on this plane and a subset symmetric with respect to this line, and
performs a reflection of the image within this subset, seem to be quite attractive in the context of classical
computations as well.

5 Conclusion

It is possible to talk about linear combinations of probabilistic programs when their semantics is ex-
pressed as linear operators [23].

For 0 < α < 1 and random being a generator of uniformly distributed reals between 0 and 1, the
linear operator corresponding to the program if random < α then P else Q is a linear combination of
the linear operators corresponding to programs P and Q with coefficients α and 1−α .

However, when one aims for better schemes of program learning, the situations where one can con-
sider linear combinations of single execution runs rather than linear combinations of the overall program
meanings should be especially attractive. In this paper we consider two such architectures, probabilistic
sampling and generalized animation, and the recent progress in this field looks very promising.

We give an overview of mathematical material tightly connected to linear models of computations
via the partial inconsistency landscape. Vector semantics is an integral part of the partial inconsistency
landscape, and we expect that other key elements of that landscape will be finding more uses as linear
models of computations and their applications are further explored.

We would like to conclude by describing a possible hybrid approach to program learning. Instead
of implementing everything in terms of architectures admitting linear combinations of single execution
runs one can use a hybrid approach, mixing these architectures and traditional software. In this context
we might be inspired by hybrid hardware connecting live neural tissue and electronic circuits.

One might decide to use large existing software components and try to automate the process of
connecting them together using flexible probabilistic connectors. Here one should note the progress in
automated generation of test suites for software systems.

Another hybrid approach involves the use of small inflexible components inside the flexible “tissue”
of linear models. Our experiments in dataflow programming with streams supporting the notion of a
linear combination of streams described in Sections 1.4, 1.5 are examples of this hybrid approach [9, 10].
In particular, the template operations play the role of small inflexible components in [10], where dataflow
graphs are represented by matrices of real numbers describing the flexible connectivity patterns from
the outputs to the inputs of a potentially countable number of template operations.
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