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Abstract

An essential step to understanding how different functionalities of proteins work is to
explore their conformational space. However, because of the fleeting nature of conforma-
tional changes in proteins, investigating protein conformational spaces is a challenging task
to do experimentally. Nonetheless, computational methods have shown to be practical to
explore these conformational pathways. In this work, we use Topological Data Analysis
(TDA) methods to evaluate our previously introduced algorithm called RRTMC, that uses
a combination of Rapidly-exploring Random Trees algorithm and Monte Carlo criteria to
explore these pathways. TDA is used to identify the intermediate conformations that are
generated the most by RRTMC and examine how close they are to existing known inter-
mediate conformations. We concluded that the intermediate conformations generated by
RRTMC are close to existing experimental data and that TDA can be a helpful tool to
analyze protein conformation sampling methods.

1 Introduction

Proteins perform vital functions, such as catalyzing metabolic reactions, regulating cell signal-
ing, DNA replication, and so forth. They often go through large-scale conformational transitions
to perform these functionalities. To understand and interpret protein functionalities, we need
to understand their structures, their conformational spaces, and the pathways they take when
going through these transitions. Nevertheless, the conformational space of proteins is complex
and high dimensional, and hence studying it becomes a challenging task. Several attempts
have been made to characterize protein conformational pathways and find intermediate struc-
tures created during these transitions. Experimental methods such as X-ray crystallography [1],
NMR [2], and cryo-Electron Microscopy [3] have been used. However, because of the rapid dy-
namics of proteins, these changes happen in microseconds, and experimental methods cannot
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capture all of them. For this reason, there has been an increasing interest in computational
methods to simulate and explore these pathways. Computationally, it is still a challenging
problem to simulate these conformational changes because physics-based simulations take con-
siderable time. Molecular Dynamics (MD) simulations can simulate these transitions at the
microsecond level, but they are still not fast enough to capture transitions that take place in
larger timescales [4]. Therefore, researches have come up with variants of MD simulations such
as Steered MD [5], Replica Exchange MD [6], and Targeted MD [7]. A number of other methods
attempt to explore the geometrically constrained conformational space by using the degrees of
freedom (dihedral angles) to perturb the protein structure. A few instances of these search
methods are Robotic Motion Planning[8], elastic network model [9], and normal mode analysis
[10]. The advantage of these search methods is that they run much faster than MD simulations.
However, they may result in pathways that are not physically feasible. We will review this issue
more in section 1.1.

It is important to perform an accurate sampling of the conformational space to identify
intermediate conformations that correspond to local energy minima and are close to actual
intermediates. Thus, there is a need to extract biologically relevant conformations and filter out
implausible ones. To do so, biological data can be incorporated to guide the search to produce
meaningful conformations. For example, rigidity information about the protein molecules [11]
can provide useful knowledge about the rigid and flexible parts of the molecule, so that only
flexible parts can be manipulated. This information can be gathered experimentally, from
coevolution data, from computational analysis, or by using rigidity analysis [12, 11]. In section
1.1 we provide an overview of our previous work, and in section 2 we evaluate how close our
generated intermediate conformations are to experimentally known intermediates.

1.1 Overview of RRT* Search and TDA

RRT* Search: The Rapidly exploring Random Tree (RRT) algorithm [13] is used to rapidly
explore constrained spaces. It builds a tree rooted at the start configuration and grows by using
random samples from the exploration space and connecting them to the closest vertex in the
tree. We used this algorithm in our previous efforts, [14, 15] to explore the conformational space
of proteins. Here is a quick review of the basic algorithm: At every iteration, the algorithm
generates a random conformation qrand, finds the closest node to qrand in the tree, and tries to
create a path from the closet node found to the qrand. If qrand has high energy, it repeats the
same steps of generating the random conformations as long as the energy is below a threshold.
The step is repeated until the new conformation is close enough to the goal conformation or
the maximum number of iterations is reached. A detailed explanation of RRT and how it is
used to explore the conformational space of proteins can be found in [15].

RRT explores the search space rapidly, but given that it randomly expands to everywhere in
the search space, it may not converge fast enough for complex spaces like protein conformations.
For this reason, we added a guided selection step that biases the search (with a probability of
1/3) towards a conformation among the top k conformations with the smallest least RMSD
(lRMSD with respect to the goal conformation) instead of selecting from the entire pool of
conformations. k is a user-defined input, and in our work, it is set to 20.

Additionally, as a result of the randomness in RRT, the produced paths can be uneven
and rugged. To tackle these issues, the RRT* algorithm [16] optimizes paths by proposing a
heuristic cost function to find less costly (smoother) parents for every new node that is added
to the tree and changing parents if needed.
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Figure 1: Schematic illustration of the Mapper algorithm run on the data points of a 2D torus.

Rigidity Analysis Proteins can be modeled as mechanical structures made up of rigid and
flexible parts [11]. Rigid parts denote groups of atoms that are more likely to stay together
during conformational changes. Taking the rigidity analysis information into account helps us
gain insights into potential motions of proteins and select non-rigid (flexible) parts for manip-
ulation. We used the Kinari software [11] in our previous work to incorporate rigidity analysis
information to better guide our search algorithm. It implements a faster and more robust vari-
ation of the pebble game algorithm to extract rigidity information about the molecules without
having to run extensive MD simulations.

TDA and the Mapper Algorithm: Topological Data Analysis (TDA) has been employed
in recent years to analyze complex high-dimensional datasets and extract valuable information
and insights [17]. TDA has been extensively used in biomedical research [18, 19]. By using
TDA methods, researchers have found a way to understand the structures and the underlying
shapes of high-dimensional datasets. Other dimensionality reduction methods such as Princi-
pal Component Analysis (PCA), Multidimensional Scaling (MDS) are being used extensively.
However, these methods may not catch all large and small-scale patterns existing in the data
as well as TDA.

The Mapper algorithm [20] is an unsupervised learning TDA algorithm that utilizes a com-
bination of dimensionality reduction, clustering, and graph networking methods to provide a
graph (called the Mapper graph) that summarizes the structure of a dataset. The general idea
of the Mapper algorithm is as follows: Suppose that we can divide our data by a measure of
similarity into groups (determined based on the data) and represent each group by a node.
Next, let us present the relationships between two groups through edge connections. This re-
sults in a simple graph that can visualize the structure of our complex data provided that we
choose appropriate measures of similarity and clustering techniques. Fig. 1 shows an example
of the Mapper algorithm where the data points of a 2D torus (A) are taken as input. In our
work, the data points are protein conformations.

A filter function is used to project the high-dimensional data points to a low-dimensional
space where local relationships are preserved. In the torus example, the filter function f : R2 →
R, (x, y) 7→ x is used to project each data point to the x axis. The Mapper then creates a
cover of the projected space as a set of partially overlapping bins (intervals). In Fig. 1 (B),
the overlapping bins are shown in different colors, and in (C) they are shown separately. Note
that dark gold colored data points, for instance, are the points that fall into both red and green
colored bins. Next, data points within each cover are clustered based on their distances in the
original space. Finally, Mapper constructs a graph representing the data where clusters are
vertices and there is an edge between any two clusters that have a data point in common (D).
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The advantage of the Mapper algorithm over other dimensionality reduction methods is that
traditional methods may suffer from projection loss. This happens when data points (protein
conformations in our work) that are apart in high dimensions may be projected close together
in the reduced lower-dimensional space. However, in Mapper, the distance between the original
data points is used so that the covering in the projected space is pulled back to the original space,
and then the clustering happens here. This is the advantage since, in Mapper, the substructures
that exist in the original high-dimensional space are found and used in covering and finding
more relevant clusters. Mapper can visualize the complex original space in a compressed graph
representation where the relationships between the original data points are shown in clusters
and the edges between the clusters. Another fascinating feature of Mapper, which we use in
section 3, is that when clusters and connected components are generated, it allows investigating
why these data points are interconnected. For instance, by coloring the network by a quantity
of interest (such as the energy of the conformations in our case), we can explain the various
groups that have appeared and the distinctions between them.

Previous Work: In our previous work [14], we focused specifically on rigidity analysis infor-
mation and extracted the flexible residues. We used this information to lead the search by using
flexible hinges to manipulate. This approach helped RRTMC choose among a limited number
of dihedral angles to rotate in order to perform the conformational transition. Since the rigidity
properties of proteins may change when they go through large-scale conformational changes,
we performed updated rigidity analyses during the run. To balance efficiency and accuracy, we
found that the optimal point to recalculate the rigidity analysis was when there was a change
of > 2Å from the last point of recalculation.

This Contribution: In this study, we do an evaluation of RRTMC using topological data
analysis. It is based in part on previous work, but the novelty includes running RRTMC on
more protein molecules with the integration of rigidity analysis, reducing the dimensionality of
the conformational pathway data, and using TDA to construct a simple graph that represents
the highly frequent intermediate structures. By using PCA, we reduce the dimensionality of
our data, and then, by using the TDA Mapper algorithm, we construct a graph of our reduced
dataset. We use about 200 runs of one of our proteins from our test case. We then extract
the intermediate conformations that appear the most in the pathways produced by RRTMC
and compare them with known experimental results. We used Adenylate Kinase (AdK) as
input to the Mapper algorithm since it has experimentally known intermediate structures. The
purpose of this paper is to evaluate RRTMC and also to demonstrate that TDA can be useful
in assessing protein conformation simulation methods.

2 Materials and Methods

2.1 Data Collection and Preprocessing

In this contribution, our primary goal is to evaluate whether RRTMC produces conformations
that are likely to represent intermediate conformations that exist in nature. To achieve this
goal, we first reduce the dimensionality of the conformations that RRTMC generates and then
use the Mapper algorithm to extract conformations that appear frequently and then compare
them with known conformations of AdK. Experimentally discovered intermediate conformations
(PDB files) are not available for many proteins, so we chose AdK to do our first evaluation.
We intend to find more available intermediate structures in our future work to perform better
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Figure 2: lRMSD threshold versus runtime average in minutes for (A) AdK, (B) CaM, (C)
DNA, and (D) LAO.

evaluations. Because of the randomness in the nature of robotic motion planning algorithms, we
run the algorithm several times to make sure we have a reliable coverage of the conformational
paths produced by our algorithm (RRTMC).

We ran the algorithm on each test case at least 150 times, and for AdK we ran approximately
450 iterations (both 1AKE → 4AKE and 4AKE → 1AKE). In RRTMC, iterative sampling of
new conformations continues up to the point that the score of the newly generated conformation
(lRMSD to the goal conformation) is below a preset threshold or the minimum score achieved
by generated conformations does not decrease for 500 iterations. The preset lRMSD threshold
is between 1.7Å and 4Å, based on the protein size and pathway difficulty. The numbers were
selected for each test case in order to find the best threshold that would be a tradeoff between
time and how close our conformations are to the goal conformation. Fig. 2 shows the result
for some of our examples including adenylate kinase (AdK), calmodulin (CaM), DNA, and
lysine/arginine/ornithine-binding (LAO). We also ran RRTMC on cyanovirin-N (CVN) and
ribose-binding protein (RBP) that were mentioned in our previous work. This plot shows a
realistic lower bound for our test case proteins. Realistically, lRMSD values below 1.5-2Å are
hard to achieve due to sampling errors and variations in proteins. Each protein was represented
using the backbone atoms (N, C-alpha, C, O) and C-beta.

For AdK we only ran Mapper for one direction in this work – 4AKE → 1AKE (open
conformation to closed conformation). Each path created an average of ten conformations
from the start conformation (4AKE) to the goal conformation (1AKE). The data consist of a
total of 1,415 intermediate conformations that form our high-dimensional dataset. Each path is
stored as a numeric matrix of x, y, z coordinates with one conformation per row and a Cartesian
coordinate per column. That means, for instance, for a path of 20 intermediate conformations
going from 4AKE to 1AKE, we get a matrix of 20 rows and 3 ∗ 1050 columns (since AdK has
1,050 backbone atoms). Adding all the paths gives us a matrix of 1415× 3150.
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Figure 3: Mapper graph for AdK. Vertices are colored by average values of (A) energy, (B)
PC4, and (C) lRMSD to the goal conformation

2.2 Using Mapper for Evaluation

We used Mapper implementation by Paul Pearson et al. [21] (accessed on 8 October 2021),
which is an R package for using discrete Morse theory to analyze data sets.

Our 3-dimensional data, which are the results of running PCA on our high-dimensional data
(Refer to 2.1), are divided into partially overlapping bins as described above. We use the default
clustering method, single linkage, to cluster the data points in each bin. Finally, a graph is
created from the set of clusters (graph vertices) and whether they have data points in common
(graph edges). The choice of parameters is discussed in section 3.1. The resulting graph is
shown in Fig. 3. The size of each vertex in the figure is proportional to the number of data
points in the cluster presented by that vertex. We use different strategies to color the vertices of
the graph to gain useful information. In Fig. 3 (A), we color the graph according to the average
energy values of conformations that reside in the same cluster. In (B), to get to at least 90%
of the total variance, we use principal component four (PC4) to color the vertices. For each
cluster represented by a vertex, we calculate the average value of PC4 and color that vertex
accordingly. In (C), we colored every vertex by their lRMSD regarding the goal conformation.
Each Mapper graph in Fig. 3 is discussed extensively in section 3.1.

3 Results

3.1 Adenylate Kinase (AdK)

AdK is a monomeric phosphotransferase enzyme that catalyzes the reversible transfers of a
phosphoryl group from ATP to AMP. AdK contains 214 amino acids and has three main
domains: the CORE, the ATP binding domain called the LID, and the NMP binding domain.
It is an interesting protein to study as far as conformational changes because it’s a signal-
transducing protein, and there should be a balance between its conformations for it to regulate
protein activity.

We used the following parameters to create a simple graph representing the structure of the
data (Refer to section 1.1 for an overview of Mapper):

• distance-matrix: The distances between points. We used the Euclidean distances.

• filter-value: The vector of the projection of the data points generated using the filter
function. We used PCA as our filter function to reduce and project the high-dimensional
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data to three dimensions. We used PC1, PC2, and PC3.

• num-intervals: Number of intervals in the co-domain of the filter function (regular grid
over the filter range).

• percent-overlap: Percentage of overlap between the intervals.

• num-bins-when-clustering: controls the number of clusters for each inverse image (number
of intervals of the histogram of edge lengths in the single linkage clustering algorithm)

Since mapper is an unsupervised learning algorithm and in unsupervised learning algorithms,
the user usually selects the parameters, we applied a grid search to find the best parameters.
We aimed to find the best parameters in our grid search so that not all data points would be
clustered into a few big clusters, and at the same time, they wouldn’t be clustered into several
very small clusters that don’t correctly demonstrate the relevant relationships between them.
For our grid search, we used the following parameter ranges: {3, 4, 5, 6} for the number of
intervals, {35, 40, 45, 50} for the overlap percentage, and {10, 11, 12, 13, 14, 15} for the number
of bins when clustering. For these ranges, we found that for AdK, 4 for the number of intervals,
35 for the percentage of overlap, and 13 for the number of bins work the best. We chose these
parameters this way to avoid either having all the data points (conformations) be clustered into
one big cluster or having a large number of clusters with only a few data points in each of them.

In Fig. 3, the resulting graph has 17 vertices showing the clusters that contain all of our
data points. Some points may be in more than one cluster (because of the overlapping bins),
and where that happens, there is an edge connecting the two clusters. The size of each vertex is
proportional to the number of points that reside in that cluster. That means that we have four
clusters that contain most of our data points, where the largest one contains 445 conformations.
These are the conformations that have been generated the most, and they are more expected
to be close to highly populated regions. Small clusters mean that the conformations in those
clusters are not likely to occur – for example, due to having high energy, and should probably
be disregarded. Fig. 3 (A) shows the graph colored by the energy value. In our previous work,
to calculate the energy value of our conformations, we used the following function [22]:

Etotal = EV dW + Ebond + Eangle + EHB + Eburial + Ewater (1)

EVdW, Ebond, and Eangle are used from the AMBER ff03 force field [23], where EV dW

is the Lennard Jones potential [24]. However, it is adapted in order to tolerate soft collisions
between atoms. We used these terms in our previous work in RRTMC to correct the clashes
and deformities in the structure. Hydrogen bonds, EHB , burial Eburial, and water-mediated
interaction, Ewater terms are adapted from [22]. The cluster with the highest energy value has
an average energy of 4251kJ/mol, and the one with the lowest energy value has an average
value of −365kJ/mol. Many of the conformations have energy values between these numbers,
which may correspond to local energy minima. Notice that energy values may be high due to
the coarse-grained representation of the molecule.

In Fig. 3 (C), we can see the vertex colors relative to their lRMSD values from the goal
conformation (the closed conformation, PDB: 1AKE). These colors are relative to each other,
and it does not mean that the highest lRMSD is far from the goal conformation. The highest
lRMSD to the goal conformation for the biggest clusters is less than 5.5Å (the start-goal lRMSD
is approximately 7Å). The reason is that RRT is faster in the first steps, and it gets slower by
getting closer to the end conformation. From the Mapper graph, we obtained the nine biggest
clusters (since the average number of conformations in the simulated paths is ten and the first
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Figure 4: Superimposition of the intermediate conformations produced by Mapper for AdK -
4AKE (red) → 1AKE (blue)

one is the start conformation), calculated the average coordinates of all the conformations in
each cluster as the conformation representative of that cluster, and then for each representative
conformation, calculated their lRMSD with respect to the goal conformation.

Using the first three principal components covered 78% of the total variance. By using PC4,
we get close to 90%. It is not possible to use 4 vectors for the TDA mapper. Therefore, we used
PC4 to color the vertices (Fig. 3 (B)). Fig. 4 shows the superimposition of the intermediate
conformations on the path from 4AKE (shown in red) to 1AKE (shown in blue) that were ex-
tracted by Mapper. We used the biggest clusters, averaged the coordinates of the conformations
in each cluster, and used these coordinates to create the intermediate conformations shown in
the figure. As seen, the conformations follow a hinge motion.

3.2 Comparison to Experimental Results

As mentioned in section 1, experimentally known intermediate conformations are hard to find.
Because of that, it is elusive to do experimental validation of computational methods. We used
AdK, for which there exist several intermediate experimental structures [25]. We used our highly
populated conformations, created by taking the average coordinates of conformations in each of
the nine biggest clusters, and calculated their RSMDs with respect to the start, intermediate,
and goal conformations. Table 1 shows that we could find clusters that the conformation created
by their average coordinates are as close as 2.6Å to experimentally known conformations. We
will explore other clustering methods in the future to determine whether we can get clusters
that are even closer to experimental results.

The advantage of RRTMC compared to other methods of exploring protein conformational
spaces can be summarized as being more time-efficient, being able to generate conformations
that are close enough to the goal conformation (less than 3Å), and generating intermediate
conformations that are close to experimentally known PDB conformations. (Refer to Table 1).

4 Conclusion

Exploring the conformational space of proteins is of primary importance for understanding
their functions. Many proteins undergo large-scale conformational changes in order to perform
their functionalities. Therefore, it is important to study these conformational pathways to find
intermediate conformations that may correspond to local energy minima. Investigating these
pathways is experimentally difficult because these conformations are transitory and are hard to
capture. To address this problem, computational methods are used to simulate these pathways.
We developed a robotics-inspired algorithm using the RRT method and Monte Carlo, called
RRTMC, to generate random conformations by rotating dihedral angles and added rigidity
analysis information to make it run more efficiently and converge better. In this paper, we
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Table 1: Comparison of Mapper-generated intermediates clusters to known intermediates

protein
PDB ID
of known

intermediates

lRMSD (Å) to closest Number of
conformations with

lRMSD < 3 Å
mapper cluster
representative

generated
conformation

AdK

2AK2 3.7 3.4 0
1AK2 3.8 3.4 0
1DVR 3.3 2.9 3
1E4Y 2.6 2.4 166
1E4V 2.8 2.5 153
2ECK 2.8 2.6 143
1ANK 2.9 2.6 136

presented an evaluation of our method using the Topological Data Analysis algorithm Mapper
to find the intermediate conformations frequently produced by our algorithm, and compare them
to experimentally available data. Our results show that TDA Mapper is highly beneficial to
complement computational methods and that RRTMC is capable of generating conformations
that approximate highly populated intermediate structures.

Current and future work includes using Mapper to evaluate multiple other proteins with
available experimental data. Running these experiments on more proteins is our foremost
important goal in future work. Our initial results are promising, but we need to run the Mapper
algorithm on more data and compare the results with other existing methods. Another goal is
exploring conformational transitions of proteins in closer to real-life conditions. For example,
the open conformation of AdK is dimeric in nature, and it would be interesting to explore its
conformational transitions using symmetry. We also plan to use other dimensionality reduction
methods such as Auto Encoders instead of PCA and other clustering techniques instead of
single-linkage to improve our algorithm.
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