
Kalpa Publications in Computing

Volume 11, 2019, Pages 49–63

Proceedings of 8th International Workshop
on Security Proofs for Embedded Systems

A comment on information leakage from robust code-based

checkers detecting fault attacks on cryptographic primitives∗

Osnat Keren1 and Ilia Polian2

1 Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
osnat.keren@biu.ac.il

2 Institute of Computer Engineering and Computer Architecture, University of Stuttgart, Germany
ilia.polian@informatik.uni-stuttgart.de

Abstract

Cryptographic hardware primitives must be protected against fault-injection attacks.
Security-oriented error-detecting codes provide (probabilistic) guarantees for detection of
maliciously injected faults even under assumption of a sophisticated attacker with access
to powerful equipment. In this paper, we revisit the earlier finding that error-detection in-
frastructure may increase the undesired information leakage. We formalize the information
leakage from the checker response by means of mutual information. We apply our analysis
to the best security-oriented robust codes known today. We prove that the probability of
an undetected attack is exponentially smaller than the entropy loss due to information leak
from the checker. This means that an attack will be detected far before the attacker will
gain significant information. Given a bound for acceptable information leakage (e.g., 0.5
bits of a 128-bit secret key), our analysis allows the designer to easily choose the number
of redundant bits required to stay below that bound. The obtained results extend our
knowledge about the relationship between detection capabilities of codes and information
leakage due to them.

1 Introduction

Fault injection attacks on ciphers circuits aim to extract the secret key by analyzing correct and
faulty ciphertext pairs. Such attacks grow in importance since novel cyber-physical applications
and autonomous systems are physically exposed to and accessible by their users and can be
manipulated. A large number of popular cryptosystems have been successfully attacked, ranging
from simple block ciphers (e.g., AES [1], PRESENT [2], LED [3]) to elaborate asymmetric [4]
and postquantum schemes [5, 6]. One of the most effective ways to mitigate fault injection
attacks is by embedding security oriented codes in hardware. These codes are essential for
mitigating faulty ciphertext-only attacks [7].

Security oriented codes can utilize deterministic or random encoders. The effectiveness of
codes with random-encoding, e.g., the codes in [8, 9, 10, 11], depends on the entropy of the

∗This research was supported by the ISRAEL SCIENCE FOUNDATION (grant No. 923/16).

K. Heydemann, U. Kühne and L. Li (eds.), PROOFS 2019 (Kalpa Publications in Computing, vol. 11),
pp. 49–63

A comment on information leakage from robust code-based checkers Keren and Polian

��������	�

���������

��������

��	������

��������

��������	�

��������

���� !

��������

���������

��������

���������

��������

"��"#��

�����"��

��������

"��"#��

�����"��

��������

Figure 1: Protected AES architecture. The registers are located after the SubBytes module to
enable on-line prediction and checking.

random portion. In practice, it is difficult and expensive to implement a true (i.e., maximal
entropy) random number generator that cannot be neutralized by fault injection. This makes
codes with deterministic encoding an attractive alternative [12]. In this paper we focus on
information leakage from robust codes with deterministic encoding.

It is often argued that deterministic code-based countermeasures against fault injection
attacks can increase the information leakage via the side channels (such as power consumption,
electromagnetic radiation etc.). This claim is true to some extent; redundancy of any kind,
as it is, carries information on the secret data it aims to protect. The question is how much
exploitable information the redundant portion carries. In general, duplication based redundancy
or repeated computation increase the SNR ratio (i.e., the ratio between the energy of the signal
that carries information and the energy of the thermal and switching noises). It also increases
the correlation between the secret information and the side information. In some cases, the
security level can still degrade even if more complex codes are employed. In [13], the authors
studied the effect of a low rate error detection circuits on resistance to power analysis attacks.
The evaluation that was carried on a single S-box circuit showed that an adversary who knows
the coding scheme can take advantage of this additional information. An analysis of the mutual
information between the secret 8-bit key and the power trace showed that this attacker could
learn at most 0.5 bits (depending on the noise level), whereas an attacker who was not aware
of the implemented code had a lower success rate.

The observations presented in [13] apply to cases in which each SBox has its own redundant

50

A comment on information leakage from robust code-based checkers Keren and Polian

Table 1: Information leakage (bits) and cumulative probability of an undetected (masked) fault
attack for a 64-bit key protected by nine redundant bits

Number of faults d 1 2 3 4 16 251
Information leakage 0.25562 0.51124 0.76686 1.02248 4.08992 64
Masking probability 3.91E-03 1.53E-05 5,98E-08 2,34E-10 2,98E-39 < 1E-604

bits; i.e., when the code rate is low. The AES architecture such as the one presented in [14] (see
Fig 1) employs a predictor and a checker to protect all the state bits. The predictor computes
the value of r redundant (check) bits in parallel to the execution. These bits, together with the
128 bits of the SubByte block (64 bits for lightweight ciphers), form a codeword. If a robust
code is used, any attempt to tamper with the combinational logic or to flip the content of
the registers will be detected by the checkers with a guaranteed probability. For example, a
Compact Protection Code (CPC) [15] can protect any number of state bits with a worst-case
probability of an undetected fault being 2−r+1 where r is the number of redundant bits. An
attacker like the one in [13] who aims to extract only 8 state bits at a time cannot acquire
information from the r redundant bits because they depend on the complete state and not only
on its 8-bit portion; the relationship between 8 bits and the redundancy bits appears as totally
random. In other words, the entropy of these eight bits does not decrease given the value of
the r redundant bits.

Recently, several authors have observed that fault-tolerant digital design techniques affect
SCA resistance [16, 17]. In [16] the authors proposed a combined single fault location attack
on redundancy based countermeasures assisted by supplementary side channel information on
the Hamming weight of the manifested error. However, this attack strategy applies to software
implementations of AES and PRESENT ciphers that are protected by time/space redundancy.
The type of redundancy used in these papers is not robust, and therefore the success of these
attacks does not contradict our findings which assume security-oriented robust codes.

Contribution: In this paper we examine whether the use of robust codes with a deterministic
encoder can degrade security; that is, whether the checker’s response can narrow the key’s search
space. We evaluate the (average) reduction in the size of the search space in terms of the mutual
information (MI) between the secret key and the checker’s response. The MI is analyzed as a
function of the injected error; it represents the (average) number of bits that can be learned
about the key from a single injection of a specific error vector. We show that, when robust
codes are used, the entropy loss due to information leak from the checker is small and increases
linearly both in the number of redundant bits r, whereas the probability that the attack not
be detected decreases exponentially. The same relationship holds for the dependency of the
entropy loss and probability of an undetected attack on the number of fault injections. In other
words, we can expect that providing strong fault detection has only a limited and exponentially
decreasing impact on information leakage and thus on security.

For example, assume that a 64-bit secret key is protected with a security-oriented code with
nine redundant bits. Table 2 provides one suitable code for this purpose. From our analysis it
will follow that a standard checker leaks 0.25562 bits per fault injection and that the probability
that a fault injection is undetected is 3.91 · 10−3. Table 1 shows the total number of bits leaked
after d fault injections and the probability that the attack will be detected. It can be seen
that the number of attacks to extract a non-negligible amount of information is such that its
detection is near to certain (e.g., masking probability of 10−30 for 16 fault injections necessary
for extraction of 4 bits).

51

A comment on information leakage from robust code-based checkers Keren and Polian

2 Preliminaries

2.1 Fault-injection attacks

It has been noticed in [18] that faults that occur during a cryptographic operation can com-
promise its security. Fault-injection attacks utilize this fact by deliberately inducing a physical
disturbance during the execution of a cryptographic function. A plethora of fault-injection
techniques has been demonstrated, including inducing glitches on the circuit’s inputs or clock
lines; overheating; underpowering; applying electromagnetic pulses; and illuminating the circuit
with a laser [19, 20]. The best known attacks, which need a single fault injection to recover the
complete secret key of a cipher [1, 3], require very high temporal and spatial resolution, i.e., a
fault injection in a precisely known clock cycle at a precisely known portion of the circuit. Even
the most sophisticated fault-injection techniques [21] currently do not provide such resolution,
and as a consequence, an attack must be attempted several times. Robust codes used in this
paper make a conservative assumption of the attacker: namely that the attacker can precisely
select an arbitrary number of specific bits that will be flipped as a consequence of the fault
injection. This is captured by defining the error as a binary vector which is added (XORed) to
the circuit’s outputs and errors which the attacker can choose.

Once a fault has been injected, the attacker can analyze the circuit’s outputs (ciphertexts
in the case of encryption) obtained in presence and in absence of the disturbance. Applying
differential cryptanalysis techniques, secret key bits can be inferred. It is also possible to collect
a larger number of the circuit’s responses for faults of different intensities and to infer the key
from a statistical analysis [22, 23]. In this paper, we make no assumption about which type of
fault analysis the attacker will perform. Any injected fault that goes undetected by the robust
code is considered critical and the codes aim at increasing the probability of detection. The
question considered is whether knowing the checkbits gives the attacker additional information
about the secret key and how much such information leakage can occur.

2.2 Robust codes based architectures

There is a fundamental difference between protecting the output of combinational logic (in
our case, a cipher) and protecting data stored in memory arrays or registers. In the latter
case the information portion is given explicitly, whereas in the first case, it is given implicitly.
In other words, information about the secret key exists in the circuits’ output as a function
of functionality of the circuit, the user-controlled inputs and the internal state variables. In
protected memory arrays, the codeword is stored in memory, whereas in protected cryptographic
modules a (systematic) codeword is formed on the inputs of the checker.

When security-oriented codes are applied to hardware implementations of cryptographic
primitives (e.g., block ciphers), they can interpret the entire state of the cipher (128 bits for
AES-128, 64 bits for LED-64) as the information portion and add redundant bits according
to the code structure. Detailed security-oriented code-based architectures are discussed in
[24] for robust codes with and without error correction capabilities. Example 1 further below
illustrates the application for the reduced example of a 12-bit cipher state being protected by
two redundant bits.

Formally, denote by nb the number of wires that enter the checker. We refer to this nb-bit
binary vector as a q-ary word of length n = nb/m symbols over an alphabet of size q = 2m.
In a fault-free circuit, the q-ary vector is a codeword that consists of k q-ary symbols which
represent the output of the original component, and r q-ary redundant symbols generated by
the predictor.

52

A comment on information leakage from robust code-based checkers Keren and Polian

A schematic description of a circuit that implements a protected AES cipher is shown in
Fig. 1. The inputs to the circuit are the plaintext s and a key y. We assume that s is known
to the attacker and that the random variable Y that represents the key has maximal entropy;
i.e., H(Y) = m · k. In a fault-free scenario, the original component computes x = f(s+ y) ∈ Fkq
in the first cycle and stores it in the register. From the point of view of the attacker x is a
uniformly distributed random variable.

The plaintext s and the random key y also enter a predictor block that computes r redundant
q-ary symbols. Denote by w the output of the predictor. w is a deterministic function of
s + y. Since f is a bijective function, w.l.o.g. we can refer to w as a function of x. That is,
w(x) = w(f(s + y)) ∈ Frq. The pair c = (x,w(x)) forms a codeword of length n = k + r in a
systematic q-ary code C which is stored in the register.

An attacker may tamper with the original circuit and/or the predictor. Denote by ĉ the word
on the checker’s inputs. In a fault-free circuit ĉ = c. The difference between ĉ and the correct
codeword c is denoted by e. That is, e = ĉ− c ∈ Fnq is an additive error vector. Experimental
results reported in [25], show that some fault injection techniques, e.g. by jittering the clock,
causes arbitrary number of bit flips. These bit flips are modeled as additive errors over a finite
field of characteristic 2.

The checker examines the word ĉ it sees on its inputs. If it decides that the word is not a legal
codeword or that it cannot be corrected into a legal one, it outputs the value ⊥. Depending on
the design, a ⊥ may halt the processor or cause the system to replace the output by a random
one. If the checker decides that the word is legal or that it is within the correction capability of
the code, it decodes it into a legal codeword. The checker’s output is denoted by v, v ∈ C∪{⊥}.
If v ∈ C, it is of the form v = (vx, vw).

The same takes place in the following cycles; the register is loaded with a codeword c ∈ C
computed by the predictor. However, here s is not the plaintext, but rather a deterministic
function of the (key dependent) state bits of the register.

Since the checker is implemented in hardware on the same circuit as the logic which it
protects, the checker itself can be subject to fault injection as well. Usually, the checker is
composed of two parts: an encoder and a comparator. An attack on the encoder logic is
equivalent to an attack on the register and hence will be detected. Detection of an attack on
the comparator requires a security aware implementation [26].

Note that the data processed by the last two blocks in Fig. 1 are not protected. An effective
attack on these blocks will aim to stick the bits and not flip them. Thus, codes detecting stuck-
at faults will be more effective. This however is beyond of the scope of this paper. A detailed
analysis of the security provided by unidirectional error detecting codes can be found in [27].

2.3 Effectiveness of security oriented codes

In general, the effectiveness of a code as a countermeasure against fault injection attacks is
measured in terms of its error detection capability. A code C is said to be robust if it can detect
any additive error e = (ex, ew) ∈ Fnq with non zero probability. Specifically, under a uniform
distribution of x, the probability Q(e) that a nonzero error e is masked by the codewords is

Q(e) = q−k|{c : c, c+ e ∈ C}| < 1.

The code’s error masking probability is defined as Q̄ = maxe 6=0Q(e). The value of Q̄ is lower
bounded by the average error masking probability; namely, Q̄ ≥ 2−r·m. Codes that fulfill this
bound on equality are called optimum robust codes. There are very few high rate optimum
or close to optimum robust error detecting codes; most are variants of two basic structures:

53

A comment on information leakage from robust code-based checkers Keren and Polian

the Quadratic-Sum (QS) code [28] and Punctured-Square (PS)/ Punctured-Cubic (PC) codes
[29, 30]. Punctured codes exist for any (k, r) pair but their implementation cost is high, whereas
the QS based codes have low implementation costs but impose restrictions on the relationship
between k and r. The best robust code known so far is the compact protection code (CPC),
which provides a high rate and low implementation cost, and exists for any k and r [15].

In the next section, we examine how many information bits leak from a checker that utilizes
robust codes.

3 Information leakage from robust code based checkers

We assume that the attacker knows the code and hence can know which errors will be always
detected (Q(e) = 0) and which have a chance to pass unnoticed (Q(e) > 0). Therefore, from
here on, we assume that an error e of the latter type is injected. We measure the information
that leaks from the checker in terms of the mutual information between two random variables:
the key Y and the checker output V .

Formally [31], let Z be a discrete random variable defined with a support set Z and denote
by p(z) = PZ(z) the probability that Z will take the value z. Similarly, for two random variables
Z ∈ Z,W ∈ W denote by p(z|w) = PZ|W (z|w) the conditional probability that Z = z given
W = w. The entropy of a random variable Z is defined as

H(Z) , −
∑
z∈Z

p(z) log2(p(z)),

and the conditional entropy of Z given W is

H(Z|W) , −
∑

z∈Z,w∈W
p(z, w) log2(p(z|w)).

The mutual information between two random variables Z and W is

I(Z;W) ,
∑

z∈Z,w∈W
p(z, w) log2

(
p(z, w)

p(z)p(w)

)
= H(Z)−H(Z|W).

Using these notations, the conditional mutual information between Y and V for a given error
e and a chosen plaintext s is

I(Y ;V |s, e) =
∑

y,v∈Fmk
2

p(y, v|s, e) log2

(
p(y, v|s, e)

p(y, v|s, e)p(y, v|s, e)

)
.

Similarly, if the plaintext is not chosen by the attacker, then the mutual information is

I(Y ;V |S, e) =
∑
s∈Fmk

2

p(s)I(Y ;V |s, e).

In this section we consider two attack scenarios: an attack on the first round and an attack
on the i-th round for i > 1. In general, fault analysis attacks are performed on the middle/last
rounds because of the trade-off between the number of required correct-fault pairs and the
time-memory complexity [32, 33]. Nevertheless, when error detecting codes are embedded in
hardware, an attacker who knows the coding scheme can derive information about the key even
when the attack is performed on the very first cycle. The following example illustrates how the
checker’s output may be used to reduce the search space of the key:

54

A comment on information leakage from robust code-based checkers Keren and Polian

Example 1. For simplicity, consider a hypothetical 12-bit cipher. The inputs to the circuit
implementing that cipher are a 12-bit plaintext s and a 12-bit key y. Assume that in the first
cycle this cipher computes

x = (x1, x2, . . . x12) = f(s+ y) =

{
(s+ y)−1 s+ y 6= 0
0 s+ y = 0

where the computation is performed in F212 with the primitive polynomial D12+D6+D4+D+1.
Consider a hardware implementation protected by the Quadratic-Sum (QS) code. The block
we are referring to as “original component” calculates x(s, y), and in parallel, the predictor
generates two redundant bits w1(s, y) and w2(s, y). When the two binary vectors x and w are
treated as vectors over F2

2, i.e., m = 2, ξi = (x2i−1, x2i) and η = (w1, w2), they form a codeword
that fulfills the following property:

η = ξ1ξ2 + ξ3ξ4 + ξ5ξ6. (1)

The multiplication and additions in Eq. 1 are over F4 with the primitive polynomial D2 +D+1.
(F4 is isomorphic to F2

2). Note that the predictor generates the two redundant bits directly from
s and y without explicitly computing the variable x, even though η and ξ fulfill Eq. 1. The
codeword stored in the register is then c = (x,w). Our attack model assumes that the adversary
can flip an arbitrary number of bits in arbitrary locations of both x and w.

Assume that s = (00 01 11 11 01 11), y = (00 00 11 10 10 10) and the attacker injects the
error e = (01 00 00 00 00 10, 11). Then, the codeword written into the register is

c = (11 00 11 01 10 00︸ ︷︷ ︸
x

, 11︸︷︷︸
w

) = (3 0 3 1 2 0︸ ︷︷ ︸
ξ

, 3︸︷︷︸
η

)

and the distorted word ĉ = c+ e = (x̂, ŵ) = (ξ̂, η̂) read from the register is

ĉ = c+ e = (10 00 11 01 10 10,00) = (2 0 3 1 2 2︸ ︷︷ ︸
ξ̂

, 0︸︷︷︸
η̂

)

(the erroneous bits and symbols appear in bold). The checker computes ξ̂1ξ̂2 + ξ̂3ξ̂4 + ξ̂5ξ̂6 = 0
and since it is equal to η̂, it does not report a decoding error. The attacker who knows the
code sees that the attack has been masked (undetected). Therefore, the attacker infers that the
following error-masking equation must be fulfilled:

(ξ1 + 1)ξ2 + ξ3ξ4 + ξ5(ξ6 + 2) = η + 3.

There are exactly 210 values of x that satisfy this equation; they are of the form

ξ = (ξ1, ξ2 = 3− 2ξ5, ξ3, ξ4, ξ5, ξ6).

Since y = x−1 − s), y can take 210 values. Therefore, the search space for the key y has been
narrowed from 12 to 10 bits, or by 2 bits.

Note that if the value of the key would have been such that the error would have been detected,
the attacker could observe this outcome and narrow the search space for y from 212 down to
(212−210) possible values. However, the system would then receive an alarm and prevent the
attacker from continuing to reduce the search space by further fault injections. For example,
the system could initiate re-keying, in which case all knowledge that the attacker had gained
previously becomes useless. Note that the error is not detected only for Q(e) = 1/4 of the keys
for this error vector due to the properties of the used QS code. It is detected (leading to an
alarm) for the remaining 3/4 of the keys. 2

55

A comment on information leakage from robust code-based checkers Keren and Polian

In what follows we prove that on average the information leakage is small. An attacker
can observe the ciphertext, and hence he can determine whether the checker has outputed a
different v. Moreover, the cipher output is a deterministic function of v. Therefore, we assume
that v is observable by the attacker.

3.1 Fault attack on the first round

We distinguish between standard checkers that output a ⊥ symbol when the word on their
input is illegal, and infective checkers that output a random codeword upon detecting such a
problem. The theorem below states that the information that can be extracted from the checker
response in the presence of an error decreases exponentially with the number of redundant bits.

Theorem 1. Let C be a systematic q-ary robust code of cardinality qk, length n = k + r, and
an error masking probability Q(e). The mutual information (in bits) between the secret key y
and a standard checker output v ∈ Fnq for a given plaintext s ∈ Fkq and an injected error e ∈ Fnq
is

Istandard(Y ;V |s, e) = mkQ(e)

−(1−Q(e)) · log2(1−Q(e)).

(2)

The mutual information between y and an infective checker output v for a given plaintext s and
an injected error e is

Iinfective(Y ;V |s, e) = mkQ(e)

−Q(e)(2−Q(e)) log2(2−Q(e))

−(1−Q(e))2 log2(1−Q(e)).

(3)

Proof. Information leakage from standard checkers:
The secret key y ∈ Fkq is a uniformly distributed random variable; hence, so is x = f(s, y) where
f is a cryptographic function and thus bijective. Denote by Me the set of x’s associated with
the codewords that mask the error e; the size of this set is |Me| = qkQ(e). The conditional
probability distribution of the checker output is

PV (v|e, x ∈Me) =

{
1 v ∈ C, vx = x+ ex
0 otherwise

PV (v|e, x /∈Me) =

{
1 v =⊥
0 otherwise

Thus,

PV (v|e) =

 q−k v ∈ C, vx ∈ ex +Me

1−Q(e) v =⊥
0 otherwise

Under the assumption that the attacker knows the codebook and can choose s, it is clear
that when the checker raises a ⊥ flag it provides information about the key y. The mutual

56

A comment on information leakage from robust code-based checkers Keren and Polian

information between y and the checker output v for a given plaintext s and an injected error e
is

Istandard(Y ;V |s, e) =(a) Istandard(X;V |e)
= H(V |e)−H(V |X, e)

=(b) H(V |e).

The correctness of this equality follows from: a) v and s are statistically independent random
variables, and b) H(V |X, e) = 0 since the code is deterministic. The probability of ⊥ symbol
for a given error vector is 1−Q(e); thus, for robust codes we have,

H(V |e) = Q(e) · log2(qk)− (1−Q(e)) · log2(1−Q(e)).

Information leakage from infective checkers:
Infective checkers output a random symbol upon detecting an error. Therefore we have,

PV,X(v, x|e) =

 q−k vx = ex + x, x ∈Me

q−2k x /∈Me

0 otherwise
,

and since q−k|Me| = Q(e) we have,

PV (v|e) =

 q−k(2−Q(e)) vx ∈ ex +Me

q−k(1−Q(e)) vx /∈ ex +Me

0 v =⊥
.

The conditional entropy of V is

H(V |e) = mk −Q(e)(2−Q(e)) log2(2−Q(e))

−(1−Q(e))2 log2(1−Q(e))

and

H(V |X, e) = mk(1−Q(e)) + q−k|Me| · 1 log2(1)︸ ︷︷ ︸
=0

.

The mutual information between y and the checker output for a given error for an infective
checker is then

Iinfective(Y ;V |s, e) = Iinfective(X;V |e) = H(V |e)−H(V |X, e).

Note that optimum (or close to optimum) robust codes have Q(e) ≤ 2−mr+1 [28]; therefore,
both Istandard(Y ;V |s, e) and Iinfective(Y ;V |s, e) are smaller than mk2−mr+1. Hence, for a given
key size and a bound for acceptable information leakage Imax (per injection), a code designer
has to use at least dlog2(mk/Imax)e+ 1 redundant bits to stay below this bound.

Denote by Īstandard and Īinfective the maximal mutual information I(Y ;V |s, e) over all the
non-zero errors e and plaintexts s. Tables 2 and 3 show the maximal error masking probability
(EMP) and the information leakage for different q-ary compact protection codes (CPCs) suitable

57

A comment on information leakage from robust code-based checkers Keren and Polian

for protecting 64- and 128-bit ciphers, respectively. The columns of the table are as follows. The
first column is the number of redundant bits m · r. The second column shows, for each number
of redundant bits, one possible construction of a CPC (explained further below). The EMP
of each suggested CPC, Q̄, computed as explained in [15] appears in column 3. The maximal
number of bits that can be learned by observing the output of a standard and infective checker
appears in columns 4 and 5, respectively. These values have been calculated using Eqs. 2 and
3.

In general, a CPC is constructed from l ≥ 1 ground codes by concatenating their information
portions and XORing their redundant portions. The ground codes C(n̂i, k̂i, m̂i), i = 1, . . . l are

systematic robust codes of length n̂i bits and size 2k̂i defined over the finite field F2m̂i . Here,
we ignore the implementation cost of the codes and use (simple to describe) constructions that
provide minimal error masking probability. For optimal constructions with minimal implemen-
tation cost refer to [15]. The acronyms used in Tables 2 and 3 are the following: QS stands
for the Quadratic-Sum code [28], PC stands for Punctured-Cubic [30], and sQS and TQS for
shortened QS and triple QS codes [15]. The following example explains one specific CPC from
Table 2 and how the checker operates for that code.

Example 2. Consider a 64-bit key, protected by a CPC with five redundant bits (m · r = 5).
There are several ways to construct such a code, the simplest one is shown in Table 2. The code
is a composition of two ground codes: a QS(55,50,5) code and a PC(19,14,14) code. This means
that the checker treats x̂, the 64-bit vector at its input, as a mixed-alphabet vector composed of
ten 5-bit symbols ξ̂1, . . . , ξ̂10 from the finite field F25 and a single 14-bit symbol ξ̂11 from F214

x̂ = (x̂1, . . . , x̂5︸ ︷︷ ︸
ξ̂1

, x̂6, . . . x̂10︸ ︷︷ ︸
ξ̂2

, . . . , x̂46, . . . , x̂50︸ ︷︷ ︸
ξ̂10

, x̂51, . . . x̂64︸ ︷︷ ︸
ξ̂11

).

Note that the error masking of a CPC is determined by the weakest ground code [15]. In our
case Q̄QS = 2−5 and Q̄PC = 2−4, thus the error masking probability of the composed code is
2−4 = 0.0625 (refer to Table 2).

Recall that x is the correct vector that was written into the register and x̂ is the vector read
from the register. In case of fault x̂ may be different from x. The checker computes

η̂1 = ξ̂1 · ξ̂2 + ξ̂3 · ξ̂4 + · · · ξ̂9 · ξ̂10, for the QS(55,50,5) code

η̂2 = (ξ̂11)3 · P14×5, for the PC(19,14,14) code

(In this example, P14×5 is a binary matrix of rank 5 that had been chosen arbitrarily). Then,
the checker computes η = η̂1 + η̂2 and compares it with the predicted value ŵ read from the 5-bit
register. In the case of a fault, ŵ may differ from w. If the computed value differs from ŵ, the
checker outputs the symbol ⊥, which will trigger an alarm.

Note that this construction is not the cost-optimal CPC because the five redundant bits of
the QS code are computed from 50 information bits by multiplications over a small finite field
(F25), whereas the five redundant bits of the PC code (to be XORed with the five bits of the QS
code) are computed from the remaining 14 (= 64 − 50) information bits by multiplications over
a large field (F214). Optimal and close to optimal constructions are given in [15]. 2

It is interesting to compare the leakages from standard and infective checkers in Tables 2 and
3. Intuitively, one would expect that the infective checker leaks considerably less information
that its counterpart, because it never generates the special symbol ⊥ and aims at preventing the
adversary from receiving ciphertexts that are suitable for extracting information. The results
suggest that there is a difference between the information leakages from the standard and the

58

A comment on information leakage from robust code-based checkers Keren and Polian

Table 2: Error masking probability and information leakage from the checker (in bits) for 64bit
key

redundant CPC EMP Standard checker Infective checker
bits (mr) Q̄ Īstandard Īinfective

2 QS(66,64,2) 2.50E-01 16.31128 15.88024
3 QS(63,60,3)+PC(7,4,4) 2.50E-01 16.31128 15.88024
4 QS(68,64,4) 6.25E-02 4.08729 3.96629
5 QS(55,50,5)+PC(19,14,14) 6.25E-02 4.08729 3.96629
6 TQS(60,54,6)+PC(16,10,10) 3.13E-02 2.04437 1.98286
7 QS(63,56,7)+ PC(15,8,8) 1.56E-02 1.02237 0.99136
8 QS(72,64,8) 3.91E-03 0.25562 0.24783
9 QS(63,54,9) + PC(19,10,10) 3.91E-03 0.25562 0.24783
10 TQS(60,50,10)+ PC(24,14,14) 1.95E-03 0.12782 0.12391
11 sQS(75,64,11) 9.77E-04 0.06391 0.06196
12 QS(60,48,12) + PC(28,16,16) 4.88E-04 0.03195 0.03098
13 TQS(52,39,13) + sQS(38,25,13) 2.44E-04 0.01598 0.01549
14 4 × PC(30,16,16) 1.22E-04 0.00799 0.00774
15 4 × PC(31,16,16) 6.10E-05 0.00399 0.00387
16 QS(80,64,16) 1.53E-05 0.00100 0.00097

Table 3: Error masking probability and information leakage from the checker (in bits) for
128bit key

redundant CPC EMP Standard checker Infective checker
bits (mr) Q̄ Īstandard Īinfective

2 QS(130,128,2) 2.50E-01 32.31128 31.88024
3 QS(126,123,3) + PC(8,5,5) 2.50E-01 32.31128 31.88024
4 QS(132,128,4) 6.25E-02 8.08729 7.96629
5 QS(125,120,5) + PC(13,8,8) 6.25E-02 8.08729 7.96629
6 QS(126,120,6) + PC(14,8,8) 3.13E-02 4.04437 3.98286
7 TQS(126,119,7)+ PC(16,9,9) 1.56E-02 2.02237 1.99136
8 QS(136,128,8) 3.91E-03 0.50562 0.49783
9 QS(117,108,9)+ 2 × PC(19,10,10) 3.91E-03 0.50562 0.49783
10 TQS(110,100,10) + 2 × PC(24,14,14) 1.95E-03 0.25282 0.24891
11 QS(99,88,11)+ QS(50,40,10) 9.77E-04 0.12641 0.12446
12 QS(108,96,12) + 2 × PC(28,16,16) 4.88E-04 0.06320 0.06223
13 QS(117,104,13) + QS(36,24,12) 2.44E-04 0.03160 0.03111
14 QS(126,112,14) + PC(30,16,16) 1.22E-04 0.01580 0.01556
15 QS(126,112,14) + PC(31,16,16) 6.10E-05 0.00790 0.00778
16 QS(144,128,16) 1.53E-05 0.00198 0.00194

infective checkers for all considered CPCs, but that this difference is not that large. This can be
explained by the low error-masking probability of CPCs, which are optimal or close to optimal
by construction. Therefore, the term mkQ(e) = mk · 2−rm, which decreases exponentially in r,
dominates the expressions in Eqs. 2 and 3.

3.2 Fault attack on round i > 1

When attacking one of the internal rounds of a cipher, the attacker does not know the round
state si and the round key yi, but does know the functionality and can choose the error vector.
Therefore, an indication that the error has been detected provides information about the subset
(or subspace) that current si+yi belongs to. Formally, assume that no information is gained on
the key prior to the fault injection on round i. This implies that for uniformly distributed key,
the round state si is also uniformly distributed. Hence, the information that can be learned is

59

A comment on information leakage from robust code-based checkers Keren and Polian

I(Yi;Vi|S, e) = I(Yi;Vi|si, e). In fact, the attacker needs to have hypothesized on the previous
i− 1 round keys in order to make use of this information on yi. In other words, it is harder to
extract information from an attack on the i’th round than from attack on the first round.

Consider now a different scenario in which the attacker has narrowed the key’s search space
by ν bits prior to the attack. According to our assumption, the attacker knows the code and
thus can choose an error e of minimal error detecting probability. (Note that we ignore the fact
that this cannot be done in polynomial time). In this case, the probability Q(ν)(e) that a code
will mask (i.e., not detect) e given that only 2mk−ν out of its 2mk = qk codewords are equally
likely to appear is upper bounded by

Q(ν)(e) ≤ qkQ̄

2mk−ν
= 2νQ̄. (4)

This implies that if the number of redundant bits is smaller than ν, an attacker whose computa-
tional resources are (almost) unlimited may be able to inject a fault without being notices. The
following example illustrates the computational effort involved in using the ν bits discovered so
far to extract significant information about the remaining (mk − ν) secret bits.

Example 3. Consider the CPC in Ex. 2 which has five redundant bits. Assume the attacker
knows the first ν = 7 bits of the key. Since 7 > 5, it follows from Eq. 4 that it may be possible to
find an error e that will be masked by the codeword stored in the register. By injecting this error
(if it exists) the attacker will be able to conduct a fault analysis attack without being noticed.

Let A denote a subset of size 257 = 264−ν that contains all the possible values that the x
may take at the i’th round. Assume that the attacker has the resources (processing power and
memory space) to construct A. Given A, the attacker has to choose an error vector

e = (e1, . . . , e64, e65, . . . e69) = (ε1, . . . , ε10, ε11, ε12)

of maximal Q(ν)(e). For doing that, for each e (that has not been injected prior to the current
injection) the attacker has compute the size of A ∩ B where B is the subset of codewords (ξ, η)
that satisfy the equation

η + ε12 = (ξ1 + ε1) · (ξ2 + ε2) + · · · (ξ9 + ε9) · (ξ10 + ε10) + (ξ11 + ε11)3 · P14×5

where εi ∈ F5
2 for i 6= 11 and ε11 ∈ F14

2 . 2

Clearly the complexity of calculating the size of A∩B, even for a single e, is as large as the
complexity of a brute force search of the unknown (64− ν) key bits. In fact, there is no viable
(i.e., low-complexity) way in which the attacker can make use of the known ν key bits in order
to increase the chances of not being detected by a CPC checker. Therefore, there seems to be
no practical way for the attacker to use the additional knowledge of key bits for injection of
faults that will lead to a larger information leakage than in the first round.

4 Conclusions

One of the most effective ways to mitigate fault injection attacks is by embedding security
oriented codes in hardware. In this paper, we examined whether the use of robust codes with
a deterministic encoder can degrade security. We formalized the information leakage from the
checker response by means of mutual information. We proved that the probability that an
attack will go undetected is exponentially smaller than the entropy loss due to information leak
from the checker. Given a bound for acceptable information leakage, our analysis allows the
designer to easily choose the number of redundant bits required to stay below that bound.

60

A comment on information leakage from robust code-based checkers Keren and Polian

References

[1] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault analysis of the advanced en-
cryption standard using a single fault,” in WISTP, vol. 6633 of Lecture Notes in Computer
Science, pp. 224–233, Springer, 2011.

[2] F. D. Santis, O. M. Guillen, E. Sakic, and G. Sigl, “Ciphertext-only fault attacks on
PRESENT,” in LightSec, vol. 8898 of Lecture Notes in Computer Science, pp. 85–108,
Springer, 2014.

[3] P. Jovanovic, M. Kreuzer, and I. Polian, “A fault attack on the LED block cipher,” in
COSADE, vol. 7275 of Lecture Notes in Computer Science, pp. 120–134, Springer, 2012.

[4] A. Alkhoraidly, A. Dominguez-Oviedo, and M. A. Hasan, “Fault attacks on elliptic curve
cryptosystems,” in Fault Analysis in Cryptography, Information Security and Cryptogra-
phy, pp. 137–155, Springer, 2012.

[5] J. Krämer and M. Loiero, “Fault attacks on UOV and rainbow,” in COSADE, vol. 11421
of Lecture Notes in Computer Science, pp. 193–214, Springer, 2019.

[6] F. Valencia, I. Polian, and F. Regazzoni, “Fault sensitivity analysis of lattice-based post-
quantum cryptographic components,” in SAMOS, 2019. (accepted for publication).

[7] T. Fuhr, E. Jaulmes, V. Lomné, and A. Thillard, “Fault attacks on aes with faulty ci-
phertexts only,” in 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography,
pp. 108–118, 2013.

[8] R. Cramer, Y. Dodis, S. Fehr, C. Padró, and D. Wichs, “Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors,” in Advances in
Cryptology–EUROCRYPT 2008, pp. 471–488, Springer, 2008.

[9] Z. Wang and M. Karpovsky, “Algebraic manipulation detection codes and their applica-
tions for design of secure cryptographic devices,” in On-Line Testing Symposium (IOLTS),
2011 IEEE 17th International, pp. 234–239, IEEE, 2011.

[10] X. T. Ngo, S. Bhasin, J. Danger, S. Guilley, and Z. Najm, “Linear complementary dual
code improvement to strengthen encoded circuit against hardware trojan horses,” in IEEE
International Symposium on Hardware Oriented Security and Trust, HOST 2015, Wash-
ington, DC, USA, 5-7 May, 2015, pp. 82–87, 2015.

[11] S. Dziembowski, K. Pietrzak, and D. Wichs, “Non-malleable codes.” Cryptology ePrint
Archive, Report 2009/608, 2009. http://eprint.iacr.org/2009/608.

[12] O. Keren and M. Karpovsky, “Relations between the entropy of a source and the error
masking probability for security-oriented codes,” IEEE Transactions on Communications,
vol. 63, no. 1, pp. 206–214, 2015.

[13] F. Regazzoni, L. Breveglieri, P. Ienne, and I. Koren, “Interaction between fault attack
countermeasures and the resistance against power analysis attacks,” in Fault Analysis in
Cryptography, 2012.

[14] B. Karp, M. Gay, O. Keren, and I. Polian, “Security-oriented code-based architectures for
mitigating fault attacks,” in DCIS, pp. 1–6, IEEE, 2018.

61

http://eprint.iacr.org/2009/608

A comment on information leakage from robust code-based checkers Keren and Polian

[15] H. Rabii, Y. Neumeier, and O. Keren, “High rate robust codes with low implemen-
tation complexity,” IEEE Transactions on Dependable and Secure Computing, DOI:
10.1109/TDSC.2018.2816638, 2018.

[16] S. Saha, D. Jap, J. Breier, S. Bhasin, D. Mukhopadhyay, and P. Dasgupta, “Breaking
redundancy-based countermeasures with random faults and power side channel,” in 2018
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 15–22, 2018.

[17] J. Riha, V. Miskovský, H. Kubatova, and M. Novotný, “Influence of fault-tolerance tech-
niques on power-analysis resistance of cryptographic design,” 2017 Euromicro Conference
on Digital System Design (DSD), pp. 260–267, 2017.

[18] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of eliminating errors in
cryptographic computations,” J. Cryptology, vol. 14, no. 2, pp. 101–119, 2001.

[19] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection attacks on crypto-
graphic devices: Theory, practice, and countermeasures,” Proceedings of the IEEE, vol. 100,
no. 11, pp. 3056–3076, 2012.

[20] I. Polian and F. Regazzoni, “Counteracting malicious faults in cryptographic circuits,” in
ETS, pp. 1–10, IEEE, 2017.

[21] S. Tajik, H. Lohrke, F. Ganji, J. Seifert, and C. Boit, “Laser fault attack on physically un-
clonable functions,” in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pp. 85–96, 2015.

[22] Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, and K. Ohta, “Fault sen-
sitivity analysis,” in CHES, vol. 6225 of Lecture Notes in Computer Science, pp. 320–334,
Springer, 2010.

[23] N. F. Ghalaty, B. Yuce, M. M. I. Taha, and P. Schaumont, “Differential fault intensity
analysis,” in FDTC, pp. 49–58, IEEE Computer Society, 2014.

[24] B. Karp, M. Gay, O. Keren, and I. Polian, “Security-oriented code-based architectures for
mitigating fault attacks,” in 2018 Conference on Design of Circuits and Integrated Systems
(DCIS), pp. 1–6, 2018.

[25] B. Karp, M. Gay, O. Keren, and I. Polian, “Detection and correction of malicious and
natural faults in cryptographic modules,” in PROOFS 2018, 7th International Workshop
on Security Proofs for Embedded Systems, pp. 68–82, 2018.

[26] F. Busaba, P. K. Lala, and A. Walker, “On self-checking design of CMOS circuits for
multiple faults,” VLSI Design, vol. 1998, no. 2, pp. 151–161, 1998.

[27] A. Burg and O. Keren, “On the efficiency of berger codes against error injection attacks on
parallel asynchronous communication channels,” Information Security Journal: A Global
Perspective, vol. 22, no. 5-6, pp. 208–215, 2013.

[28] M. G. Karpovsky, K. J. Kulikowski, and Z. Wang, “Robust error detection in communi-
cation and computational channels,” in Spectral Methods and Multirate Signal Processing.
SMMSP’2007. 2007 International Workshop on, Citeseer, 2007.

62

A comment on information leakage from robust code-based checkers Keren and Polian

[29] N. Admaty, S. Litsyn, and O. Keren, “Puncturing, expurgating and expanding the q-ary
bch based robust codes,” in Electrical Electronics Engineers in Israel (IEEEI), 2012 IEEE
27th Convention of, pp. 1–5, Nov 2012.

[30] Y. Neumeier and O. Keren, “Robust generalized punctured cubic codes,” IEEE Transac-
tions on Information Theory, vol. 60, no. 5, pp. 2813–2822, 2014.

[31] R. Gallager and L. Laboratory, Sequential Decoding for Binary Channels with Noise and
Synchronization Errors. Group report, Massachusetts Institute of Technology, Lincoln
Laboratory, 1961.

[32] M. Rivain, “Differential fault analysis on des middle rounds,” in CHES, 2009.

[33] P. Derbez, P.-A. Fouque, and D. Leresteux, “Meet-in-the-middle and impossible differ-
ential fault analysis on aes,” in International Workshop on Cryptographic Hardware and
Embedded Systems, pp. 274–291, 2011.

63

	Introduction
	Preliminaries
	Fault-injection attacks
	Robust codes based architectures
	Effectiveness of security oriented codes

	Information leakage from robust code based checkers
	Fault attack on the first round
	Fault attack on round i>1

	Conclusions

