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Abstract

This paper presents an inconsistency tolerant semantics for the Description Logic ALC
called Preferential ALC (p-ALC ). A p-ALC knowledge base is comprised of defeasible
and non-defeasible axioms. The defeasible ABox and TBox are labelled with confidence
weights that could reflect an axiom’s provenance. Entailment is defined through the notion
of preferred interpretations which minimise the total weight of the inconsistent axioms. We
introduce a modified ALC tableau algorithm in which the open branches give rise to the
preferred interpretations, and show that it can compute p-ALC entailment by refutation.
The modified algorithm is implemented as an incremental answer set program (ASP) that
exploits optimisation to capture preferred interpretations of p-ALC .

1 Introduction

Web Ontology Languages[25] (OWL) are based on Description Logics, a family of decidable log-
ics that offer low complexity of reasoning. Popular reasoners such as Hermit[13] and Fact++[24]
assume Tarskian model theoretic semantics and thus require a consistent Knowledge Base (KB).
However, for many applications, such as multi-agent systems, knowledge is collated from mul-
tiple sources and inconsistencies inevitably arise. Inconsistencies within a KB may come about
in any of the three basic settings: direct conflicts between ABox axioms (e.g. Woman(alex)
and ¬Woman(alex)); contradictions between TBox and Abox axioms (e.g. Woman(alex),
¬Female(alex) and Woman v Female); and potentially conflicting TBox axioms (e.g. a KB
including the TBox axioms Woman v Human, Human v Animal, Woman v ¬Animal can
become inconsistent once an individual classified as a Woman is added to it).

The inevitability of inconsistency in Knowledge Bases has inspired the search for alterna-
tive solutions that allow reasoning without having to locate and repair the inconsistencies (e.g.
[17]). In the literature, two strands of work have been investigated. On one hand, a notion of
“typicality” has been proposed for which KBs are designed under the assumption that certain
knowledge is typically true but admits “exceptions”. Languages are augmented with defeasible
implication and supported by some form of non-classical semantics [3, 4, 5, 8, 9, 10, 12, 15, 22].
On the other hand, inconsistency tolerant semantics have been proposed for KBs assumed to
be designed for and used by classical reasoners[16, 19, 20, 21, 23, 26]. An example is [19],
where entailment is defined in terms of ABox closed repair semantics, which consider maxi-
mally consistent consequences derivable from subsets of ABox axioms that are consistent with
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TBox axioms. This method, however, does not provide for “arbitration” between conflicting
consequences, limiting therefore the set of consequences that could be derived from an incon-
sistent KB. This limitation is even more evident when such a notion of entailment is extended
to TBox repairs [20], because each TBox axiom is treated atomically, it is either included in
the inference process or omitted.

This paper follows the second strand of research and proposes an alternative semantics to
the problem of reasoning in the presence of inconsistent KBs that does not suffer from the
above limitations. A KB is defined as comprising of defeasible and non-defeasible axioms. Each
defeasible axiom is labelled with an integer weight that expresses the degree of confidence
in that axiom. A preferential semantics, called Preferential ALC and denoted as p-ALC ,
is proposed, which defines entailment through a notion of preferred interpretations. These
are interpretations that preferentially retain the defeasible knowledge in which there is the
greatest confidence and use the weights to inform the inference of consequences from conflicting
axioms. A tableau-based algorithm, which combines techniques used in DL tableau methods,
is also proposed for determining what is provable or not from a given inconsistent KB within
our new p-ALC semantics. A prototype implementation of our tableau-based algorithm has
been developed using a state-of-the-art incremental answer set solver [11], which exploits the
optimisation features of Answer Set Programming (ASP) to incrementally compute preferred
interpretations. Preliminary evaluations of our prototype have been conducted to demonstrate
the applicability of our approach.

The paper is structured as follows. Section 3 introduces our new notion of preferential
semantics. Section 4 presents our tableau-based algorithm for computing consequences in the
presence of inconsistencies with respect to the preferential semantics, and Section 5 describes the
implementation of our algorithm in Answer Set Programming (ASP). Evaluation and related
work are discussed in Sections 6 and 7, while Section 8 concludes the paper and outlines future
work.

2 Background

In this section we recall the syntax and semantics of the Description Logic ALC. An ALC signa-
ture is a tuple 〈NI , NR, NC〉 where NI , NR, NC are finite sets of names that refer, respectively,
to individuals, roles and named concepts. Given a signature, concepts are either named concepts
or complex concepts defined inductively as follows: C,D = >|⊥|A|¬C|CuD|CtD|∃R.C|∀R.C,
where A ∈ NC , R ∈ NR, and > and ⊥ denote the top and bottom concept. An ABox (resp.
TBox) is a finite set of axioms of the form C(x) or R(x, y) (resp. C v D or C ≡ D) where
x, y ∈ NI , R ∈ NR, C, D are concepts and C ≡D abbreviates the set of axioms C vD and
DvC. A knowledge base K is defined as a tuple 〈A, T 〉, where A is the ABox of K and T is
the TBox of K. The set of all concepts that can be formed using the signature of K is referred
as the language of K.

An interpretation of a knowledge base K is a pair I = 〈∆I , .I〉, where ∆I is a non-empty
set, called domain of the interpretation, and .I is an interpretation function. The function .I

interprets each individual x, in the signature, as xI ∈ ∆I , each named concept C, in NC , as
CI ⊆ ∆I , and each role R, in NR, as RI ⊆ ∆I × ∆I . It is extended inductively over all
concepts that can be formed from a given signature: >I = ∆I , ⊥I = ∅, (¬C)I = ∆I \ CI ,
(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (∀R.C)I =

{
u ∈ ∆I |∀v

[
(u, v) ∈ RI → v ∈ CI

]}
,

(∃R.C)I =
{
u ∈ ∆I |∃v

[
(u, v) ∈ RI ∧ v ∈ CI

]}
. Given a knowledge base K, an axiom Z in K

is said to be satisfied by an interpretation I if and only if one of the following cases holds: (i)
Z =C(x) then xI ∈ CI ; (ii) Z =R(x, y) then (xI , yI) ∈ RI ; (iii) Z =C v D then CI ⊆ DI .
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An interpretation I is said to be a model of a knowledge base K if every axiom in K is satisfied
by I. We also say, in this case, that K is satisfied in I. If there is no model of K then K is said
to be inconsistent. Given a knowledge base K and an axiom Z, K is said to entail Z, written
K |= Z, if and only if Z is satisfied in every model of K.

In this paper we assume uniqueness of names, namely for every interpretation I each pair
of names x, y ∈ NI satisfies xI 6= yI . Without loss of generality, we assume that all axioms are
given in negation normal form (NNF), i.e. negation appears only in front of named concepts.
Following [2], we will use the notation ¬̇C to indicate that ¬C is written in NNF. In addition,
we also assume that in concepts of the form ∃R.C, and ∀R.C, C will be a named concept or
the negation of a named concept. Any complex concept C within the scope of a quantifier, can
be reduced to our assumed simpler form by substituting it with a new named concept, say Cn,
and adding the axiom Cn ≡ C to the TBox.

3 Preferential ALC
We can now introduce the semantics of our preferential ALC. To accommodate inconsistency
we introduce a notion of defeasible axioms. Intuitively, these are axioms in the knowledge base
that we are prepared to falsify during the reasoning process. A defeasible axiom is defined as an
ALC axiom with an associated positive integer weight w that indicates a measure of confidence
in the truth of the axiom. The higher the value the greater the level of confidence. The notation
Z [w] denotes a defeasible axiom with weight w. Given a set S of defeasible axioms, the notation
S−W will be used to refer to S−W ={Z|Z [w] ∈ S}.

Definition 3.1. A p-ALC knowledge base K is a tuple K = 〈A, T ,Ad, Td〉, where A and T are,
respectively, two sets of ABox and TBox ALC axioms, and Ad and Td are, respectively, two sets
of defeasible ABox and TBox axioms such that A and Ad are disjoint and T and Td are also
disjoint.

In general, weights of the defeasible axioms do not have to be equal, but in the case
where they have equal weights a p-ALC knowledge is said to be uniform. Furthermore, p-
ALC knowledge bases for which 〈A, T 〉 is satisfiable are said to be credible. From now on we
will consider only credible p-ALC knowledge bases unless otherwise stated.

The semantics of p-ALC extends the notion of ALC interpretations to the defeasible axioms
and by introducing a notion of distance of the interpretation.

Definition 3.2. Let K = 〈A, T ,Ad, Td〉 be a p-ALC knowledge base. A ( p-ALC) interpretation
of K is a classical ALC interpretation I = 〈∆I , .I〉 of 〈A∪A−Wd , T ∪T −Wd 〉. Let Z be a defeasible
axiom in K, Z ∈ Ad ∪ Td. The set of unsatisfied instances of Z with respect to I, denoted as
U(Z, I), is defined as follows1:

U(Z, I) = {〈C(x)[w], xI〉}, if C(x)I /∈ I where Z is C(x)[w]

U(Z, I) = {〈R(x, y)[w], xI〉}, if R(x, y)I /∈ I where Z is R(x, y)[w]

U(Z, I) = {〈C v D[w], u〉 | (u ∈ CI) ∧ (u /∈ DI) } where Z is C v D[w]

The set of unsatisfied instances of defeasible axioms in K with respect to I, denoted as U(K, I),
is defined as

U(K, I) =
⋃

Z∈Ad∪Td

U(Z, I).

1For the form R(x, y)[w], yI is not required to define a unique axiom instance.
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The distance of the interpretation I, denoted as d (U(K, I)), is then given by

d (U(K, I)) =
∑

〈Z[w],u〉∈U(K,I)

w.

Defeasible (instances of) axioms that are falsified by an interpretation are said be defeated.
An interpretation I of K is said to be n-distant if n = d (U(K, I)). Using the notion of distance
of interpretations, a partial ordering relation, ≺, can be defined over the set of all interpretations
of a p-ALC knowledge base K. Given two interpretations I1 and I2 of K, I1≺I2 if and only
if d (U(K, I1)) < d (U(K, I2)). Preferred interpretations are those interpretations with minimal
distance value.

Definition 3.3. Let I be an interpretation of a p-ALC knowledge base K. I is said to be a
preferred interpretation of K if and only if (i) I satisfies A∪T and (ii) there is no other inter-
pretation I ′ of K such that I ′ ≺ I. K is said to be n-inconsistent if the preferred interpretations
of K are n-distant.

The entailment relation of our p-ALC is based on all preferred interpretations.

Definition 3.4. Let K be a p-ALC knowledge base and let Z be an axiom written in the language
of K. Z is a preferred consequence of K, written K |≈ Z, if and only if Z is satisfied in every
preferred interpretation I of K.

Using the ALC finite model property (i.e. every satisfiable axiom admits a finite model) it
is possible to show that for any given p-ALC knowledge base there exists an n-distant preferred
interpretation, with n ≥ 0.

Proposition 1. Let K be a credible p-ALC knowledge base. There exists a non-negative integer
n and a preferred interpretation I of K such that I is n-distant.

From Proposition 1 and Definition 3.3 it follows that any given credible knowledge base K is
n-inconsistent, for some non negative integer n.

Example 1. Let K1 =
〈
∅, ∅,

{
R(b, a)[1],¬C(a)[1], (∀R.C)(b)[1]

}
, ∅
〉
. Every interpretation of K1

fails to satisfy at least one defeasible ABox axiom. If we order all its interpretations according
to their distance value, the preferred interpretations are all 1-distant, i.e. those interpretations
for which the sum of the weighted of unsatisfied defeasible axioms is equal to 1. K1 is therefore
1-inconsistent.

When computing the distance of an interpretation, ABox axioms are treated atomically
since each axiom is either satisfied or unsatisfied in an interpretation. Different is the case of
defeasible TBox axioms. If TBox axioms were treated atomically, a single individual falsifying
the axiom in a given interpretation would lead to all other instances of the TBox to be defeated
even though the interpretation would not enforce it. In our notion of distance, and therefore
preferred interpretations, we consider violations of instances of defeasible TBox axioms.

Example 2. Let K2 =
〈
∅, ∅,

{
C(a)[1],¬D(a)[1], C(b)[1]

}
,
{
C v D[1]

}〉
. K2 includes an incon-

sistency associated with a. The distance of a p-ALC interpretation takes into account each
domain element for which a TBox axiom is defeated. For instance, the interpretation I1 where
CI1 = {aI1 , bI1} and DI1 = {aI1 , bI1} would be a 1-distant interpretation of K2, whereas the
interpretation I2, where CI2 = {aI2 , bI2} and DI2 = {aI2}, would be a 2-distant interpre-
tation. I1 would therefore be a preferred interpretation for which D(b) would be true. K2 is
2-inconsistent. K2 |≈ C(b) and K2 |≈ D(b).
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Example 3. Let a, b, and c be individuals. Let’s consider the following ABox axioms: “a
belongs to a group of patients” (P (a)); “everyone that b referred is healthy ((∀R.H)(b))”, “c
is sick” (S(c)), “everybody that c referred is sick” ((∀R.S)(c)), and “c referred at least one
patient in the group ((∃R.P )(c))” and the TBox axiom “Healthy and sick are disjoint concepts”
(H v ¬S). The defeasible knowledge includes the defeasible ABox axiom “We believe that b
referred c” (R(b, c)[1]), and defeasible TBox axiom “patients in group P are healthy” (P v H [1]).
The domain is represented by the credible knowledge base K3 = 〈A3, T3,Ad3, Td3〉, where:

A3 : P (a) (1) (∀R.H)(b) (2) S(c) (3) (∀R.S)(c) (4) (∃R.P )(c) (5)
T3 : H v ¬S (6)
Ad3 : R(b, c) [1] (7)
Td3 : P v H [1] (8)

K3 includes two sets of axioms leading to inconsistencies: {(2), (3), (6), (7)} and {(4), (5), (6), (8)}.
Each preferred interpretation must satisfy the non defeasible axioms and hence must satisfy
(1)−(6). But in the first set, any preferred interpretation that satisfies (2), (3) and (6) must also
satisfy ¬H(c) and therefore defeats R(b, c)[1] (i.e. (7)). But any such preferred interpretation
must also satisfy (5). So there is some (named or unnamed) individual x in the domain for
which R(c, x) and P (x) are satisfied. By (4), S(x) is also satisfied and since (¬H t ¬S)(x) is
satisfied, so is ¬H(x). Thus, (¬P t H)(x) is not satisfied (i.e. (8) is defeated). Hence, each
preferred interpretation must be at least 2-distant. Hence, K3 is 2-inconsistent, and since in
every preferred interpretation (8) is satisfied for a, we have that K3 |≈ H(a). From the above
argument we have K3 |≈ S(c) and K3 |≈ (∃R.(P u S))(c). The latter follows because each pre-
ferred interpretation includes some individual reified as x for which P (x) and S(x) are satisfied.
We can infer that a is healthy, because he/she belongs to the group, but there is at least one
unhealthy individual within this group.

Considering (3) to be defeasible, i.e. S(c)[1], would allow for the possibility that c might not
be sick. Now there are 2-distant preferred interpretations in which c is sick and others in which
c is healthy. K3 6|≈ H(c) and K3 6|≈ S(c). The conflict can be arbitrated by choosing a higher
weight for axiom (3) or (7). For example, considering (7) to be R(b, c)[2] leads to K3 |≈ ¬S(c).
In an interpretation satisfying S(c), ¬H(c) is also satisfied from (6), and (7) is defeated. But
defeating (7) adds a weight of 2 and any such interpretation would be at least 3-distant and
therefore not preferred. Having defined the semantics for our preferential ALC, we are now
interested in computing the preferred consequences of a given p-ALC knowledge base. Tableau
algorithms underpin many modern description logic reasoners including [13] and [24]. Such
algorithms incorporate blocking strategies that limit the size of the domains considered during
reasoning, in the presence of cycles in the TBox in order to guarantee termination. Inspired by
these existing techniques we have developed a modified tableau algorithm that accommodates
our notion of preferential consequences (see Section 4). We have then encoded this algorithm
(see Section 5) in Answer Set Programming (ASP) and used its optimisation features to target
minimal (or maximal) satisfaction of constraints when searching for models (or solutions.).

4 Tableau for Preferential ALC
In this section we present an ALC satisfiability tableau algorithm [2] for the p-ALC semantics.
A satisfiability tableau algorithm is a proof procedure that when applied to a knowledge base
generates some partial model of the knowledge base if this is consistent, or a closed tableau
otherwise. Many common inference tasks for description logics are implemented using satis-
fiability tableau algorithms. These are proof by refutation algorithms used to check whether
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K |= C(x) by checking whether K ∪ ¬C(x) is satisfiable (i.e. leads to a closed tableau). Before
embarking on the presentation of our tableau method it is important to show that the concept
of proof by refutation is also true in the context of our p-ALC semantics.

Theorem 1. Let K = 〈A, T ,Ad, Td〉 be an n-inconsistent p-ALC knowledge base and let
C(x) be an ABox axiom in the language of K. Then K |≈ C(x) if and only if either
(i)〈A ∪ {¬C(x)}, T ,Ad, Td〉 is inconsistent or (ii) 〈A ∪ {¬C(x)}, T ,Ad, Td〉 is m-inconsistent,
for some m > n.

We now introduce a modified ALC tableau algorithm for the p-ALC semantics. A satisfia-
bility ALC tableau algorithm begins with the given ABox and applies a set of rules to develop
all possible expansions (branches). The TBox are expanded by including suitable ABox axioms.
Expansions continue until each possible expansion either a) leads to a contradiction, called a
clash, or (b) no further expansion is possible. In the latter case the branch constructed so far
represents a (partial) model of K. Expansions for existential quantifiers introduce names called
parameters that do not appear in the knowledge base signature. These individuals serve as
witnesses to the expansions. Each name introduced is required to be fresh to the ABox being
expanded, meaning it does not appear within this ABox. To ensure termination in the presence
of a cyclic TBox, a blocking strategy is used. Informally, the idea is to detect when expanding
an axiom would provide no new information, i.e. there is some other individual within the
ABox that is already required to satisfy the same set of concepts.

The technique is adapted for p-ALC by considering all possible valid expansions using the
non-defeasible axioms, omitting subsets of the defeasible ABox axioms and TBox axioms from
defeasible TBox rule applications. The intuition is that an interpretation based on an open
branch which minimises the omissions is maximally consistent and coincides with a preferred
interpretation. Algorithm 1 constructs a p-ALC tableau branch using the tableau rules defined
in Table 1 and the expansions formalised in Definitions 4.1 - 4.2. Note that a branch will only
be composed of (non-defeasible) ABox instances and we will sometimes refer to a branch as a
sequence of ABox axioms.

Algorithm 1 starts with the non-defeasible ABox axioms and a chosen subset of the defeasible
ABox axioms. The remaining (those not chosen) defeasible ABox axioms are added to an
omitted set Ob. As the ABox axioms are “expanded”, all possible applications of →T rule
to the non-defeasible TBox axioms in T are performed. For the defeasible TBox axioms, the
application of the→Td rule may or may not lead to the addition of an ABox axiom to the branch.
The set S in line 9 of the algorithm keeps track of the defeasible TBox axiom instances to which
→Td rule is applied. The defeasible TBox axiom instances for which an ABox axiom was not
added to the branch are at the end added to the omitted set Ob (see line 12). However, new
individuals may be introduced during the tableau expansion (i.e. see rule →∃∀). To guarantee
termination, a blocking strategy is used (see Definition 4.1). This assumes an ordering in which
individuals are introduced, during the construction of a branch, for which some individual are
defined to be older than others, so preventing mutual blocking (x blocks y and y blocks x).
Once an individual is blocked in a branch, it will never become unblocked2. When no further
expansions can be applied to a branch, the omitted set corresponds to the defeasible axioms
instances that will be assumed to be false (i.e. defeated) in the interpretation constructed from
that branch, and the sum of their weights defines the distance of the interpretation. Note that
by changing the initial choice of defeasible ABox axioms and/or choosing different additions to
a branch of defeasible TBox related axiom instance, Algorithm 1 can generate many possible

2Our notion of blocking is an example of static subset blocking in [18].
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branches. As shown later, those open branches with minimal sum of weights of the defeated
axiom instances in the omitted set correspond to preferred interpretations.

Definition 4.1. Let A0 ⊆ A1 . . . ⊆ An denote the sequence of (not closed) ABoxes of a branch
in a sequence of applications of tableau rules. An individual x is older than an individual y if
x is introduced in Ai and y is introduced in Aj where 0≤ i<j≤n. An individual y is blocked
by individual x at step Aj if (i) x is older than y and (ii) {C|C(y) ∈ Aj} ⊆ {C|C(x) ∈ Aj}. If
y is blocked by x we say y is blocked.

Algorithm 1: A branch generating tableau algorithm

Input: K = 〈A, T ,Ad, Td〉, a credible knowledge base
Output: Ab, an expanded ABox
Output: Ob, the omitted set

1 Choose Ao a subset of Ad ;

2 Oinit =
{
〈C(x)[w], x〉 | C(x)[w] ∈ Ao

}
∪
{
〈R(x, y)[w], x〉 | R(x, y)[w] ∈ Ao

}
;

3 Ab := A ∪ (Ad −Ao)−W ;
4 S := {};
5 while Ab is open and not complete do
6 Choose r an instance of a rule that applies to Ab ;
7 Ab := the expansion of Ab by r ;

8 if r is →Td for unblocked x and C v D[w] then S := S ∪ {〈C v D[w], x〉} ;

9 end

10 Ob := Oinit ∪ {〈CvD[w], x〉|〈CvD[w], x〉∈S, (¬̇CtD)(x) /∈Ab)};
11 if Ab is open then return 〈Ab,Ob〉;
12 else return ⊥ ;

Rule Valid expansion of Ab
→u If (C uD)(x) ∈ Ab, x is not blocked and (C(x) /∈ Ab or D(x) /∈ Ab)

then Ae = Ab ∪ {C(x), D(x)}
→t If (C tD)(x) ∈ Ab, x is not blocked and (C(x) /∈ Ab and D(x) /∈ Ab)

then Ae = Ab ∪ {C(x)} or Ae = Ab ∪ {D(x)}
→∀ If (∀R.C)(x) ∈ Ab, x is not blocked and R(x, y) ∈ Ab and C(y) /∈ Ab

then Ae = Ab ∪ {C(y)}
→T If (C v D) ∈ T and ∃ an unblocked individual x in Ab and (¬̇C tD)(x) /∈ Ab

then Ae = Ab ∪ {(¬̇C tD)(x)}
→Td If C v D[w] ∈ Td and there exists an unblocked individual x in Ab

and 〈C v D[w], x〉 /∈ S then Ae = Ab ∪ {(¬̇C tD)(x)} or Ae = Ab
→∃∀ If (∃R.C)(x) ∈ Ab, x is not blocked and ¬∃y [R(x, y) ∈ Ab and C(y) ∈ Ab]

and no other rule applies to Ab
then Ae = Ab ∪ {R(x, z), C(z)}∪ {D(z)|(∀R.D)(x) ∈ Ab} where z is fresh

Table 1: p-ALC blocking tableau rules

Definition 4.2. Let Ab be a current (open) branch generated starting from a given knowledge
base 〈A, T ,Ad, Td〉. Ae is a valid expansion of Ab with respect to T and Td if and only if Ae is
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generated from Ab applying an instance of a p-ALC tableau rule in R defined in Table 1, with
blocking conditions in Def. 4.1. Ab is said to be complete if there are no valid expansions of
Ab under the set of rules R; Ab it is said to be closed if Ab includes C(x) and ¬C(x) for some
concept C and open otherwise.

Given a p-ALC knowledge base K = 〈A, T ,Ad, Td〉, the application of Algorithm 1 to K
generates possible closed or open branches. Each branch has an associated omitted set Ob and
we call the distance of a branch the sum of the weights of the defeasible axiom instances in the
omitted set. An open branch is called an m-minimal branch, if there is no other open branch
whose distance is strictly smaller than m.

Definition 4.3. Let K = 〈A, T ,Ad, Td〉 be a credible knowledge base and B be the set of m-
minimal branches generated for K by Algorithm 1. Let b = 〈Ab,Ob〉 ∈ B, P (b) denote the
set of unblocked parameters introduced in the branch and A′b be the set of axioms in Ab not
involving blocked individuals. Let ∆b be the Herbrand domain based on the signature of K in
which NI is augmented by the unblocked parameters P (b). The Herbrand interpretation Ib of
K based on ∆b is defined as follows. For every x, y ∈ ∆b, A ∈ NC and R ∈ NR: A(x) is true
iff A(x) ∈ A′b; R(x, y) is true if either R(x, y) ∈ A′b or R(x, z) ∈ Ab and z is blocked by y and
is false otherwise.

Proposition 2. Let K = 〈A, T ,Ad, Td〉 be a credible n-inconsistent knowledge base. Let B be
the set of m-minimal branches generated by Algorithm 1 applied to K. Then m ≥ n and for
each branch b ∈ B the interpretation Ib constructed from b is an m-distant interpretation of K.

Proposition 3. Let K = 〈A, T ,Ad, Td〉 be a credible n-inconsistent knowledge base. Algo-
rithm 1, applied to K, generates at least one n-minimal open branch.

Given the above results, to check whether K |≈ C(x) the idea would be first enumerate all the
branches generated by applying Algorithm 1 to K to identify the distance m of the minimal
branches, this can be done by using a branch-and-bound search (or similar). Then Algorithm 1
can be applied to K′ = 〈A ∪ ¬C(x), T ,Ad, Td〉 to search for exactly an m-distant branch. If
such a branch is found then we now conclude K 6|≈ C(x). Otherwise K′ was inconsistent or
K′ is n-inconsistent for some n > m. In either case, we can conclude that K |≈ C(x). In
the next section we show how the computation of such branches can be done in Answer Set
Programming (ASP), exploiting the optimisation features of (ASP).

5 Implementation in ASP

In this section we present the ASP implementation of our tableau method for computing the
entailment relation of our p-ALC . It is implemented using Clingo (version 4.5.0)[11]. To make
the paper self-contained we briefly summarise the features of the ASP fragment that we use
in our implementation. For a full specification of the ASP-Core-2 syntax and semantics, the
reader is referred to [7].

Terms are constants (integers or strings starting with a lower case letter), variables, repre-
sented as strings starting with an upper case letter, or functional terms of the form f(t1, ..., tn)
where f is a functor, ti, for 0 ≤ i ≤ n, are terms. Atoms are of the form p(t1, ..., tn)
where p is a predicate name, n > 0, and t1, ..., tn are terms. Built-in comparison atoms
==, ! =, <,>,<=, >= follow infix notation. A literal is an atom b or a negated atom not b
where not denotes negation by failure. A rule r takes the form h1|...|hm ← b1, ..., bn where
m ≥ 0, n ≥ 0, hi are atoms, the symbol | denotes disjunction, b1, ..., bn, are literals where ,
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denotes conjunction. {h1, ..., hm} ({b1, ..., bn}) is the head (resp. body) of r. A fact is a rule
with an empty body, an integrity constraint is a rule with an empty head. A weak constraint
takes the form :∼ b1, ..., bn[w, t1, ..., tm] where n ≥ 1, b1, ..., bn are literals, w is an integer, m ≥ 1
and t1, ...tm are terms. A program P is a finite set of rules and weak constraints.

HUP (and HBP ) denotes the Herbrand Universe (and Herbrand Base) of P . A ground
instance of P , gnd(P ) is obtained by substituting each variable appearing in a rule or weak
constraint with an element from HUP and evaluating built in predicates. Given a program
P , I ⊆ HBP is a (Herbrand) interpretation of P ; a rule r ∈ gnd(P ) is satisfied by I iff some
h ∈ {h1, ..., hm} is true w.r.t I when b1, ..., bn are true w.r.t I; I is a model of P if every rule in
gnd(P ) is satisfied by I. The reduct of P w.r.t I, denoted P I , is the set of rules from gnd(P )
for which b1, ..., bn are true w.r.t I; I is an answer set of P if I is a ⊆-minimal model of the
reduct P I . Weak constraints identify optimal answer sets. The optimality of an answer set S of
a program P is the weighted sum of w for each unsatisfied ground instance of weak constraints
having a unique set of terms t1, ...tm. S is optimal for P if no other answer set of P has a
smaller optimality.

A given knowledge base K is represented in ASP as a set of facts denoted Kτ . Each name
N in the signature is translated into an ASP constant Nτ by mapping the first letter to its
lower case. Concepts are translated to ground ASP terms using the unary or binary function
symbols neg, and, or, oSome and oAll to denote the constructors ¬,u,t,∃,∀ (resp.). Table 2
defines the inductive mappings used to translate concepts and axioms to ASP terms.

C Term Cτ C Term Cτ Z Term Zτ

> thing C1 u C2... u Cn and(Cτ1 , (C2... u Cn)τ ) C(x) ca(Cτ , xτ )
⊥ neg(thing) C1 t C2... t Cn or(Cτ1 , (C2... t Cn)τ ) R(x, y) ra(Rτ , xτ , yτ )
¬C neg(Cτ ) ∃R.C oSome(Rτ , Cτ ) C v D sc(Cτ , Dτ )
(C) (Cτ ) ∀R.C oAll(Rτ , Cτ )

Table 2: Mapping concepts C and axioms Z to ASP terms

Definition 5.1. Let K = 〈A, T ,Ad, Td〉 be a knowledge base with signature 〈NC , NR, NC〉. The
encoding in ASP of K and sig(K) is defined as follows:

Kτ = {ax(Zτ , 0).|Z ∈ A ∪ T } ∪ {ax(Zτ , w).|Z [w] ∈ Ad ∪ Td}
sig(K)τ = {i(xτ ). | x ∈ NI} ∪ {r(Rτ ). | R ∈ NR} ∪ {c(Cτ ). | C ∈ NC}

where the translations by τ are given in Table 2.

Considering Example 3, K3 is encoded by the ASP facts:

ax(ca(p, a), 0). ax(ca(oAll(r, h), b), 0). ax(ca(s, c), 0).
ax(ca(oAll(r, s), c), 0). ax(ca(oSome(r, p), c), 0). ax(sc(h, neg(s)), 0).
ax(ra(r, b, c), 1). ax(sc(p, h), 1).
i(a). i(b). i(c). r(r). c(h). c(p). c(s).

The full ASP encoding of a defeasible knowledge base is given by ASP (K) = Kτ ∪ sig(K)τ ∪
Pbase ∪ Pcum where Pbase and Pcum are defined below.

The program Pbase uses predicates isa/2 and hasa/3 to represent ABox axioms within a
tableau expansion. The supported inference of ground atoms representing non-defeasible ABox
axioms is unconditionally, whereas that of atom representing defeasible ABox axiom instances
is subject to choice (see rule (a3)):

isa(X,C)← ax(ca(C,X), 0) (a1)
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hasa(X,R, Y )← ax(ra(R,X, Y ), 0) (a2)

isa(X,C) | u(ca(C,X), X,W )← ax(ca(C,X),W ),W > 0 (a3)

:∼ u(ca(C,X), X,W ) [W, ca,C,X] (a4)

hasa(X,R, Y ) | u(ra(R,X, Y ), X,W )← ax(ra(R,X, Y ),W ),W > 0 (a5)

:∼ u(ra(R,X, Y ), X,W ) [W, ra,R,X, Y ] (a6)

For example, given a non-defeasible ABox (C uD)(a) in K, answer sets of ASP (K) will include
ax(ca(and(c, d), a), 0). The atom isa(and(c, d), a) will be included in every answer set by (a1).
If the non-defeasible ABox R(a, b)[2] is in K, the ASP program Kτ will include ax(ra(a, b), 2).
By rule (a5), either hasa(a, r, b) or u(ra(r, a, b), a, 2) will be in each answer set. The weak
constraint (a6) increases the total weight of the answer set by 2 (meaning the answer set is less
optimal) when u(ra(r, a, b), a, 2) is added to it.

isa(X,C)← isa(X, and(C,D)) (e1)

isa(X,D)← isa(X, and(C,D)) (e2)

isa(X,C) | isa(X,D)← isa(X, or(C,D)) (e3)

isa(Y,C)← isa(X, oAll(R,C)), hasa(X,R, Y ) (e4)

isa(X, or(@neg(C), D))← ax(sc(C,D), 0), i(X) (e5)

isa(X, or(@neg(C), D)) | u(sc(C,D), X,W )← ax(sc(C,D),W ), i(X),W> 0 (e6)

:∼ u(sc(C,D), X,W ) [W, sc, C,D,X] (e7)

Rules (e1-e7) capture the expansion rules. The symbol @neg is a custom function implemented
in the Lua language3 and ensures concepts are expressed in NNF; if X is an ASP term repre-
senting concept C, @neg(X) = (¬̇C)τ .

isa(X, thing)← i(X) (e8)

← isa(X,neg(thing)) (e9)

← isa(X,C), isa(X,neg(C)), c(C) (e10)

hw(X, oSome(R,C))← isa(X, oSome(R,C)), hasa(X,R, Y ), isa(Y,C) (e11)

need(X, oSome(R,C))← isa(X, oSome(R,C)), not hw(X, oSome(R,C)) (e12)

used(X)← i(X) (e13)

Rule (e8) captures the property that every named individual has to belong to the “top” concept,
rules (e9, e10) guarantee that answer sets include only consistent expansions. Rules (e11-e13)
capture the →∃∀ tableau rule, where the atom hw(X, oSome(R,C)) means that “X has a
witness to the concept ∃R.C”. Where no such witness exists, need/2 labels that a parameter
must be introduced. However, since we do not know a priori how many parameters are required,
new parameters and their associated rules are introduced on an “as-needed basis”. Grounding
and solving is implemented iteratively under script control.

Initially, the program Kτ ∪ sig(K)τ ∪ Pbase is grounded, denoted P 0
g , and solved returning

some answer set S0 or unsatisfiable. In the former case a sequence of one or more iterations
is carried out, each generating an extension to the initial grounding P 0

g and then re-solving the
extended ground program. Each need(X, oSome(R,C)) atom instance in S0 indicates that a
parameter is needed to serve as a witness to the individual X for the concept represented as
oSome(R,C). The program P 0

g is cumulatively extended with the program gnd(Pcum) giving

3Lua functions are distinguished by a leading @ symbol.

76



Reasoning in the presence of inconsistency through Preferential ALC Deane, Broda and Russo

P 1
g (see below) and solved again, either returning an answer set S1 or unsatisfiable. Sub-

sequent iterations are similarly carried out and terminate either when no further parameters
are needed or the solver returns unsatisfiable. We call the final generated answer sets the
optimal solutions of program ASP (K).

The program Pcum implements the rules required to introduce and expand concepts for a
parameter. It begins with the #program directive which instructs the grounder to postpone
grounding the subsequent rules until requested. Each need(X, oSome(R,C)) atom instance is
associated with a unique fresh parameter identifier(PID), and used to assign the three arguments
in Pcum: p (a PID), i (an individual X), and c (a concept oSome(R,C)), each triple of
arguments leading to a set of ground instances of Pcum.

#programcum( p, i, c) (c1)

hasa( i, R, p)← isa( i, c), oSome(R,C) = c (c2)

isa( p, C)← isa( i, c), oSome(R,C) = c (c3)

isa( p, C)← hasa( i, R, p), isa( i, oAll(R,C)) (c4)

cea( p, C, i)← oSome(R,C) = c, isa( i, c) (c5)

cea( p, C, i)← isa( i, oAll(R,C)), hasa( i, R, p) (c6)

used( p)← cea( p, C, i) (c7)

isa( p, thing)← used( p) (c8)

dnb(Y, p)← used(Y ), Y != p, cea( p, C, i), not isa(Y,C) (c9)

b( p)← used( p), used(Y ), Y != p, not dnb(Y, p) (c10)

Rules (c2-c6) capture the →∃∀ rule with respect to fresh parameters. Concepts from the →∃∀-
rule are recorded (c5,c6). Parameters serving as a witness are labelled as used (c7) and added
to the top concept (c8). Rules (c9-c10) keep track of the blocking mechanism. Atom dnb(Y, p)
states that “Y does not block p”, and atom b( p) that “ p is blocked”. Since the grounding
calls to Pcum are sequential, each used Y was introduced within an earlier grounding step and
represents an older individual within an expansion. Mutual blocking is prevented by enforcing
Y != p. Rules (c11-c20) expand used, unblocked parameters:

isa( p, C)← isa( p, and(C,D)), used( p), not b( p) (c11)

isa( p,D)← isa( p, and(C,D)), used( p), not b( p) (c12)

isa( p, C) | isa( p,D)← isa( p, or(C,D)), used( p), not b( p) (c13)

isa( p, or(@neg(C), D))← ax(sc(C,D), 0), used( p), not b( p) (c15)

isa( p, or(@neg(C), D)) | u(sc(C,D), p,W )←
ax(sc(C,D),W ),W > 0, used( p), not b( p) (c16)

:∼ u(sc(C,D), p,W ), used( p), not b( p) [W, sc, C,D, p] (c17)

need( p, oSome(R,C))← isa( p, oSome(R,C)), used( p), not b( p) (c18)

← isa( p, neg(thing)) (c19)

← isa( p, C), isa( p, neg(C)), c(C) (c20)

Recall from Section 4 that the query K |≈ C(x)? can be answered by refutation in two steps.
Our implementation of Algorithm 1 in ASP also follows the same approach. We first find an
optimal answer set with optimality o of ASP (K), called So, which will indicate that K is o-
inconsistent. Then we consider ASP (K′), where K′ is given by K augmented with ¬C(x). In
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KB T1 T2 (PE) T2 (DE) T3
Name n t m i t m i t m i t m i

amino-acid0 0 13:15 836 7.3 0:13 0.5 1.5 2:37 7.3 7.3 28.19 2016 4
amino-acid1 1 7:56 319 4.3 0:03 0.2 1.2 5:23 7.9 7.9 50.16 1767 4
amino-acid5 5 42.15 985 8.0 3.45 3.5 2 17:50 12.1 9.9 t-out t-out

Table 3: Computation of answer sets from n-inconsistent knowledge bases

this second step we look for an o-optimal answer set. If such an answer set is not found then K′ is
either unsatisfiable or m-optimal for m > o, and in both cases we can conclude K |≈ C(x). This
is guaranteed by Theorem 1 and the following properties of ASP (K): ASP (K) belongs to the
class of Finitely Ground Programs [6], its rules (excluding constraints) are locally stratified, and
interpretations constructed from n-minimal branches obtained from Algorithm 1 correspond to
n-optimal solutions of ASP (K).

6 Evaluation

We have applied our approach to the amino-acid knowledge base4, used as a benchmark in
[21]. This knowledge base includes 46 named concepts, 5 roles and 1 individual, as signature;
and, as axioms, 1 concept assertion, 0 role assertions, 238 concept inclusions, 199 concept
equivalences and 12 disjoint concepts. We have generated from it amino-acid0, a (uniform)
0-inconsistent defeasible p-ALC knowledge base with 20 individuals5 in which every axiom is
defeasibly asserted with a weight of 1. In addition, two inconsistent uniform knowledge bases
were generated by adding further defeasible concept assertions: amino-acid1 is 1-inconsistent
and amino-acid5 is 5-inconsistent. Three tasks were evaluated for each of these three knowledge
bases K: T1) Establish the n-inconsistency of K by finding one optimal answer set of ASP (K);
T2) Prove or disprove entailment for a randomly selected concept assertion C(x) where C ∈ NC
and x ∈ NI by searching for an n-optimal answer set of ASP (K ∪ {¬C(x)}), finding such a
model proves entailment (PE) and failing to find one disproves entailment (DE); T3) Concept
retrieval, i.e. find the concepts to which each individual belongs by computing intersection of
all n-optimal answer sets of ASP (K).

Table 3 summarises, for each of these experiments, the computational time (t as min-
utes:seconds), the total number of models found (m) and the number of grounding iterations
of Pcum (i). Values are averages of 10 runs using a platform based on an Intel(R) Core(TM)
i7-2600 CPU @3.40GHz with 16G of RAM. t-out denotes the test was aborted after 60 min-
utes. The (non) entailments for amino-acid0 were verified using HermiT[13] and for the others
was checked manually. The results show that for each knowledge base proving entailment(PE)
is faster than disproving entailment(DE), as is typical for tableau refutation. Increasing the
numbers of inconsistencies leads to increased computation time.

7 Related Work

p-ALC is most closely related to the ICAR repair semantics [19] defined for DL-LiteA. However,
the p-ALC semantics are less cautious than the ICAR semantics. To illustrate this, consider a
knowledge base K = 〈A, T 〉 in DL-LiteA that has an equivalent formulation in ALC. K can

4Available in the TONES repository http://www.tonesproject.org/.
51 asserted individual for each amino acid.
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be expressed as a uniform p-ALC knowledge K′ = 〈∅, T ,A, ∅〉, where each defeasible axiom in
A is assigned a weight of 1. For example, consider K4 = 〈{C(a), R(a, b), C(b)} , {C v ¬∃R}〉
K4 |=ICAR C(b) and K′4 |≈ C(b). For K5 = 〈{R(a, b), R(a, c), D(a)} , {∃R v ¬D}〉 there are
two possible CAR-repairs, the sets {R(a, b), R(a, c),¬D(b)}, and {D(a)} which have an empty
intersection. In contrast, K′5 |≈ R(a, b), R(a, c),¬D(a) because an interpretation that corre-
sponds to the first CAR-repair is 1-distant and for the second is 2-distant. Error tolerant
TBox reasoning in EL* using repair semantics was investigated in [20], but focused on a differ-
ent task. They targeted the removal of unwanted consequences by removing subsets of TBox
axioms (treated atomically). The work in [16] and [23] is based on applying Possibilistic logic
to ALC in order to deal with uncertainty. TBoxes are considered atomically and the weights
are compared over an absolute scale rather than cumulatively. The semantics can provide a
measure of certainty when computing entailment, a feature that is not provided in p-ALC ,
but doesn’t take into account derived consequences. Another approach to inconsistent tolerant
reasoning is using 4-valued paraconsistent semantics ([21] for a review). An advantage of the
approach is that implementation is possible using existing reasoners. However, inferences that
rely on disjunctive syllogism are not possible leading to more cautious semantics than p-ALC .

8 Conclusions and Future work

In this paper we have introduced p-ALC , a preferential ALC, proposed a modified tableau
algorithm, together with its ASP implementation, and demonstrated the feasibility of approach
using (modified) existing knowledge bases. Future directions include, conduct a more substan-
tial evaluation aimed at assessing the impact on computational time of different ratios between
defeasible and non-defeasible axioms, and of considering different weights. We will also assess
the impact of incorporating tableau optimisations such as lazy unfolding and early clash detec-
tion mechanisms [1]. Confidence weights were used to arbitrate inconsistency and determine
a measure of inconsistency for a given knowledge base. We will investigate the relationship
between this and other inconsistency measures (e.g. Grant et al. [14]) and identify if such
measures can be used to inform the assignment of weights to axioms.
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