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Abstract 

In order to reduce the total amount of radiation exposure and provide real-time 
guidance ultrasound has been incorporated as a potential intra-operative imaging 
modality into various orthopedic procedures. However, high levels of noise, various 
imaging artifacts, and bone boundaries appearing several millimeters in thickness hinder 
the success of ultrasound as an alternative imaging modality in assisting orthopedic 
surgery procedures. Additional difficulties are also encountered during manual operation 
of the ultrasound transducer during image acquisition. In this work, we proposed a 
combination of novel scan plane identification method, based on convolutional neural 
networks, and bone surface localization method. The bone surface localization approach 
utilizes both local phase information, a combination of three different local image phase 
information and signal transmission map obtained from an L1 norm based contextual 
regularization method. The proposed network was utilized on two different US systems 
and to identify five different scan planes. Validation was performed on scans obtained 
from 16 volunteers. The correct scan plane identification rate of over 93% has been 
obtained. Validation against expert segmentation achieved a mean vertebra surface 
localization error of 0.42 mm.  

 

1 Introduction 
Spinal fusion surgeries increased by 113% between the years 1998 – 2011 (The Burden of 

Musculoskeletal Diseases in the United States (BMUS), 2014). Treatment involves insertion of pedicle 
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screws. Due to the close proximity of many important neural and vascular structures, surrounding the 
surgical area accurate screw placement is important (Manbachi, et al., 2014). Accuracy of screw 
placement impacts fusion rate and it also impacts adjacent level disease. Percutaneous pedicle screw 
insertion (PPSI) procedures have gained widespread acceptance due to advantages such as reduced 
length of stay, reduced blood loss and earlier return to work (Mobbs, et al., 2011). Computer assisted 
orthopedic surgery (CAOS) systems have increased the success rates of PPSI procedures (Gelalis, et 
al., 2012). However, the clinical accuracy requirements for certain levels of spine still exceed the 
accuracy of current image guided surgical systems. Another major concern is the exposure to ionizing 
radiation since most of the currently available PPSI systems are based on two-dimensional (2D)/ three-
dimensional (3D) intra-operative fluoroscopy.  

 

Figure 1: Five different types of scan planes of lumbar spine. (a) Paramedian sagittal articular process view 
corresponding to the scan plane overlapping the pedicle region (correct scan plane). (b-c) Schematic figure showing 
the US transducer orientation for correct scan-plane. (d) Paramedian sagittal transverse process view. (e) 
Paramedian sagittal laminar view. (f) Transverse spinous process view. (g) Transverse interlaminar view.  

 
Ultrasound (US) has been incorporated into various CAOS procedures due to its real-time, portable, 

less expensive, non-radiation, and 3D imaging capabilities (Dardenne, et al., 2009). Compared to 
standard fluoroscopy imaging, US bone images have low signal to noise ratio (SNR), various imaging 
artifacts which do not correspond to any anatomical structure, and bone surfaces appear several 
millimeters in thickness. Another important limitation of US is the need for manual operation of the 
transducer which effects the quality of the collected bone data. Correct localization of the US transducer 
with respect to the bone anatomy is especially important while imaging complex anatomy bone surfaces 
such as the spine. In order to overcome some of these limitations several research groups have proposed 
methods for automatic extraction of bone surfaces from the collected intra-operative US data (Anas, et 
al., 2015; Beitzel, et al., 2012; Hacihaliloglu, et al., 2015; Kowal, et al., 2007; Quader, et al., 2014). 
However, a combination of automatic scan plane identification and bone segmentation has not been 
investigated previously. 

With these in mind, we propose a novel pedicle screw fixation scan plane selection method, based 
on convolutional neural networks (CNNs), from 2D US data. The proposed system can utilize the 
proposed CNN to guide surgeon to the correct scan plane during the procedure, and thus overcome the 
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disadvantage of US images not corresponding to any anatomical structure. During the final stage of our 
proposed method, the bone surfaces are extracted using a local phase-based bone segmentation method 
(Hacihaliloglu, 2018). Eventually, the local phase based enhancement approach highlights the spine 
surface, which could be incorporated into spine model registration and segmentation (Hacihaliloglu, et 
al., 2014), which could provide a better view when screws go under the bone surface. We validate the 
proposed method on 2D US scans collected from 16 volunteers. Here, this work is presenting in 
preliminary form testing only in one sagittal AP plane, and future proposed system will provide both 
sagittal and transvers plan in assisting surgeon to more accurately place pedicle screws.  

 

2  Materials and Methods  
 

2.1 Data Collection 
434 US lumbar spine images were captured from 10 subjects by a Sonix-Touch US system 

(Ultrasonix, Medical Crop, Richmond, BC, Canada); it includes a collection of images from five 
different scan planes shown in Figure 1. In addition, 104 US lumbar spine images were collected from 
6 subjects including three different scan planes by a wireless portable US scanner (Clarius C3, Clarius 
Mobile Health, Burnaby, BC, Canada) in order to increase size of database and test accuracy of 
proposed network on different US system. In vivo volunteer scans were collected after obtaining the 
approval of Rutgers University institutional review board (IRB). The detailed information regarding 
number of images in each scan plane for two models of US systems are summarized in Table 1. All the 
collected scans were cropped into a 512x512 region of interest (ROI), which includes only the vertebrae 
bone surfaces (Fig. 1.). The articular process (AP) scan plane, during longitudinal paramedian sagittal 
scanning approach, covers part of pars interarticularis and the inferior point of the superior articular 
facet. Therefore, AP scan plane is a proper scan plane as reference for placement of pedicle screw from 
sagittal view. 

 

 

View 
Sonix-Touch US 

System 
Wireless Portable 

US Scanner 
Paramedian Sagittal Articular 
Process View 

130 69 

Parameidan Sagittal Transvers 
Process View 

91 21 

Paramedian Sagittal Laminar 
View 

92 16 

Transver Spinous View 59 N/A 
Transver Interlaminar View 62 N/A 

Total: 434 106 
Table 1: Number of Images for Each Type Collected by Different US Systems 
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2.2 Automatic Scan Plane Selection using CNNs 
The proposed network architecture is inspired by the AlexNet, which consists of 5 convolutional 

layers and 3 fully-connected layers (Krizhevsky, et al., 2012). In our work, we introduce some of 
changes to the original network in order to optimize the CNN to obtain prediction for larger 512x512 
input images, and this architecture would make a prediction according to class score of each category. 

We trained the network using mini-batch stochastic gradient descent (SGD) with a momentum of 
0.9, a cross-entropy loss, and with a learning rate of 0.001 for both Sonix-Touch US system and wireless 
portable US scanner. In order to reduce overfitting and make the network more robust to identification 
AP scan planes, we performed data augmentation which resulted in the generation of additional datasets 
which are used to train our network. Data augmentation is achieved using horizontal flip, and introduced 
four different translations. By performing this data augmentation, we enlarged our data set ten times 
resulting in the training data size of 3840 and 560 for the Sonix-Touch and Wireless US scanners 
respectively. Training for both US systems was performed using the random sampling method where 
50 images were randomly selected from AP scan planes dataset for testing and the rest AP scan plane 
images and all other US images from the rest four scan planes were used for training after augmentation 
(Bishop, 1995). To further solidify the identification accuracy, we repeated the process of random 
selection of AP scan plane image five times and averaged the identification accuracy over these five 
times testing (5-fold cross validation).  

2.3 Bone Segmentation  
The proposed bone segmentation method is based on the extraction of three different image phase 

features using band-pass quadrature filters (Hacihaliloglu, 2017). The extracted phase features are used 
as an input to an L1 norm-based contextual regularization method for the enhancement of bone shadow 
regions. Recently this method was also applied for the enhancement of bone shadow regions 
corresponding to extended field of view spine US data (Alsinan, et al., 2017). In this work, in order to 
extract bone surface features from the automatically localized scan planes, we combine local phase 
image features and the enhanced bone shadow regions into a dynamic programming solution 
(Hacihaliloglu, 2018) The dynamic programming method segments a bone surface for each scanline in 
the B-mode US data. A bone probability image, obtained by masking the enhanced shadow image with 
the local phase images, is used to guide the optimization. The dynamic programming approach 
minimizes a cost function in order to calculate a path, denoted as BL(s), corresponding to the bone 
surfaces present in the US data. During this optimization US image partitioned into three different 
regions denoted as bone, boneless, jump (Fig.2-d). The proposed bone segmentation method is validated 
on 89 vertebrae surfaces obtained from 16 volunteer scans. Gold standard surfaces are obtained by 
manual expert segmentation. The quality of the segmentation is evaluated by computing average 
Euclidean distance (AED) between the manual and automatically extracted bone surfaces.  
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Figure 2: (a) Paramedian sagittal AP view of lumbar spine B-mode US image identified from the proposed CNN 
method. (b) Bone shadow enhanced image. (c) Bone localization result. Automatically identified bone surfaces are 
displayed in red color. (d) Schematic plot of US regions used during dynamic programming-based bone 
segmentation. Blue arrows correspond to boneless regions, red arrows correspond to bone regions, and black 
vertical dashed bars correspond to jump regions.  

3 Results 

3.1 AP Scan Plane Identification 
The average identification accuracy with maximal and minimal values for both US systems are 

presented in Table 2. From Table 2, it can be seen that the proposed network has equivalently high 
accuracy for images collected from both US systems. 11 images in 17 misidentified images were 
considered as laminar scan plane by the proposed network for Sonix-Touch system. Similarly, 10 of 16 
misidentified images from wireless portable system were misclassified as laminar scan plane. The 
training time using the dataset obtained from the Sonix-Touch US system was 7.5 hours. Training time 
decreased to 1.09 hours for the Wireless US system due to less number of images being used. 
Classification time for a single 2D US scan was 0.09 seconds.  

 

3.2 Bone Segmentation 
Mean AED error for localization of vertebra bone surfaces was 0.43 mm (SD:0.19 mm). The maximum 
AED error was 1.15 mm. The combination of enhanced local phase bone features and shadow region 
information provides a robust estimate for the spine features from the extracted scan plane. Qualitative 
result from the bone segmentation is presented in Figure 3. Computaiton time for a single scan was 9.4 
seconds using an unoptimized MATLAB code.  
 

US system 
Averaged 
Accuracy 

Min. 
Accuracy 

Sonix-Touch 93.2% 90% 
Wireless Portable 93.6% 88% 

Table 2: AP Scan Plane Identification Accuracy 
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4 Discussion and Future Work 
Most of misidentification happened between AP scan plane and laminar scan plane. This is due to 

laminar is adjacent to AP, and thus when probe slightly tilts, it would cause AP scan plane US images 
have a high similarity with laminar scan plane images. In addition, two images from Sonix-Touch 
system were considered as interlaminar scan plane image by the proposed network. For minimization 
of mentioned error and enhancement of classification accuracy, the network should be trained by a large 
amount of US images under different views. Moreover, the application of preprocessing techniques is 
able to provide more distinguished features to neutral network and could further improve accuracy.  

Generally, the optimal entry point of pedicle screws is at the intersection of the pars interarticularis, 
the midpoint of the transverse process, and the inferior point of the superior articular facet (Koon, 2010; 
Oh, et al., 2013). Using US as a type of guidance would potentially provide a real-time imaging 
alternative for the identification of dorsal anatomic landmarks. The proposed CNN classifier provides 
a good reference for surgeon in identification of proper scan planes. The reported time of 9.4 seconds 
for segmentation of bone surfaces needs to be improved in order for the proposed classification and 
segmentation method to be used for intra-operative guidance.  

Future work will investigate the ability of CNNs in identification of transvers plane of different level 
of lumbar spine. It is important that each surgeon may require to review in both sagittal and transverse 
planes for accurate placement of pedicle screws. We will also investigate incorporation of data from 
more patients to increase the size of training data set in order to improve classification accuracy. Finally, 
investigation of CNNs for segmentation of the bone surfaces from the US data will also be performed 
as part of our future work. 

 

 
Figure 3: (a) Paramedian sagittal AP view of lumbar spine B-mode US image identified from the 
proposed CNN method. (b) Bone shadow enhanced image. (c) Bone localization result. 
Automatically identified bone surfaces are color coded in red, and manual expert bone segmentation 
is color coded in green. (d) Box and whisker plot for vertebra surface localization. 
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