
Kalpa Publications in Computing

Volume 7, 2018, Pages 50–67

PROOFS 2018. 7th International Workshop
on Security Proofs for Embedded Systems

A Non-Reversible Insertion Method for Hardware Trojans

Based on Path Delay Faults

Akira Ito, Rei Ueno, Naofumi Homma, and Takafumi Aoki

Tohoku University, Sendai, Miyagi, Japan
{ito, ueno, homma}@riec.tohoku.ac.jp, aoki@ecei.tohoku.ac.jp

Abstract

This paper presents a non-reversible method for stealthily inserting hardware Tro-
jan (HT) based on a path delay fault called Path Delay HT (PDHT). While PDHT is
hardly detected by the conventional methods including Monte-Carlo tests, its practicality
is still unclear because a rarely sensitized path used for PDHT is selected and exploited
in a deterministic manner. Such deterministic method indicates that we can find possible
PDHT-inserted paths by its reversed method. In addition, the conventional method uses a
genetic algorithm to add extra delays onto the selected path for inducing a path delay fault,
and therefore, we have a difficulty in evaluating the resistance/vulnerability of a circuit to
PDHT. This paper first presents a new method for selecting sufficiently rare paths to insert
PDHT at random. We then show that the detectability/stealthiness of PDHT is related to
switching activity (i.e., glitch effect), and present a new systematic method for inducing a
path delay fault instead of GA. We demonstrate through an experimental PDHT-insertion
and a Monte-Carlo test that the PDHT inserted by our method is sufficiently undetectable
in comparison with the conventional method.

1 Introduction

Threats from hardware Trojans (HTs), which behave as hardware-oriented backdoors intro-
ducing faults or leaking out secret information, have gained increasing attention in academia,
industry, and government agencies. HTs can be inserted by many involved companies (e.g.
fabless companies, design houses, IP vendors, and semiconductor foundries) throughout the
production process. In particular, malicious parties can introduce an HT into cryptographic
hardware in order to retrieve secret information from the chip users and/or their clients.

There are many previous works related to HT detection mechanisms and countermeasures.
Conventional HTs usually modify the functionality of target circuits at the register transfer level
(RTL), net-list level, layout-level, or dopant-level in order to obtain secret information directly,
to induce a fault for differential fault analysis (DFA), or to disable/degrade an embedded
(pseudo) random number generator [1, 2, 3, 4]. Because these approaches should necessarily
change the physical characteristics and/or the structures of the circuit, many countermeasures
have been reported to detect such HTs. For example, we can examine side-channel information
(e.g., power consumption) or compare a scanning electronic microscope (SEM) image of a chip
layout with the reference.

L. Batina, U. Kühne and N. Mentens (eds.), PROOFS 2018 (Kalpa Publications in Computing, vol. 7),
pp. 50–67

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

In recent years, however, a new type of HT, called path delay HT (PDHT), was proposed at
CHES 2016 [5]. A PDHT is inserted to a multiplier used for public key cryptographic hardware
(e.g., RSA and ECC) to retrieve a secret key using the bug attack [6]. Such PDHT is inserted
only by increasing the delay of a rarely sensitized path called rare path (RP). The PDHT can
be triggered by applying a specific input sensitizing the RP to the HT-inserted multiplier. The
propagation delay along the RP is larger than the original clock period, and therefore a setup
time violation occurs when the RP is sensitized, which results in a buggy output. Only one
buggy output of the multiplier is enough for the bug attack to retrieve the secret key of ECC and
RSA. A PDHT is inserted without modifying the circuit function (i.e., input-output relation),
datapath, nor structure in contrast to the conventional HTs. Furthermore, according to [5],
the increase of a logic gate delay can be done with minor change in appearance or physical
characteristics (e.g., cell size and power consumption), even in comparison with a dopant-level
HT. As a result, it is very difficult to detect the PDHT using the conventional detection methods
such as reverse-engineering, visual inspection, side-channel profiling, and SEM scanning.

However, the generality and practicality of PDHT are still unclear because of some questions
about the resistance (i.e., stealthiness/detectability) of PDHTs in multipliers. The PDHT-
insertion consists of two phases: (a) RP selection and (b) delay addition. The RP selection phase
finds an RP in a multiplier in accordance with two features of each gate: controllability and
observability. The delay addition phase determines the amount of extra delay for each gate along
the selected RP in order to minimize the probability of setup time violation (i.e., the possibility
of PDHT detection) during chip test via the Monte Carlo method. Here, the RP selection
method in [5] selects only one RP in a deterministic manner. This means that we can reversely
find the RP using the same selection method. In addition, the delay addition is performed
using a genetic algorithm (GA). This indicates that we encounter a difficulty in evaluating its
stealthiness and effectiveness in an analytic manner because of the irreproducibility and large
processing time of GA. In particular, a time-consuming Monte-Carlo-based method would be
required to determine the fitness function in GA, which has a significant impact on the resulting
stealthiness/detectability in the context of PDHD.

This paper presents the possibility of inserting PDHTs in a non-reversible manner and ana-
lyzing the PDHT stealthiness and effectiveness. We first formulate the sensitization probability
of a path using switching activity (i.e., glitches), while the previous paper did not mention the
relation between the sensitization probability and glitches. Thereafter, we define a new metric,
which is called gate switching detectability, to derive the sensitization probability of a path
according to path features including glitches effects. Our approach makes it possible to discuss
how much a path is undetectable if a PDHT is inserted. In addition, we present a system-
atic delay addition method that offers comparable stealthiness to the conventional GA-based
method. In an example of an experimentally PDHT-inserted multiplier, the proposed method
achieves an equivalent detection probability against the Monte-Carlo test. The result shows
that the PDHT inserted by the proposed method is hardly detected by its reversed method and
can be a practical threat to public key cryptographic hardware.

2 Previous work

The PDHT exploits a path delay fault, while conventional HTs usually employ a stack-at-fault
or a trigger-payload logic. Path delay fault is a kind of fault that is far less detectable than
stack-at-fault because the number of paths in a circuit grows exponentially with circuit size
[7]. The original idea of PDHT is to add extra delay to the most rarely sensitized path (Rare
Path: RP) for causing path delay fault intentionally. Because the HT-inserted path is selected

51

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

to be hardly sensitized, only attacker who knows how to activate the path can obtain the faulty
output available for the bug attack owing to the setup time violation. Therefore, reducing the
sensitization probability of HT-inserted path is quite important. If the sensitization probability
is high, the PDHT can be detected via a typical Monte-Carlo test in quality check after chip
fabrication. In practice, it is not simple to reduce the detection probability of PDHT because a
path delay fault can be detected even when the path is partially sensitized. This indicates that
the extra delay for PDHT should be added to each gate along RP such that its influence on
other paths is minimum. To address the purpose, the PDHT-insertion method in [5] consists of
RP selection and delay addition phases to reduce the detection probability. We briefly describe
the two phases below.

2.1 Rare path selection

This phase selects the most rarely sensitized path in a multiplier in accordance with two features
of gates: controllability and observability. Controllability is a probability of the gate output
(i.e., a wire) for “1” when a random vector is applied to the multiplier. Observability is a
probability that the value of gate output can be observed from the primary output of the
circuit. A low observability of a gate indicates that its output value is unlikely to propagate
to the primary output. Therefore, from the viewpoint of detectability, it is better to insert
PDHT to a path with low controllability and observability. Controllability and observability
are the metrics focusing on the static state of a circuit, which indicates that all gate switchings
are completed after applying an input vector. In other words, they are calculated without
considering glitch effects, and can be calculated from a logical expression (or gate-level netlist)
of the multiplier. However, it is infeasible to calculate the exact controllability of each gate
for practical multipliers even with the state-of-the-art SAT solvers. Therefore, in practice,
controllability and observability are asymptotically calculated using a Monte-Carlo test.

In the path selection presented in [5], we first find a gate with the lowest controllability.
We then extend a path from the gate to a primary input wire and output wire according
to controllability and observability. This method selects gates such that its output is the
most uncontrollable and unobservable among candidates. Finally, the SAT solver is used for
examining whether the path is logically sensitizable. Thus, the attacker can select a rarely
sensitized path and determine the input vectors to sensitize it.

However, the above method selects only one path in a deterministic manner. This means
that we can reversibly find the path for PDHT using the same method and eventually detect
the PDHT, while the path is usually not detected with Monte-Carlo tests. This implies the
impracticality of PDHT. To show that PDHT can be a practical threat to cryptographic hard-
ware, we should show a possibility of a non-reversible method that can randomly insert PDHT
with a low detectability. Note here that it is still not sufficient to randomly select an initial
gate with a low controllability under a threshold though it increases RP candidates by only the
number of candidates for initial gates. In other words, we should randomly select a path with
a low sensitizability rather than initial gates. However, it should be noted that if we select a
path in a completely random manner, we can detect PDHT by Monte-Carlo tests [8].

2.2 Delay addition

After an RP is selected, the RP delay (more precisely, the delays of gates along the RP) is
increased in order to make the total RP delays larger than the clock period. Because the gates
along the RP are also included in many other paths, it is important to increase the RP delay
while influencing the other paths as little as possible. In [5], a genetic algorithm is used to

52

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

determine the increase of RP delay. GA is an optimization technique that (locally) minimizes
a cost function called the fitness function. We need to give some constraints on gate delays and
determine the fitness function in order to apply GA to inserting extra delays on the RP. In [5],
the fitness function is given by Monte Carlo tests, and the constraints on delays for each gate
is given by

t′RP =

n∑
i=0

t′ζ , (1)

tζ + υζ − c ≤ t′ζ ≤ tζ + υζ + c, (2)

where t′RP is the resulting RP delay, υζ is a slack of the ζth gate, and c is a constant. The slack
represents a possible range of delay, and the constant c localizes the solution of GA for efficient
computation. In addition, tζ and t′ζ are the delays of the original and resulting ith gate on RP,
respectively. The first equation indicates that the resulting RP delay should be equal to the
target delay t′RP which exceeds the original critical delay (i.e., clock period), while the second
equation helps the GA to discover reasonable delays for each gate. The slack for each gate is
determined according to the delay of the gate, data dependency, and the clock period [9].

There are several issues involved in using GA in the context of PDHT. One is that GA
usually takes a huge computation time. To make the resolution of detectability sufficiently low,
a large number of random vectors are required for the fitness function, which implies a significant
amount of time to evaluate the fitness function. In addition, large numbers of generations and
individuals (each of which requires an evaluation of the fitness function) are necessary to obtain
a good solution in GA. Thus, delay addition for a PDHT is quite time-consuming, which means
that it is quite difficult to analyze the detectability/stealthiness of PDHT with a statistical
means. Furthermore, the usage of GA also has a problem contradicting the definition of PDHT.
In evaluating the fitness function, we should apply a sufficient number of input vectors required
to guarantee a low detectability. In other words, because we should detect PDHT to evaluate
the fitness function, the number of input vectors should be never enough to ensure that the
PDHT is significantly undetectable. This problem originates from the difficulty in evaluating
the quality of a solution in GA in a quantitative manner. Thus, it is difficult to evaluate
and compare the detectability/stealthiness of PDHT in many multipliers in an analytical and
quantitative manner because of the usage of GA, which makes difficult to develop multipliers
robust to PDHT. To develop countermeasures, a more systematic/analytical method for delay
addition is desirable.

3 Gate Switching Detectability (GSD)

This section presents a new analytical parameter, called Gate Switching Detectability (GSD),
for deriving PDHTs. We first explain that the sensitization probability of a path can be for-
mulated by the switching activity of gates included in the path (i.e., glitch effect) while the
conventional PDHT-insertion method does not consider it. We then approximate the sensiti-
zation probability of a path based on the switching activity of the included gates. We finally
introduce GSD derived from the approximated sensitization probabilities of paths including the
gate. GSD represents how large a gate switching has an influence on the path sensitization prob-
ability. GSD is used for the proposed PDHT-insertion method consisting of the non-reversible
path selection and systematic delay addition presented in Sect 4.

53

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

Figure 1: Circuit example.

3.1 Notations for path sensitization probability

This subsection introduces mathematical notations to represent the path sensitization proba-
bility in a formal manner. Figure 1 shows an example of circuit. We model a circuit as sets
of Wires. Gates, and paths are then represented with wires. The notations for wire, gate, and
path are as follows.

3.1.1 Wire

A circuit represented with wires w1, w2, . . . , wu, . . . , we, where e is the number of wires. We
call the signal transition of 0→ 1 and 1 → 0 on a wire rise and fall, respectively. Let ∆wu
be the signal transition on wire wu. The transitions of rise and fall on wu are denoted by
∆wu = rise and ∆wu = fall, respectively. The notations for wires and their signal transitions
are listed below.

• w1, w2, . . . , wu, . . . , we: a wire in the circuit, where e is the number of wires in the circuit.

• rise: the transition from 0 to 1.

• fall: the transition from 1 to 0.

• null: no transition (i.e., transitions from 0 to 0 and from 1 to 1).

• ∆wu: Transition of a signal on wire wu. A rising and falling transition of wu are denoted
by ∆wu = rise and ∆wu = fall, respectively. No transition of wu is denoted by
∆wu = null

• W: the set of all wires in the circuit.

• WPI: the set of all wires connected directly from the primary input(s).

• WPO: the set of all wires connected directly to the primary output(s).

• Srfn = {rise, fall, null}: the set of signal transitions.

• Srf = {rise, fall}: the set of signal switching.

• su ∈ Srfn: variable of signal transitions for ∆wu.

• σu ∈ Srf: variable of signal switchings for ∆wu

For example, in Fig. 1, w1, w2 and w3 are wire, and ∆w1 = rise indicates that the signal
on w1 is rising.

54

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

3.1.2 Gate

Gates g1, g2, . . . , gi, . . . , gm are given as the pairs of the set of input wires and a output wire,
where m is the number of gates.

• gi = (Wgi , wi): a logic gate, where Wgi denotes the set of input wires connected to gi,
and wi denotes the output wire of gi. For a d-input gate gi, Wgi consists of d wires
wi1 , wi2 , . . . , wih , . . . , wid . Note that a gate gi corresponds to the output wire wi because
we assume here that every logic gate has only one output, without loss of generality1.

• G: the set of all gates in the circuit.

• WPRE(wi) = {wt | gi = (Wgi , wi) ∈ G, wt ∈ Wgi}: the set of wires given from the
predecessor of wi.

• WSUC(wi) = {wf | gf = (Wgf , wf) ∈ G, wi ∈ Wgf }: set of wires of successor of wi.

For example, in Fig. 1, g1 is given as (Wg1 , w2), where Wg1 = {w1, w4} and w2 is an output
wire.

3.1.3 Path

Paths are given as tuples of wires connected via gates from an input to an output. A series of
signal transitions throughout a path is called path sensitization (state). The notations for path
and path sensitization are listed below.

• p = (wv1 , wv2 , . . . , wvj , . . . , wvl): a path through l wires wv1 , wv2 , . . . , wvl , where vj is an
integer in the range of 1 ≤ vj ≤ e. In addition, wv1 and wvl are the startpoint and
endpoint wires, respectively.

• |p|: the length (i.e., the number of wires) of p. Note here that a wire wv1 corresponds to
a path with |(wv1)| = 1.

• Head(p): the startpoint wire of p (i.e., wv1).

• Tail(p): the endpoint closest of p (i.e., wvl).

• P: the set of all paths in the circuit.

• PWH,WT
= {p | p ∈ P,Head(p) ∈ WH,Tail(p) ∈ WT}: the set of paths from Head(p) ∈

WH to Tail(p) ∈ WT, where WH and WT are an arbitrary subset of W.

• ∆p = ∆(wv1 , wv2 , . . . , wvl) = (σv1 , σv2 , . . . , σvl): path sensitization state (i.e., propagation
of signal transitions).

• ∆Psub =
⋃

px∈Psub

{∆px = (σx1
, σx2

, . . . , σx|px|) | (σx1
, σx2

, . . . , σx|px|) ∈ S
|px|
rf }: the set of

possible sensitization states of all paths in Psub excluding ones containing null wires,
where Psub denotes a subset of P. Note that elements of ∆Psub are given in the form of
∆px = (σx1

, σx2
, . . . , σx|px|).

1We can discuss multi-output gates (e.g., full adder cell) as plural gates with only one output. For example,
assuming a gate with two output wi and wi+1. In this case, we consider this gate as two gates gi = (Wgi , wi)
and gi+1 = (Wgi+1 , wi+1) with Wgi =Wgi+1 .

55

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

For example, in Fig. 1, pex = (w1, w2, w3) is a path, and ∆pex = ∆(w1, w2, w3) =
(rise, rise, fall) indicates the path sensitization state that the rise transition of the sig-
nal on w1 causes the rise transition of the signal on w2 and finally causes the fall transition
of the signal on w3.

3.2 Formula for path sensitization probability between inputs and
output of each gate

We now focus on the sensitization probability of a path. Let Pr(A) be the probability of event
(i.e., occuring transition(s)) A. From the above notation, given a path p = (wv1 , . . . , wvl), its
transition is represented by ∆p = (∆wv1 , . . . ,∆wvl). Hence, the sensitization probability of p is
represented by Pr(∆p = (σv1 , . . . , σvl)). However, we cannot compute the sensitization proba-
bility because the relation between the switching probability of each wire and the sensitization
probability of a path is unclear. Therefore, let us consider the simplest case where a signal
switching of an input wire propagates to the output of a gate. Let gi = (Wgi , wi) be a d-input
gate, where wi1 , . . . wih , . . . wid ∈ WPRE(wi). Using the probability marginalization, the signal
transition probability of wi is given by

Pr(∆wi = σi) =
∑

(si1 ,...,sid)∈Sdrfn

Pr(∆wi = σi,∆wi1 = si1 , . . . ,∆wid = sid). (3)

Here, we assume that two (or more) input signals never propagate to the gate output simulta-
neously, because it is physically impossible for two (or more) events to occur at completely at
the same time in the real world2. In other words, at most only one input signal is either rising
or falling at a moment. Hence, Eq. 3 is simplified as follows:

Pr(∆wi = σi) = Pr(∆wi = σi,∆wi1 = rise,∆wi2 = null, . . . ,∆wid = null)

+ Pr(∆wi = σi,∆wi1 = fall,∆wi2 = null, . . . ,∆wid = null)

+ Pr(∆wi = σi,∆wi1 = null,∆wi2 = rise, . . . ,∆wid = null)

+ Pr(∆wi = σi,∆wi1 = null,∆wi2 = fall, . . . ,∆wid = null)

...

+ Pr(∆wi = σi,∆wi1 = null,∆wi2 = null, . . . ,∆wid = rise)

+ Pr(∆wi = σi,∆wi1 = null,∆wi2 = null, . . . ,∆wid = fall). (4)

In Eq. 4, each term on the right side can be considered as the sensitization probability of a path
consisting of an input and output wire of the gate. Therefore, we can confirm the relation:

Pr(∆wi = σi,∆wih = σih ,∆wi1 = null, . . . ,∆wih−1
= null,

∆wih+1
= null, . . . ,∆wid = null) = Pr(∆(wih , wi) = (σih , σi)). (5)

Using Eq. 5, we can derive

Pr(∆wi = σi) =
∑

wih∈Wgi

∑
σih∈Srf

Pr(∆(wih , wi) = (σih , σi)). (6)

2 In fact, modern EDA tools for generating SAIF assume that signals of two or more input wires never
propagete to the output simultaneously.

56

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

Eq. 6 indicates the relation between the switching probability of the gate output and the
sensitization probability of each path from an input to the output of the gate.

Now let us consider the probability of a specific transition propagating through the gate
represented by Pr(∆wi = σi,∆wih = σih). Using a probability marginalization similar to the
above, the sensitization probability Pr(∆wi = σi,∆wih = σih) is transformed to

Pr(∆wi = σi,∆wih = σih)

=
∑

(si1 ,...,sih−1
,sih+1

,...sid)∈Sd−1
rfn

Pr(∆wi = σi,∆wih = σih ,∆wi1 = si1 , . . . ,∆wih−1
= sih−1

,

∆wih+1
= sih+1

, . . . ,∆wid = sid)

= Pr(∆wi = σi,∆wih = σih ,∆wi1 = null, . . . ,∆wih−1
= null,

∆wih+1
= null, . . . ,∆wid = null).

= Pr(∆(wih , wi) = (σih , σi)) (7)

Eq. 7 indicates the sensitization probability of a path from input to output of the gate is
equal to the simultaneous probability of a signal switchings of input and output wires. In next
subsection, we consider the sensitization probability of a path of which length is more than 2
using the above relation.

3.3 Calculation of path sensitization probability

This subsection formulates the sensitization probability of a path of which length is more than
2. The switching activity of each wire and each gate is derived from gate-level timing simulation
because modern EDA tools (e.g., VCS and NcVerilog) can record transitions of wires and paths
from an input to the output of each gate as switching activity information file (SAIF). For
example, when the number of rise transitions of a wire n∆wi=rise is recorded as the switching
activity in SAIF, the rise transition probability of the wire is given as ∆t/T × n∆wi=rise,
where ∆t is the rise transition delay of the wire and T is simulation time that elapses in the
timing simulation to obtain the switching activities. Since in this paper we assume that ∆t
of all wires are same, the transition probability of each wire has a factor of ∆t/T . Therefore,
GSD mentioned later must have the same factor, too. However, it doesn’t matter whether the
exact value of ∆t/T can be obtained because only the magnitude relationship between GSDs of
gates plays an important role in the PDHT-insertion. Thus, when we calculate the transition
probability of each wire, the ∆t/T can be practically ignored.

On the other hand, in the case of practical cryptographic hardware, we cannot calculate most
of the path sensitization probability directly from the switching activities because the number of
signal propagations though a path of which length is more than 2 cannot be recorded in SAIF.
Therefore, in order to calculate path sensitization probabilities practically with a sufficient
enough accuracy, we assume that a probability of path sensitization is recursively derived as
the simultaneous probability of its partial path sensitization with length up to 2. For example,
let us consider a path pex of three serially-connected gates with output wires w1, w2 and w3

in Fig. 1. The path sensitization probability Pr(∆pex = (rise, rise, fall)) is given as the

57

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

conditional probability of path sensitization as follows:

Pr(∆pex = (rise, rise, fall)) ≈ Pr(∆w3 = fall|∆w2 = rise)Pr(∆w1 = rise,∆w2 = rise)

=
Pr(∆w2 = rise,∆w3 = fall)

Pr(∆w2 = rise)
Pr(∆w1 = rise,∆w2 = rise).

(8)

Note that Pr(A|B) = Pr(A,B)/Pr(B). Because Pr(∆w2 = fall,∆w3 = rise) and Pr(∆w1 =
rise,∆w2 = rise) and Pr(∆w2 = rise) are derived from SAIF, we can calculate the sensiti-
zation probability Pr(∆pex = (rise, rise, fall)). Using Eq.7, we derive

Pr(∆pex = (rise, rise, fall)) ≈ Pr(∆(w1, w2) = (rise, rise))Pr(∆(w2, w3) = (rise, fall))

Pr(∆w2 = rise)
.

(9)
Eq. 9 indicates that the sensitization probability with length of more than 2 is approximated
by the sensitization probabilities of paths with length of up to 2.

We then generalize Eq. 8 to arbitrary path p = (wv1 , . . . , wvl) with length of more than
3. Along with Eq. 8, the path sensitizability Pr(∆p = (σv1 , . . . , σvl)) is decomposed to the
products of conditional and simultaneous probabilities as follows:

Pr(∆p = (σv1 , . . . , σvl)) ≈ Pr(∆wv1 = σv1)

|p|∏
j=2

Pr(∆wvj = σvj |∆wvj−1
= σvj−1

)

= Pr(∆wv1 = σv1)

|p|∏
j=2

Pr(∆wvj = σvj ,∆wvj−1 = σvj−1)

Pr(∆wvj−1 = σvj−1)
. (10)

Because the terms at the right hand side of Eq. 10 are given only by switching activity of each
wire and each gate on path p (i.e., Pr(∆wvj−1 = σvj−1) and Pr(∆wvj = σvj ,∆wvj−1 = σvj−1))
we can calculate a path sensitization probability from an SAIF according to Eq. 10. In addition,
we can efficiently compute the sum of the sensitization probabilities of paths required for GSD
using Eq. 10, as described in Sect. 3.4.

3.4 Formulation and efficient computation of GSD

Using the notation in Sect. 3.1, we define GSD (denoted by γ) as a sum of sensitization prob-
abilities of all paths between a primary input and output through gi, which represents the
influence of gi on PDHT detection.

Definition 1. γgi,wih (σih , σi), which is the GSD of gi = (Wgi , wi) on an input wire wih ∈ Wgi

for σih and σi, is defined as

γgi,wih (σih , σi)

=
∑

∆py∈∆PWPI,PPRE(wih
)

∑
∆pz∈∆PWSUC(wi),WPO

Pr(∆(wy1 , . . . , wy|py| , wih , wi,

wz1 , . . . , wz|pz|) = (σy1 , . . . , σy|py| , σih , σi, σz1 , . . . , σz|pz|)), (11)

where py = (wy1 , wy2 , . . . , wy|py|) and pz = (wz1 , wz2 , . . . , wz|pz|). Note here that wy1 and wz|pz|
should be a wire of respectively primary input and output, and (wy1 , . . . wy|py| , wih , wi, wz1 , . . . ,

wz|pz|) is a path from a primary input to output.

58

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

Note also that a d-input gate has 4d GSDs on input wires wi0 , wi1 , . . . , wih , . . . , wid for
σih ∈ {rise, fall} and σi ∈ {rise, fall}. This definition originates the fact that the modern
EDA tools define gate switching as a propagation of signal transition from an input wire to the
output wire.

In the following, according to Eq. 10, we transform the GSD in Eq. 11 into a form that can
be efficiently computed. Using Eq. 10, we can rewrite the above GSD as follows:

γgi,wih (σih , σi) =
Pr(∆(wih , wi) = (σih , σi))

Pr(∆wih = σih)

×
∑

∆py∈∆PWPI,WPRE(wih
)

Pr(∆(wy1 , . . . , wy|py| , wih) = (σy1 , . . . , σy|py| , σih))

×
∑

∆pz∈∆PWSUC(wi),WPO

Pr(∆(wi, wz1 , . . . , wz|pz|) = (σi, σz1 , . . . , σz|pz|))

Pr(∆wi = σi)
. (12)

On the right hand side of Eq. 12, the term
∑

∆py
Pr(∆(wy1 , . . . , wy|py| , wih) = (σy1 , . . . , σy|py| ,

σih)) represents the sum of the sensitization probabilities of all paths from the primary input
to wih , and the term Pr(∆(wi, wz1 , . . . , wz|pz|) = (σi, σz1 , . . . , σz|pz|)) represents that of paths
from wi to primary output. In other words, the former and later terms are the controllability
and observability, considering dynamic hazard (i.e., glitch effect), respectively. We name them
dynamic controllability on wih for σih and dynamic observability on wi for σi, which are denoted
by DyConwih

(σih) and DyObwi(σi), respectively.

Using Eq. 12, we introduce Lemma 1 for efficient computation of dynamic controllability.

Lemma 1. Given a wire wih , the dynamic controllability is computed as the switching proba-
bility of signal on wih as follows:

DyConwih
(σih) = Pr(∆wih = σih). (13)

Similarly, for the dynamic controllability, we then introduce Lemma 2 below on the efficient
computation of dynamic observability.

Lemma 2. Given a wire wi, DyObwi(σi) can be computed from the dynamic observability of
its successive wire wi′ recursively as follows:

DyObwi(σi) =
∑

wi′∈WSUC(wi)

∑
σi′∈Srf

Pr(∆wi′ = σi′)×DyObwi′(σi′)

Pr(∆wi = σi)
. (14)

If wi ∈ WPO, then DyObwi(σi) = 1.

Lemma 2 indicates that the dynamic observabilities can be computed iteratively from the
primary output to wi. See Appendices for the proofs of Lemmas 1 and 2.

Finally, GSD is represented by

γgi,wih (σih , σi) = Pr(∆(wih , wi) = (σih , σi))×DyObwi(σi). (15)

Because Pr(∆(wih , wi) = (σih , σi)), and DyOb can be computed from only SAIF according to
Lemmas 2, we can efficiently compute GSD based on Eq. 15. Note that DyCon is used for
calculating γ while DyCon does not appear in Eq. 15.

59

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

Algorithm 1 Path Selection

Input: Circuit description (W,G,P)

Output: Rarely sensitized path p and its sensitization state ∆p = (σv1 , . . . , σvl) ∈ S
|p|
rf

1: parameter α; . Number of candidates (initial path seeds) for random selection
2: function SelectRP(W,G,P)
3: set Γ = {};
4: for all gi = (Wgi , wi) ∈ G do
5: for all wih ∈ Wgi do
6: for all (σi, σih) ∈ S2

rf do
7: Γ← Γ ∪ {γgi,wih (σih , σi)};
8: end for
9: end for

10: end for
11: set Γα ← Threshold(Γ, α); . Extract α GSDs in order from the lowest one
12: γgini,wiini

(σiini , σini)← Pick(Γα); . Determine initial path randomly
13: path p← (wiini , wini); ∆p← (σiini , σini);
14: while Head(p) /∈ WPI do . Extend path backward to primary input
15: set Γcand ← {γgc,wic (σic , σi) | wc = Head(p), wic ∈ WPRE(wc), σic ∈ Srf};
16: [p,∆p]← ExtendPath(p,∆p,Γcand);
17: end while
18: while Tail(p) /∈ WPO do . Extend path forward to primary output
19: set Γcand ← {γgc,wic (σic , σc) | wic = Tail(p), wc ∈ WSUC(wic), σc ∈ Srf};
20: [p,∆p]← ExtendPath(p,∆p,Γcand);
21: end while
22: return [p,∆p];
23: end function

4 Proposed PDHT-insertion method

The proposed PDHT-insertion method consists of two phases: path selection and delay addition,
similarly to the conventional method. Each phase of the proposed method has the following
features for making PDHTs more practical and stealthy. The proposed path selection algorithm
selects a path from a sufficient number of possible paths at random, which make it difficult to
find the selected path by reversing the algorithm. The proposed delay addition imposes extra
delay throughout the path according to the GSD values.

4.1 Path selection

Algorithm 1 shows an outline of the proposed path selection algorithm. The algorithm employs
a parameter α to represent the number of candidate path seeds for a random selection. At
Lines 3–10, we compute the GSDs (i.e., γs) of all gates in the given circuit. The computation
of γs can be performed in a time proportional to the square of the number of gates according
to Eq. 15 and Lemma 2. At Line 11, we obtain a set of a partial Γ consisting of α GSDs in
increasing order. At Line 12, we randomly select a gate (more precisely, a pair of input and
output wires on a gate) from the set. Here, a gate with the lowest γ would be the most suitable
to PDHT-insertion. However, a gate is randomly selected from Γα in order to avoid the gate
being found by reversing this algorithm. At Line 13, we set an initial path from the selected
gate with length of 2. At Lines 14–17 and 18–21, we recursively extend the path to a primary
input and a primary output, respectively. Here, the extension is performed by a function named
“ExtendPath,” which is shown in Algorithm 2 and explained in the following paragraph. At

60

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

Algorithm 2 Path Extension
Input: Path p, sensitization state ∆p, Set of GSDs for extension direction Γcand

Output: Extended path p′, extended sensitization state ∆p′

1: parameter ρ;
2: function ExtendPath(p,∆p,Γcand)
3: float r ← rand(0, 1);
4: while Γcand 6= {} do
5: if r ≤ ρ then
6: γgc,wic (σc, σic)← MinGammaIn(Γcand); . Get lowest γ
7: else
8: γgc,wic (σc, σic)← Pick(Γcand); . Get γ randomly
9: end if

10: wire wc′ ← wc or wic ; σc′ ← σc or σic ; . Determine a wire to primary input or output
11: path p′ ← ConcatPath(p, wc′); ∆p′ ← ConcatPathSensiState(∆p, σc′);
12: if IsSensitizable(p′, σ′) = true then
13: return [p′,∆p′];
14: else
15: Γcand ← Γcand − {γgc,wic (σic , σc)};
16: end if
17: end while
18: path p′ ← RemoveGate(p); ∆p′ ← RemoveSensiState(∆p) . Remove the startpoint or endpoint gate
19: return [p′,∆p′].
20: end function

Line 15, we obtain a set of candidate GSDs (i.e., wires) for extending p to a primary input.
Note that gc and σc are determined in the previous loop (or Lines 12–13 initially). At Line 16,
we extend the path by choosing a candidate from Γcand using the algorithm “ExtendPath.” At
Line 19, we obtain a set of candidate GSDs (i.e., wires) for extending p to a primary output. In
contrast to Line 15, gic and σic are determined in the previous loop (or Lines 12–13 initially).
At Line 20, we extend the path by choosing a candidate according to “ExtendPath” as at Line
16. Finally, at Line 22, we return a rarely sensitized path from a primary input to output and
its sensitization state.

Algorithm 2 shows a function for extending a path used at Lines 16 and 20 in Alg. 1.
Algorithm 2 utilizes a parameter ρ ∈ [0, 1] for randomness, in order not to detect the selected
path reversely. At Line 3, we also obtain a random value r ∈ [0, 1]. At Lines 4–17, we determine
an extension direction (i.e., a gate) for the path. Note here that we avoid simply selecting the
gate with lowest γ because such PDHT is easily detected by its reverse algorithm. At Line 6,
we select a candidate gate having the lowest γ if r is smaller than ρ; otherwise, at Line 8, we
select a candidate gate randomly. Hence, if ρ is closer to 1, we extend the path mainly based
on GSD. Conversely, if ρ is closer to 0, we extend the path mainly at random. Thereafter, at
Line 11, we derive an extended path of p by concatenating p with wc′ (i.e., wc or wic), and also
derive an extended path sensitization state of ∆p. At Line 13, we return the extended path
and its sensitization state after checking its sensitizability by a SAT solver because p′ may not
be sensitizable. If not sensitizable, we repeat the above process after deleting the candidate at
Line 15.

Thus, we can select a rarely sensitized path with a randomness induced by α and ρ. The
entropy induced by α and ρ is evaluated in Sect. 5.

4.2 Delay addition

The proposed delay addition is also performed based on GSDs. This is because GSD repre-
sents an influence of a gate on a path sensitization probability, which corresponds to PDHT

61

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

detectability. Note that this delay addition can be performed in a deterministic manner in
contrast to the above path selection. The delay increase of a gate gj along the selected path p
(denoted by τ(gj)) given by

τ(gj) = d

(
log2 |γgj ,wij (σij , σj) + ε|

)λ
∑|p|
η=1

(
log2 |γgη,wiη (σiη , ση) + ε|

)λ , (16)

where d is the total delay increase of the PDHT-inserted path and wij is the input coming from
the predecessor gate on the path, and ε is the very small value to avoid log2(0). ε is needed
because γgj ,wij (σij , σj) becomes 0 when the transition probability of wij is recorded as 0 in

SAIF due to not enough number of applied vectors to estimate the switching activity. Because
γ varies in the exponential range (e.g.,10−12 ≤ γ ≤ 0.25) empirically, we use the logarithm of
γ for delay addition. In addition, because the optimal weight based on GSD depends on the
structure of the multiplier, we introduce a natural number λ to optimize delay addition. The
effect of λ is evaluated in the next section.

5 Experimental results

In this section, we evaluate the validity of the proposed PDHT-insertion method by an experi-
mental insertion of PDHTs into a typical multiplier consisting of a partial product generator, a
multiple-input adder, and a final stage adder. The target multiplier employs an AND gate array
and a Wallace Tree as typical partial product generation and accumulator, respectively. On the
other hand, two typical 2-input adders are used for the final stage adder: one is Ripple Carry
Adder (RCA) which is the smallest and simplest, and another is Kogge Stone Adder (KSA)
which is the fastest. The input bit length of the multiplier is set to 32 × 2 bits, which makes
it difficult for functional verification and chip test in an exhaustive manner. The total delays
of each selected paths varies from 1.8 to 1.2 times the critical path delay. In the evaluation, ρ
and λ change while α is set to 5.

The detection rate of the inserted PDHTs is evaluated by the Monte Carlo test, which judges
the case where the operation of the multiplier was not completed within the delay of the critical
path as a fault when a random vector is input. For comparison, we also evaluate the detection
rate of PDHTs given from the conventional method by the same experimental setting. The

Table 1: Detectability and path entropy of PDHTs inserted into multiplier based on RCA
(×10−4)

ρ = 0 ρ = 0.4 ρ = 0.8 Previous
workλ = 0 λ = 1 λ = 2 λ = 0 λ = 1 λ = 2 λ = 0 λ = 1 λ = 2

d = 1.2
mean 0.03 0.11 0.72 0.03 0.17 0.72 0.02 0.08 0.15 NA
min. 0.01 0.01 0.25 0 0 0.04 0 0 0 0

d = 1.4
mean 0.57 0.74 1.72 0.49 0.97 1.89 0.15 0.29 0.74 NA
min. 0.15 0.05 0.86 0.01 0.11 0.3 0 0 0.04 0

d = 1.6
mean 4.01 1.76 2.21 2.70 2.49 2.63 0.65 0.98 1.79 NA
min. 0.67 0.28 0.85 0.25 0.63 0.57 0.05 0.07 0.15 0

d = 1.8
mean 23.9 2.79 3.44 7.34 3.61 3.96 2.14 1.96 3.38 NA
min. 2.79 1.46 1.34 0.41 1.2 1.21 0.34 0.2 0.45 0

Entropy 62.00 54.64 29.07 0

62

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

parameter c of the conventional method is 0.2 times the delay of the RP, or twice the minimum
c that satisfies the constraints (1) and (2). The numbers of individuals and generations of GA
are 10.

Table 1 and 2 show the detection rate of PDHTs and the entropy for the number of path
candidates by the proposed method and the conventional method when RCA and KSA are used
as the final stage adder, respectively. The detection rate was calculated by a Monte Carlo test
with one million vectors, and it was set to 0 when detection was impossible. The first column of
Tables 1 and 2 represents the magnification ratio of the added delay to the original one. Since
the proposed method randomly selects a path for each trial, we performed 10 trials in the case
of each condition and evaluated the detection rate of the 10 paths. Table 1 shows the lowest
detection rate among the 10 paths as “min.” and the logarithmic average of the detection
rates of the 10 paths as “mean”. When calculating the logarithm average, we assumed that the
minimum detection rate is 10−7 in order to prevent the detection rate from being undefined.

One goal is that the detection rate required for PDHT is less than 10−6. This is because
the failure rate of an large scale integration (LSI) is assumed to be about 10−6 or so. If the
PDHT detection rate is less than 10−6 or less, it becomes difficult to distinguish between LSI
failure and PDHT. Therefore, it is desirable that the detection rate is less than 10−6, that is
“0”, in Tables 1 and 2.

In the case of a multiplier based on KSA, we can confirm that the detection rate of the
proposed method decreases clearly as the value of λ is larger. Also, the detection rate is
lower as ρ is smaller. In the case of RCA, we can find that it becomes easy to detect PDHTs
by increasing the value of λ. The major reason would be that glitch is more likely to occur
structurally in RCA than KSA. On the other hand, the detection rate is lower as ρ is larger.

Comparing the proposed method with the conventional method, we can see that the pro-
posed method is better or comparable for the cases of KSA and the conventional method is
better for the cases of RCA. Note however that since the conventional method select only one
path in a deterministic manner, the path can be easily detected by the same method as the
insertion. On the other hand, the proposed method can prevent the inserted PDHT from being
detected by the same method due to the random selection of the path.

In the proposed method, the entropy of the path candidate is determined by the values of
α and ρ. The entropy in Tables 1 and 2 are calculated as follows. First, let the average number
of gates included in the selected path be E[|p|] − 1. Here, assuming 2 input gates, we select
gates on the basis of GSD preferentially with probability ρ and randomly select with probability

Table 2: Detectability and path entropy of PDHTs inserted into multiplier based on KSA
(×10−4)

ρ = 0 ρ = 0.4 ρ = 0.8 Previous
workλ = 0 λ = 1 λ = 2 λ = 0 λ = 1 λ = 2 λ = 0 λ = 1 λ = 2

d = 1.2
mean 1.05 0.03 0.002 0.08 0.004 0.004 2.33 0.04 0.006 NA
min. 0 0 0 0 0 0 0 0 0 0

d = 1.4
mean 2.208 1.52 0.006 7.59 0.23 0.003 29.32 0.50 0.013 NA
min. 0.39 0.01 0 0.51 0.04 0 3.2 0.03 0 0

d = 1.6
mean 102.7 11.84 0.06 50.91 2.17 0.01 122.2 4.24 0.013 NA
min. 8.82 17.0 0 06.65 0.15 0 35.32 0.24 0 0

d = 1.8
mean 258.4 37.24 0.20 145.7 9.34 0.03 299.8 17.75 0.036 NA
min. 48.12 6.16 0 28.85 0.44 0 129.7 1.14 0 1.45

Entropy 30.74 27.24 15.11 0

63

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

1 − ρ. This is equivalent to selecting a gate of the lower GSD with probability (1 + ρ)/2, and
selecting another gate with probability (1− ρ)/2. In the path selection, this gate selection can
be considered to repeat by the average number of gates. Therefore, the average entropy H(ρ)
is given as

H(ρ) =
E [|p| − 1]

2

(
(1 + ρ) log2

1 + ρ

2
+ (1− ρ) log2

1− ρ
2

)
. (17)

When ρ is 0, the entropy for the number of candidates is equal to the exponent part to represent
the number of possible paths. In this experiment, the numbers of possible paths from a selected
gate in KSA and RCA are about 230 and 260, respectively. The values of E[|p| − 1] are then
estimated to be roughly 30 and 60 for KSA and RCA, respectively. In addition, if the number
of candidate paths does not heavily change depending on the selected gate, we can simply add
log2(α) to Eq. 17 for calculating the entropy which increases by the number of seeds for the path
selection α. In fact, we confirmed that the number of candidate paths did not change much
depending on experimentally selected gates. The results of Tables 1 and 2 were given by the
above calculation. At a first glance, it seems that the entropy of the number of path candidates
is small. However, for all these candidate paths, it is necessary to investigate a possible input to
sensitize the path with a SAT solver. Since the time taken by a SAT solver was about from 0.5
seconds to several ten minutes experimentally, it is difficult to examine all the candidate paths
with a realistic time if the entropy becomes about 20. Therefore, the PDHT inserted by the
proposed method can be a threat when the detection rate by the Monte Carlo test is less than
10−6 and the entropy is about 20. We can say that the proposed method can be a sufficiently
possible threat because the above conditions are satisfied by both KSA and RCA by adjusting
the parameters.

6 Conclusion

This paper presented a non-reversible insertion method of PDHTs. First, we theoretically
analyzed the relation between switching activity and path sensitization probability, and derive
a new metric named Gate Switching Detectability (GSD) in order to evaluate the effect of the
delay added to a logic gate on the whole circuit. Then, we proposed a new PDHT-insertion
method consisting of a non-reversible path selection method and a delay addition method based
on GSD. Unlike the conventional method based on the deterministic method, the proposed
method has the feature that makes it difficult to detect PDHTs by tracing the insertion method.
Furthermore, through the Monte Carlo test on multipliers with PDHT inserted by the proposed
method and the conventional inserted, we confirmed that the proposed PDHT-insertion method
could be a threat in practice.

In the future, a more detailed evaluation of PDHT detection rates would be required, and
effective countermeasure/detection method for PDHTs should be studied.

Acknowledgment

This research has been supported by JSPS KAKENHI Grants No. 17H00729, No. 16K12436
and No. 16J05711.

64

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

References

[1] Matthew Hicks, Murph Finnicum, Samuel T King, Milo MK Martin, and Jonathan M Smith. Over-
coming an untrusted computing base: Detecting and removing malicious hardware automatically.
In Security and Privacy (SP), 2010 IEEE Symposium on, pages 159–172. IEEE, 2010.

[2] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. Advances in
Cryptology—CRYPTO, pages 513–525, 1997.

[3] Raghavan Kumar, Philipp Jovanovic, Wayne Burleson, and Ilia Polian. Parametric trojans for fault-
injection attacks on cryptographic hardware. In Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2014 Workshop on, pages 18–28. IEEE, 2014.

[4] Georg T Becker, Francesco Regazzoni, Christof Paar, and Wayne P Burleson. Stealthy dopant-level
hardware trojans. In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 197–214. Springer, 2013.

[5] Samaneh Ghandali, Georg T Becker, Daniel Holcomb, and Christof Paar. A design methodology
for stealthy parametric trojans and its application to bug attacks. In International Conference on
Cryptographic Hardware and Embedded Systems, pages 625–647. Springer, 2016.

[6] Eli Biham, Yaniv Carmeli, and Adi Shamir. Bug attacks. In Annual International Cryptology
Conference, pages 221–240. Springer, 2008.

[7] Mohammad Reza Kakoee, Valeria Bertacco, and Luca Benini. At-speed distributed functional
testing to detect logic and delay faults in nocs. IEEE Transactions on Computers, 63(3):703–717,
2014.

[8] Akira Ito, Rei Ueno, Naofumi Homma, and Takafumi Aoki. On the detectability of hardware
trojans embedded in parallel multipliers. In IEEE International Symposium on Multiple-Valued
Logic (ISMVL), Linz, Austria, 2018.

[9] Xiaoyong Tang, Hai Zhou, and Prith Banerjee. Leakage power optimization with dual-v th library
in high-level synthesis. In Proceedings of the 42nd annual Design Automation Conference, pages
202–207. ACM, 2005.

A Proof of Lemma 1

Lemma 1. Given a wire wih , the dynamic controllability is computed as the switching proba-
bility of signal on wih as follows:

DyConwih
(σih) = Pr(∆wih = σih). (18)

Proof. Let ξ(wih) be the longest path length among paths from the primary input to wih ,
namely,

ξ(wih) = max
py∈PWPI,WPRE(wih

)

|py|. (19)

Prove Lemma 1 using mathematical induction. Let Q(k) be the statement of Lemma 1 where
k = ξ(wih).
We observe that Q(2) is true from Eq. 6.
Assume that Q(n) is true for some n ∈ N. It remains to show that Q(n + 1) holds, then, we

65

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

have

DyConwih
(σih)

=
∑

∆py∈∆PWPI,WPRE(wih
)

Pr(∆(wy1 , . . . , wy|py| , wih) = (σy1 , . . . , σy|py| , σih))

=
∑

∆py∈∆PWPI,WPRE(wih
)

Pr(∆py = (σy1 , . . . , σy|py|))

Pr(∆wy|py| = σy|py|)
× Pr(∆(wy|py| , wih) = (σy|py| , σih))

=
∑

wi′
h′
∈WPRE(wih)

∑
σi′
h′
∈Srf

(
Pr(∆(wi′

h′
, wih) = (σi′

h′
, σih))

Pr(∆wi′
h′

= σi′
h′

)

×
∑

∆py′∈∆PWPI,WPRE(w
i′
h′

)

Pr(∆(wy′1 , . . . , wy′|p
y′ |
, wi′

h′
) = (σy′1 , . . . , σy′|p

y′ |
, σi′

h′
))

)
.

(20)

Here, if ξ(wi′
h′

) ≤ n, then Q(χ) (i.e.,
∑

∆p′y
Pr(∆(wy′1 , . . . , wy′|p

y′ |
, wi′

h′
) = (σy′1 , . . . , σy′|p

y′ |
, σi′

h′
))

= Pr(∆wi′
h′

= σi′
h′

)) is true for 2 ≤ χ ≤ n. Because py′ should be shorter than py (i.e.,

|py′ | < n), we have

∑
wi′
h′
∈WPRE(wih)

∑
σi′
h′
∈Srf

Pr(∆(wi′
h′
, wih) = (σi′

h′
, σih))

Pr(∆wi′
h′

= σi′
h′

)
× Pr(∆wi′

h′
= σi′

h′
)

=
∑

wi′
h′
∈WPRE(wih)

∑
σi′
h′
∈Srf

Pr(∆(wi′
h′
, wih) = (σi′

h′
, σih))

= Pr(∆wih = σih), (21)

according to Eq. 6.

B Proof of Lemma 2

Lemma 2. Given a wire wi, DyObwi(σi) can be computed from the dynamic observability of
its successive wire wi′ recursively as follows:

DyObwi(σi) =
∑

wi′∈WSUC(wi)

∑
σi′∈Srf

Pr(∆wi′ = σi′)×DyObwi′(σi′)

Pr(∆wi = σi)
. (22)

If wi ∈ WPO, then DyObwi(σi) = 1.

Proof. If wi ∈ WPO, it is trivial from definition of the dynamic observability. Otherwise, we

66

A Non-Reversible Insertion Method for Hardware Trojans Ito, Ueno, Homma, Aoki

have

DyObwi(σi)

=
∑

∆pz∈∆PWSUC(wi),WPO

Pr(∆(wi, wz1 , . . . , wz|pz|) = (σi, σz1 , . . . , σz|pz|))

Pr(∆wi = σi)

=
∑

∆pz∈∆PWSUC(wi),WPO

Pr(∆pz = (σz1 , σz2 , . . . , σz|pz|))×
Pr(∆(wi, wz1) = (σi, σz1))

Pr(∆wi = σi)Pr(∆wz1 = σz1)

=
∑

wi′∈WSUC(wi)

∑
σi′∈Srf

(
Pr(∆(wi, wi′) = (σi, σi′))

Pr(∆wi = σi)

×
∑

∆pz′∈∆PWSUC(w
i′)WPO

Pr(∆(wi′ , wz′1 , . . . , wz′|p
z′ |

) = (σi′ , σz′1 , . . . , σz′|p
z′ |

))

Pr(∆wi′ = σi′)

)
. (23)

Because the summation for pz′ corresponds to the dynamic observability of wi′ , we substitute
DyObwi′(σi′) to the result of Eq. 23.

67

	Introduction
	Previous work
	Rare path selection
	Delay addition

	Gate Switching Detectability (GSD)
	Notations for path sensitization probability
	Wire
	Gate
	Path

	Formula for path sensitization probability between inputs and output of each gate
	Calculation of path sensitization probability
	Formulation and efficient computation of GSD

	Proposed PDHT-insertion method
	Path selection
	Delay addition

	Experimental results
	Conclusion
	Proof of Lemma 1
	Proof of Lemma 2

