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Abstract

Sized types are a modular and theoretically well-understood tool for checking termination
of recursive and productivity of corecursive definitions. The essential idea is to track
structural descent and guardedness in the type system to make termination checking robust
and suitable for strong abstractions like higher-order functions and polymorphism. To
study the application of sized types to proof assistants and programming languages based
on dependent type theory, we have implemented a core language, MiniAgda, with explicit
handling of sizes. New considerations were necessary to soundly integrate sized types with
dependencies and pattern matching, which was made possible by modern concepts such as
inaccessible patterns and parametric function spaces. This paper provides an introduction
to MiniAgda by example and informal explanations of the underlying principles.

1 Introduction

In the dependent type theories underlying the programming and proof languages of Coq [INR08],
Agda [Nor07], and Epigram [CAM07], all programs need to be total to maintain logical con-
sistency. This means that some analysis is required that ensures that all functions defined by
recursion over inductive types terminate and all functions defined by corecursion into a coin-
ductive type are productive, i. e., always yield the next piece of the output in finite time. The
currently implemented termination analyses are based on the untyped structural ordering: In
case of Coq, it is the guard condition [Gim95], and in case of Agda, the foetus termination
checker [AA02] with a recent extension to size-change termination [LJBA01, Wah07]. The un-
typed approaches have some shortcomings, including the sensitivity of the termination checker
to syntactical reformulations of the programs, and a lack of means to propagate size information
through function calls.

As alternative to untyped termination checking, type-based methods have been proposed
[BFG+04, Xi02, Bla04, Abe08]. The common idea is to annotate data types with a size index
which is either the precise size of elements in this slice of the data type or an upper bound
on the size. For recursive calls it is checked that the sizes decrease, which by well-foundedness
entails termination. Sized types provide a very principled approach to termination, yet the need
to integrate sizes into the type system means that an implementation of sized types touches
the very core of type theories. Most theoretical works have confined themselves to study sized
types in a simply typed or polymorphic setting, exceptions are Blanqui’s work [Bla04, Bla05]
which adds sizes to the Calculus of Algebraic Constructions (CACSA), and CIĈ [BGP06], which
extends the Calculus of Inductive Constructions in a similar fashion. To this day, no mature
implementation of sized types exists.

The language MiniAgda, which shall be presented in this article, is an implementation
of a dependently typed core language with sized types. Developed by the author and Karl
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Mehltretter [Meh07], it serves to explore the interaction of sized types with the other features of
a dependently typed functional language which include pattern matching and large eliminations.
A fundamental design choice of MiniAgda was that sizes are explicit: they are index arguments
of data types, abstraction over sizes is ordinary lambda-abstraction, and instantiation of a size
is ordinary application. One of the main lessons learned during thinking about the relationship
of sized types and dependent types is that size arguments to functions are parametric, i.e.,
functions can never depend on sizes, sizes only serve to ensure termination and should be
erased during compilation. Parametric functions are realized as a variation of Miquel’s [Miq01]
and Bernardo and Barras’ [BB08] “implicit quantification”.

In the following we shall walk through the features of MiniAgda by example and explain
the taken design choices. Formalization and meta-theoretical study of MiniAgda is work in
progress.

2 Sized Types for Termination

Type-based termination [HPS96, Xi02, BFG+04, Bla04, Abe06] rests on two simple principles:

1. Attaching a size i to each inductive type D.

2. Checking that sizes decrease in recursive calls.

2.1 Attaching Sizes to Inductive Types

We attach a size i to each inductive type D, yielding a sized type Di which contains only those
elements of D whose height is below i. For the calculation of the height of an element d of D
consider d as a tree, where the constructors of D count as nodes. In the case of Nat we have
a linear tree with inner succ-nodes and a zero-leaf; the size of an element Nat is the number of
constructors, which is the value of the number plus 1. In the case of List, we also have linear
trees, since in cons a as only as of type List counts as subtree (even if a happens to be a list
also). The height of a list is its length plus one, since nil is also counted. For the type of trees
the size corresponds to the usual concept of tree height. In the case of infinitely branching
trees, the height can be transfinite; this is why sizes are ordinals in general and not natural
numbers. However, for the examples we present in the following, sizes will not exceed ω, so one
may think about them as natural numbers for now.

Following the principle described above, sized natural numbers are given by the constructors:

zero : ∀i. Nati+1

succ : ∀i. Nati → Nati+1

The first design choice is how to represent size expressions i and i+ 1, sized types Nati and size
polymorphism ∀i. In absence of dependent types, like in the work of Pareto et. al. [HPS96] and
Barthe et. al. [BFG+04], size expressions and sized types need to be special constructs, or, in a
Fω-like system, are modeled as type constructors [Abe06]. In a dependently typed setting, we
can model sizes as a type Size with a successor operation $ : Size → Size, sized types just as
members of Size → Set (where Set is the type of small types), and size quantification just as
dependent function space (i : Size) → C i. This way, we can pass sizes as ordinary arguments
to functions and avoid special syntactic constructs.

In MiniAgda, a sized type is declared using the sized data syntax.
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sized data SNat : Size -> Set

{ zero : (i : Size) -> SNat ($ i)

; succ : (i : Size) -> SNat i -> SNat ($ i)

}

This declares an inductive family SNat indexed by a size with two explicitly sized constructors.
The system checks that the type of SNat is a function type with domain Size, and the size
index needs to be the first index of the family. The constructor declarations must start with
a size quantification (i : Size) → . . . . Each recursive occurrence of SNat needs to be labeled
with size i and the target with size $i, to comply with the concept of size as tree height as
described above. The size assignment to constructors is completely mechanical and could be
done automatically. Indeed, in a mature system like Agda or Coq, size assignment should be
automatic, adding size information as hidden arguments. However, in MiniAgda, which lacks a
reconstruction facility for omitted hidden arguments, we chose to be fully explicit. In our case,
the advantage of explicit size assignment over automatic assignment is “what you see is what
you get”, sized constructors are used as they are declared.

As a first exercise, we write a “plus 2” function for sized natural numbers.

let inc2 : (i : Size) -> SNat i -> SNat ($$ i)

= \ i -> \ n -> succ ($ i) (succ i n)

In this non-recursive definition λiλn. succ ($i) (succ i n), we first abstract over the size i of the
argument n using an ordinary λ, and supply the size arguments to succ explicitly. To define a
predecessor function on SNat, we use pattern matching.

fun pred : (i : Size) -> SNat ($$ i) -> SNat ($ i)

{ pred i (succ .($ i) n) = n

; pred i (zero .($ i)) = zero i

}

To avoid non-linear left-hand sides of pattern matching equations, MiniAgda has inaccessible
patterns [BMM04], also called dot patterns. A dot pattern can be an arbitrary term, in our case
it is the size expression $i. A dot pattern does not bind any variables, and during evaluation
dot patterns are not matched against. The dot pattern basically says “at this point, the only
possible term is $i”.

To ensure totality and consistency, pattern matching must be complete. Currently, Mini-
Agda does not check completeness; the purpose of MiniAgda is to research sized types for inte-
gration into mature systems such as Agda and Coq, which already have completeness checks.

2.2 Functions are Parametric in Size Arguments

Sizes are a means to ensure termination, so they are static information for the type checker, and
they should not be present at run-time. In particular, the result of a function should never be
influenced by its size arguments, and we should not be allowed to pattern match on sizes. Only
then it is safe to erase them during compilation. However, the type of a function does very well
depend on size; while the first argument to pred is irrelevant, so we have pred i = pred j for all
sizes i, j, the types SNat ($i) and SNat i are certainly different. The concept of “irrelevant in
the term but not in the type” is nicely captured by Miquel’s intersection types [Miq01] which
have been implemented by Barras [BB08] as a variant ICC∗ of Coq. Intersection types, which
we write as [x : A] → B and would like to call parametric function types, are a generalization
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of polymorphism ∀X.B in System F. Polymorphic functions also do not depend on their type
arguments, but their types do.

Using parametric function types, we can refine our definition of SNat as follows.

sized data SNat : Size -> Set

{ zero : [i : Size] -> SNat ($ i)

; succ : [i : Size] -> SNat i -> SNat ($ i)

}

We have now expressed that the size argument to the constructors is irrelevant, so they can be
safely erased during compilation. Size arguments can always be irrelevant in programs. The
type of predecessor is consequently refined as:

fun pred : [i : Size] -> SNat ($$ i) -> SNat ($ i)

{ pred i (succ .($ i) n) = n

; pred i (zero .($ i)) = zero i

}

Note that we do bind variable i to the irrelevant size argument, but the type system of MiniAgda
ensures that it only appears on the right hand side in irrelevant positions, i.e., in arguments to
parametric functions.

let inc2 : [i : Size] -> SNat i -> SNat ($$ i)

= \ i -> \ n -> succ ($ i) (succ i n)

Here, i is used as an argument to the parametric succ, which is fine. We would get a type error
with the non-parametric definition of succ:

succ : (i : Size) -> SNat i -> SNat ($ i)

The precise typing rules for parametric functions have been formulated by Barras and Bernardo
[BB08]. For our purposes, the informal explanation we have just given is sufficient.

2.3 Tracking Termination and Size Preservation

Consider the following implementation of subtraction. Here, we use the infinity size ∞, in
concrete syntax #. An element of sized type D ∞ is one without known height bound. This
means that for sized inductive types D we have the subtyping relationships D i ≤ D ($i) ≤
· · · ≤ D ∞.

Also, we introduce size patterns i > j to match a constructor c : [j : Size] → · · · → D ($j)
against an argument of type D i. The size pattern i > j binds size variable j and remembers
that j is smaller than size variable i. The full pattern we write is c (i > j) ~p and the match
introduces a size constraint i > j into the type checking environment which is available to check
the remaining patterns and the right hand side of the clause.

fun minus : [i : Size] -> SNat i -> SNat # -> SNat i

{ minus i (zero (i > j)) y = zero j

; minus i x (zero .#) = x

; minus i (succ (i > j) x) (succ .# y) = minus j x y

}
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The last line contains one recursive call minus j x y with a descent in all three arguments: the
size decreases (j < i) and both SNat-arguments are structurally smaller (x < succ j x and
y < succ ∞ y). Thus, termination can be certified by descent on any of the three arguments.

The type of minus expresses that minus takes an argument x of size at most i and an
argument y of arbitrary size and returns a result of size at most i. Thus, sizes can be used
to certify that the output is bound in size by one of the inputs. In our case, the sized type
expresses that “subtracting does not increase a number”. In the last line, we return minus j x y
which is of size j, but the type requires us to return something of size i. Since sizes are upper
bounds, by the subtyping of MiniAgda we have SNat j ≤ SNat i, so this example passes the
type checker. To see that the first clause is well-typed, observe that zero j : SNat ($j), and
since j < i entails $j ≤ i, we have zero j : SNat i by subtyping. Note that in MiniAgda we
cannot express that the result of minus i x (succ∞ y) is strictly smaller in size than x.

Using the bound on the output size of minus we can certify termination of Euclidean division.
A call to div i x y computes dx/(y + 1)e.

fun div : [i : Size] -> SNat i -> SNat # -> SNat i

{ div i (zero (i > j)) y = zero j

; div i (succ (i > j) x) y = succ j (div j (minus j x y) y)

}

In the last line, since x is bounded by size j, so is minus j x y, hence, the recursive call to div
can happen at size j which is smaller than i. That tracking a size bound comes for free with
the type system is a major advantage of sized types over untyped termination approaches.

2.4 Interleaving Inductive Types

Another advantage of sized types is that they scale very well to higher-order constructions. In
the following, we present an implementation of map for rose trees to demonstrate this feature.

If we do not require sizes, we can also define ordinary data types in MiniAgda. In a mature
system, all data definitions would look “ordinary” but be sized behind the veil, so there would
not be a need for separate syntactic constructs.

data List (+ A : Set) : Set

{ nil : List A

; cons : A -> List A -> List A

}

List is a parametric data type, and we declare that it is strictly positive in its parameter A by
prefixing that parameter by a + sign. This means that List is a monotone type valued function,
i.e., for A ≤ B we have List A ≤ List B; this property is beneficial for subtype checking.
Internally, the constructors of List are stored as follows:

nil : [A : Set]→ List A
cons : [A : Set]→ A→ List A→ List A

Each parameter of the data type becomes a parametric argument of the data constructors. 1

The map function for lists is parametric in types A and B. Observe the dot patterns in the
matching against nil and cons!

1This is a consequent analysis of data type parameters, compare this to Coq’s handling of parameters which
requires parameters in constructors to be absent in patterns but present in expressions.
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fun mapList : [A : Set] -> [B : Set] -> (A -> B) -> List A -> List B

{ mapList A B f (nil .A) = nil B

; mapList A B f (cons .A a as) = cons B (f a) (mapList A B f as)

}

Rose trees are finitely branching node-labeled trees, where the collection of subtrees is
organized as a list.

sized data Rose (+ A : Set) : Size -> Set

{ rose : [i : Size] -> A -> List (Rose A i) -> Rose A ($ i)

}

MiniAgda checks data type definitions for strict positivity to avoid well-known paradoxes. In
this case, it needs to ensure that Rose appears strictly positively in the type List (Rose A i).
The test is trivially successful since we declare A to appear only strictly positively in List A
above. Positivity annotations allow for a trivial implementation of the positivity test, unlike
the current implementations in Agda and Coq which require unfolding of definitions during the
positivity check.

The type argument A appears strictly positively in Rose itself since strictly positive type
functions compose. So the positivity annotation of Rose is sound, and we could continue and
define trees branching over roses etc.

A feature of sized types is that the map function for roses can be defined naturally using
the map function for lists:

fun mapRose : [A : Set] -> [B : Set] -> (A -> B) ->

[i : Size] -> Rose A i -> Rose B i

{ mapRose A B f i (rose .A (i > j) a rs) =

rose B j (f a) (mapList (Rose A j) (Rose B j) (mapRose A B f j) rs)

}

Note that the recursive call mapRose A B f j is underapplied, the actual rose argument is
missing. But since the size j of the rose argument is present, we can verify termination.2

This is usually a severe problem for untyped termination checkers. The current solution in
Coq requires Rose and List to be defined mutually, destroying important modularity in library
development.

An alternative to sized types is the manual indexing of roses by their height as natural
number. This can be done within the scope of ordinary dependent types. Yet we miss the
comfortable subtyping for sized types. The height of a rose has to be computed manually using
a maximum over a list, and the resulting programs will involve many casts to type-check.

3 Coinductive Types and Corecursion

Coinductive types admit potentially infinite inhabitants, the most basic and most prominent
example being streams.

codata Stream (+ A : Set) : Set

{ cons : A -> Stream A -> Stream A

}

2Sized types even allow nested recursive calls [Abe09].
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An element of Stream A is an infinite succession of elements of A knitted together by the cons
coconstructor. Clearly, a function producing a stream cannot terminate, since it is supposed
to produce an infinite amount of data. Instead of termination we require productivity [Coq93]
which means that always the next portion of the stream can be produced in finite time. A
simple criterion for productivity which can be checked syntactically is guardedness [Gim95]: In
the function definition, we require the right hand side to be a coconstructor or a sequence of
such, and each recursive call to be directly under, i. e., guarded by this coconstructor. This
condition ensures that the recursive computation only continues after some initial piece of the
result has been produced. For example, consider repeat A a which produces an infinite stream
of as.

cofun repeat : [A : Set] -> (a : A) -> Stream A

{ repeat A a = cons A a (repeat A a)

}

The recursive call to repeat is directly under the coconstructor cons, so the guard condition
is satisfied. The “directly under” is crucial, if we write cons A a (f (repeat A a)) instead,
then productivity is no longer clear, but depends on f . If f is a stream destructor like the tail
function, which discards the first element of the stream and returns the rest, then we do not
obtain a productive function. Indeed, for this definition of repeat, the expression tail (repeat A a)
reduces to itself after one unfolding of the recursion, so the next element of the stream can never
be computed. On the other hand, if f is a stream-constructing function or a depth-preserving
function like the identity, then the new repeat is productive. Yet to be on the safe side, the
syntactic guard condition as described by Coquand [Coq93] and implemented in Coq needs
to reject the definition nevertheless. In practice this is unsatisfactory, and some workarounds
have been suggested, like representing streams as functions over the natural numbers [BK08] or
defining a mixed inductive-coinductive type of streams with an additional constructor cf which
will be evaluated to f in a second step [Dan10].

3.1 Tracking Guardedness with Sized Types

Using sized coinductive types we can keep track in the type system whether a function is stream
destructing, stream constructing or depth preserving [HPS96]. Thus, sized types can offer a
systematic solution to the “guardedness-mediated-by-functions” problem.

Sized coinductive type definitions look very similar to their inductive counterpart: The rules
to annotate the recursive occurrences of the coinductive type in the types of the coconstructors
are identical to the rules for sized constructors.

sized codata Stream (+ A : Set) : Size -> Set

{ cons : [i : Size] -> A -> Stream A i -> Stream A ($ i)

}

fun head : [A : Set] -> [i : Size] -> Stream A ($ i) -> A

{ head A i (cons .A .i a as) = a

}

fun tail : [A : Set] -> [i : Size] -> Stream A ($ i) -> Stream A i

{ tail A i (cons .A .i a as) = as

}
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What is counted by the size i of a Stream is a lower bound on the number of coconstructors
or guards, which we call the depth of the stream. A fully constructed stream will always have
size∞, but during the construction of the stream we reason with approximations, i. e., streams
which have depth i for some arbitrary i. This is dual to the definition of recursive functions
over inductive types. Once they are fully defined, they handle trees of arbitrary height, i. e.,
size ∞, but to perceive their termination we assume during their construction that they can
only handle trees up to size i, and derive from this that they handle also trees up to size i+ 1.

Using sized types, the definition of repeat looks as follows:

cofun repeat : [A : Set] -> (a : A) -> [i : Size] -> Stream A i

{ repeat A a ($ i) = cons A i a (repeat A a i)

}

Assuming that repeat A a i produces a well-defined stream of depth i, we have to show that
repeat A a ($i) produces a stream of depth i + 1. This is immediate since cons increases the
depth by one. Technically, we have used a successor pattern ($i) on the left hand side. Matching
on a size argument seems to violate the principle that sizes are irrelevant for computation. Also,
not every size is a successor, so the matching seems incomplete. However, the match is justified
by the greatest fixed-point semantics of coinductive types, as we will explain in the following.

In the semantics, we construct the approximation Stream A i of the full type of streams over
A by an induction on i ∈ {0, 1, . . . , ω}.

Stream A 0 = >
Stream A (i+ 1) = {cons A i a s | a ∈ A and s ∈ Stream A i}
Stream A ω =

⋂
i<ω Stream A i

This is an approximation from above: we start at >, the biggest set of our semantics, e. g., the
set of all terms. A Stream A 0 can be arbitrary, there is no guarantee of what will happen if we
try to look at its first element. To be on the safe side, we have to assume that taking the head
or tail of such a “stream” will diverge. Now each constructor increases the depth of the stream
by one, we obtain Stream A 1, Stream A 2 etc. An element of Stream A i can be unrolled (at
least) i times, i. e., we can take the tail i times without risking divergence. Finally, the limit
Stream A ω is defined as the intersection of all Stream A i. Such a stream is completely defined,
and we unroll it arbitrarily often.

Whenever we have to construct a Stream A i for i a size variable, we can match size i
against a successor pattern ($j). Clearly, if i stands for a successor size n+ 1, then the match
succeeds with j = n. But also, if i stands for size ω = ∞ which is the closure ordinal for all
coinductive types then the match succeeds with j =∞ (there is a catch, see Section 5.1). Now
if i stands for 0, we have to produce something in Stream A 0, meaning that we can return
anything; we have no specific obligation. In summary, if we produce something in Stream A i,
matching i against a successor pattern is a complete match. Further, since there is only one
case (successor), the match is irrelevant and we maintain the property that sizes do not matter
computationally. Size matching on i can be generalized to the case that we have to produce
something in (~x : ~B)→ Stream A i.

3.2 Depth-preserving Functions and Mediated Guardedness

Using the successor pattern, we can define map as a depth-preserving corecursive function on
streams:
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cofun map : [A : Set] -> [B : Set] -> [i : Size] ->

(A -> B) -> Stream A i -> Stream B i

{ map A B ($ i) f (cons .A .i x xs) = cons B i (f x) (map A B i f xs)

}

By matching first on the size i (which is legal since at this point we construct a (A → B) →
Stream A i → Stream B i), the last argument gets type Stream A ($i), so we can match on
it, the only case being cons .A .i x xs. Note that unlike for inductive types we cannot match
on Stream A i since it might be a totally undefined stream. Technically, the matching on
Stream A i is prevented in MiniAgda by requiring that the size argument of a coconstructor
pattern must be a dot pattern.

Similarly to map we define merge for streams. Its type expresses that the output stream has
at least the same depth as both input streams have. The more precise information that its depth
is the sum of the depths of the input streams is not expressible in the size language of MiniAgda.
The information loss is substantiated by the use of subtyping Stream A ($i) ≤ Stream A i in
the recursive calls to merge.

cofun merge : [i : Size] -> Stream Nat i -> Stream Nat i -> Stream Nat i

{ merge ($ i) (cons .Nat .i x xs) (cons .Nat .i y ys) =

leq x y (Stream Nat ($ i))

(cons Nat i x (merge i xs (cons Nat i y ys)))

(cons Nat i y (merge i (cons Nat i x xs) ys))

}

The code of merge uses an auxiliary function leq that compares to natural numbers and returns
a Church-encoded Boolean (continuation-passing style). In other words, it is a fusion of a
comparison and an if-then-else.

fun leq : Nat -> Nat -> [C : Set] -> C -> C -> C

{ leq zero y C t f = t

; leq (succ x) zero C t f = f

; leq (succ x) (succ y) C t f = leq x y C t f

}

An example where corecursion goes through another function is the Hamming function which
produces a stream of all the composites of two and three in order. In this case, the guarding
coconstructor and the recursive calls are separated by applications of the depth-preserving map
and merge.

let double : Nat -> Nat = ...

let triple : Nat -> Nat = ...

cofun ham : [i : Size] -> Stream Nat i

{ ham ($ i) = cons Nat i (succ zero)

(merge i (map Nat Nat i double (ham i))

(map Nat Nat i triple (ham i)))

}

Summing up, sized types offer an intuitive and comfortable way to track guardedness through
function calls and overcome the limitations of syntactical guardedness checks. The technical
solutions to integrate pattern matching with explicitly sized coconstructors are the successor
pattern for sizes and the restriction of size matching to dot patterns in coconstructors.
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4 Dependent Types

In this section, we give examples of proper type dependencies. First, we demonstrate that sized
types harmonize with predicates, and then, with large eliminations.

4.1 Proofs in MiniAgda

In dependent type theory we represent (co)inductive predicates by (co)inductive families. For
instance, stream equality, aka stream bisimilarity, can be defined by the following sized coin-
ductive family.

sized codata StreamEq (A : Set) : (i : Size) -> Stream A i -> Stream A i -> Set

{

bisim : [i : Size] -> [a : A] -> [as : Stream A i] -> [bs : Stream A i] ->

StreamEq A i as bs ->

StreamEq A ($ i) (cons A i a as) (cons A i a bs)

}

Two streams are equal if their heads are equal and their tails are equal. The latter condition
leads to an infinite regression, therefore, stream equality has to be defined coinductively. The
only coconstructor bisim takes an equality proof of as and bs to one of cons A i a as and
cons A i a bs. The other arguments of bisim are irrelevant, since they can be reconstructed
from the type StreamEq A ($i) (cons A i a as) (cons A i a bs) [BMM04].

Note that in the type of the coconstructor bisim, the size i appears not only as index to the
currently defined type StreamEq, but also to Stream. This makes sense, since depth i is sufficient
for streams when comparing them up to depth i only. However, some care is necessary: uses of
i need to be restricted in such a way that StreamEq A i is still antitone in i. In our case, this
holds since Stream A i itself is antitone in i. If we replaced Stream A i by sized lists List A i,
then antitonicity of StreamEq would be lost, leading to unsoundness of subtyping. MiniAgda
checks types of sized (co)constructors to ensure that monotonicity properties are retained.

Using StreamEq, we can prove properties about stream functions. For example, mapping a
function f over a stream of as produces a stream of (fa)s.

cofun map_repeat : [A : Set] -> [B : Set] -> [i : Size] ->

(f : A -> B) -> (a : A) ->

StreamEq B i (repeat B (f a) i) (map A B i f (repeat A a i))

{

map_repeat A B ($ i) f a = bisim B i (f a)

(repeat B (f a) i) (map A B i f (repeat A a i))

(map_repeat A B i f a)

}

4.2 Large Eliminations

A specific feature of dependent type theory is that one can define a type by case distinction
or recursion on a value, which is called a large elimination (of the value). In this case, the
shape of this type (is it a function type or a base type?) is not statically determined. Com-
peting approaches to sized types, like CIĈ [BGP06] and CACSA [Bla04], which do not treat
sizes explicitly, cannot define a sized type by a large elimination, because sizes are assigned
automatically and to statically visible (co)inductive types only.
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In the following, we define an n-ary maximum function on natural numbers whose type
expresses that the size of the output is bounded by the maximum size of all of the inputs. A
binary maximum function can be defined as follows, using the built-in max function on sizes.

fun max2 : [i : Size] -> SNat i -> SNat i -> SNat i

{ max2 i (zero (i > j)) n = n

; max2 i m (zero (i > j)) = m

; max2 i (succ (i > j) m) (succ (i > k) n) = succ (max j k)

(max2 (max j k) m n)

}

The type of max2 expresses that both inputs and the output have the same upper bound (such
a type is beyond CIĈ ). By virtue of subtyping, this type is equivalent to SNat i → SNat j →
SNat (max i j), however, we try to minimize the use of max since constraints like i ≤ max j k
slow down type-checking.3 Now, by induction on n : SNat∞ we define the type

Maxs n i = SNat i→ · · · → SNat i︸ ︷︷ ︸
n times

→ SNat i

of the n-ary maximum function.

fun Maxs : SNat # -> Size -> Set

{ Maxs (zero .# ) i = SNat i

; Maxs (succ .# n) i = SNat i -> Maxs n i

}

The (n+1)-ary maximum function maxs is now also defined by induction on n, using the binary
maximum.

fun maxs : (n : SNat #) -> [i : Size] -> SNat i -> Maxs n i

{ maxs (zero .#) i m = m

; maxs (succ .# n) i m = \ l -> maxs n i (max2 i m l)

}

5 Avoiding the Paradoxes

The theory and implementation of sized types requires some care, since there are some paradoxes
lurking around (as in other areas of dependent type theory).

5.1 Non-continuous Types

A first paradox noticed by Hughes, Pareto, and Sabry [HPS96] involves types of recursive
functions which are not continuous in their size parameter. This phenomenon has been studied
in detail by the author [Abe08]. We briefly explain this issue here for the case of corecursive
definitions.

To improve readability of the example to follow, let us first introduce an auxiliary function
guard2 j g which precomposes g : Stream Nat ($j) → Stream Nat ∞ with itself and with a
guard.

3The constraint i ≤ max j k simplifies to the disjunctive constraint i ≤ j ∨ i ≤ k which introduces a case
distinction in the type checker, possibly duplicating computations.
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fun guard2 : [j : Size] -> (Stream Nat ($ j) -> Stream Nat #)

-> (Stream Nat j -> Stream Nat #)

{ guard2 j g xs = g (g (cons Nat j zero xs))

}

We now construct a corecursive function f : [i : Size] → (Stream Nat i → Stream Nat ∞) →
Stream Nat i. It expects an argument g : Stream Nat i → Stream Nat ∞ whose type promises
to add enough guards to a stream of depth i to make it infinitely guarded. For any i < ω, such
a function needs to actually add infinitely many guards, yet for i = ω it can be any function on
streams, even a stream destructing function like tail. This non-continuous behavior gives rise
to a paradox.

cofun f : [i : Size] -> (Stream Nat i -> Stream Nat #) -> Stream Nat i

{ f ($ j) g = guard2 j g (f j (guard2 j g)))

}

If g is a stream constructing function or the identity, then guard2 j g is guarding the recursive
call to f , but if g is tail or another stream destructing function, then guard2 j g is actually
removing guards. The definition of f is fine as long as i is not instantiated to ∞, otherwise, we
can construct a diverging term.

eval let loop : Nat = head Nat # (f # (tail Nat #))

To exclude definitions like f, MiniAgda checks when matching a size variable i against a successor
pattern ($j) that the type of the result is upper semi-continuous [Abe08] in i. The check fails
since the type Stream Nat i→ Stream Nat∞ of g is neither antitonic nor inductive in i.

5.2 Size Patterns and Deep Matching

The mix of sized types with deep pattern matching leads to a new paradox which has been
communicated to me by Cody Roux.

Consider the following sized inductive type which has an infinitely branching L and a binary
constructor M. In the presence of infinite branching, some sizes are modeled by limit ordinals,
and the closure ordinal is way above ω.

sized data O : Size -> Set

{ Z : [i : Size] -> O ($ i)

; S : [i : Size] -> O i -> O ($ i)

; L : [i : Size] -> (Nat -> O i) -> O ($ i)

; M : [i : Size] -> O i -> O i -> O ($ i)

}

By cases we define a kind of “predecessor” function on Nat→ O ($$i) which will be used later
to fake a descent.

let pre : [i : Size] -> (Nat -> O ($$ i)) -> Nat -> O ($ i)

= \ i -> \ f -> \ n -> case (f (succ n))

{ (Z .($ i)) -> Z i

; (S .($ i) x) -> x

; (L .($ i) g) -> g n

; (M .($ i) a b) -> a

}
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The paradox arises when we confuse limit ordinals and successor ordinals. In a previous version
of MiniAgda, it was possible to write the following deep match.

let three : Nat = succ (succ (succ zero))

fun deep : [i : Size] -> O i -> Nat

{ deep .($$$$ i) (M .($$$ i) (L .($$ i) f)

(S .($$ i) (S .($ i) (S i x))))

= deep ($$$ i) (M ($$ i) (L ($ i) (pre i f)) (f three))

; deep i x = zero

}

We have managed to assign to f the type Nat → O ($$i) on which we can apply the fake
predecessor function. This makes the recursive call to deep appear with a smaller size. It is
now easy to tie the loop:

fun emb : Nat -> O #

{ emb zero = Z #

; emb (succ n) = S # (emb n)

}

eval let loop : Nat = deep # (M # (L # emb) (emb three))

In the work of Blanqui [Bla04], deep is forbidden by a linearity condition on size variables (see
his Def. 6). In MiniAgda, we avoid the paradox by introducing size patterns (i > j). Now
the left hand side of deep needs to be written as follows, and the right hand side no longer
type-checks.

fun deep : [i : Size] -> O i -> Nat

{ deep i4

(M (i4 > i3)

(L (i3 > j2) f)

(S (i3 > i2)

(S (i2 > i1)

(S (i1 > i) x))))

= deep _ (M _ (L _ (pre _ f)) (f three))

; deep i x = zero

}

Now f : Nat→ O j2 is no longer a valid argument to pre since j2 is not the double-successor of
any size expression in scope; the holes cannot be filled with size expressions in a well-typed
manner.

6 Conclusion

We have presented MiniAgda, a core dependently typed programming language with sized
types. The language ensures termination of recursive functions and productivity of corecursive
functions by type checking. MiniAgda is implemented in Haskell; the source code and a suite
of examples are available on the author’s homepage http://www2.tcs.ifi.lmu.de/~abel/

miniagda.
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The main focus of MiniAgda is the sound integration of sized types with pattern matching
à la Agda [Nor07]. Previous works [BFG+04, Abe06, HPS96] have treated sized types in a
lambda-calculus with primitives for fixed points and case distinction. The exception is the
work of Blanqui [Bla04, Bla05] who considers type-based termination checking of rewrite rules
in the Calculus of Constructions. Our work is distinguished from his in that we integrate
sizes into the ordinary syntax of dependent types, so, sizes are first-class. Also, our treatment
includes coinductive types and productivity.

In future work, we like to explore how to handle sized types more silently, such that they
are transparent to the user. There is already a size constraint solver in MiniAgda which we did
not include in our description. At the moment, one can replace size arguments on the right
hand side of clauses by “ ” and the system searches for the correct solution. To complete the
picture, we need reconstruction of size patterns and a reconstruction of sized types in function
signatures [BGP06]. Finally, by adding Agda-style hidden arguments, sizes can disappear from
the surface completely.
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