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Abstract

This paper combines a residual-based diagnosis approach and an unsupervised anomaly
detection method to develop a hybrid methodology for monitoring smart buildings for
which complete models are not available. The proposed method combines data mining
approach and model-based diagnosis to update a diagnosis reference model and improve
the overall diagnostics performance. To estimate the likelihood of each potential fault in
complex systems like smart buildings, the dependencies between components and, there-
fore, the monitors should be considered. In this work, a tree augmented naive Bayesian
learning algorithm (TAN) is used for the classification. We demonstrate and validate the
proposed approach using a data-set from an outdoor air unit (OAU) system in the Lentz
public health center in Nashville.

1 Introduction

A smart building is defined as the integration of building management, and telecommunication
technologies [21]. The Internet of Things (IoT) [18] has brought a new generation of smart
buildings with sensor networks that can monitor a number of different building variables, such
as temperature, humidity, air flow, and power usage. This further enables us to detect and
isolate faults when they occur, and develop control algorithms that are designed to reduce en-
ergy consumption, improve operating conditions and tenant satisfaction, and reduce unplanned
downtime. To achieve these goals, early fault detection and isolation (FDI) is critical in any
smart building monitoring strategy. Effective FDI supports prompt remedial actions and re-
duces unnecessary wastage of resources, decreases residents discomfort, and prevents extended
downtime.

Traditional approaches to FDI typically rely on a model that defines nominal behavior of
a system. Model-based approaches such as graphical methods [16, 5], observer-based FDI [1],
and parity equations [8] have been successfully applied for FDI in dynamic systems. Provan
[19] developed a diagnosis model for FDI in heating, ventilation and air conditioning (HVAC)
systems in smart buildings. The model-based methods are computationally efficient. Moreover,
it is easy to understand and interpret the diagnosis results when we apply these approaches.
However, for complex systems, it is expensive and sometimes infeasible to generate an accurate
model for the entire system. When the model is incomplete, data-driven monitoring approaches
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[23] can be used as a promising supplement to model based fault detection and isolation. A data-
driven monitoring algorithm uses the system measurements to observe the system behavior,
recognizes unusual situations during its operation, and informs experts to update operations
procedures.

Several researchers have combined model-based diagnosis with data-driven approaches to
achieve better diagnosis performance. Mack et al [13] combined a diagnosis reference model
developed by domain experts with a tree augmented naive Bayesian (TAN) learning algorithm
to develop a framework that combines the expert knowledge and historical data to improve the
accuracy in differentiating between nominal and faulty situations. Data has also been used to
learn uncertain and incomplete models [22]. Jung et al [9] used a model-based approach for
fault detection. To achieve better fault isolation, they used the residuals outputs in previous
fault scenarios to generate models for different fault modes. For each fault mode, they trained
a one-class support vector machine (1-SVM) to determine if a new sample (residual output)
belongs to the fault mode or not. If the new sample did not belong to any of the fault modes, it
was labeled as a likely unknown fault. The classifiers were expected to become more accurate
as more data is obtained overtime.

Sheibat-Othman et al [20] used support vector machines (SVM) for fault detection and
applied an observer-based diagnosis approach for fault isolation. When the SVM detects no
fault in the system, they use the data to update the observer parameters. Narasimhan et
al [17] used TRANSCEND diagnosis approach [16] to reduce the set of possible faults and then
applied a data-driven approach to best distinguish among the remaining faults. In this paper,
our goal is to develop a hybrid diagnosis approach that combines the use of historical data with
the available physics-based knowledge of the system to achieve better diagnosis performance in
smart buildings with incomplete models. By combining model-based diagnosis and data-driven
anomaly detection, we can detect and isolate faults that was not possible with pure model-based
diagnosis approaches because the models are incomplete.

The rest of the paper is organized as follows. Section 2 discusses our proposed combined
methodology for fault detection and isolation in complex systems with incomplete models.
Section 3 presents the case study using a subsystem of Lentz Public Health Center. Section 4
presents conclusions and discusses the future work.

2 Methodology

We have developed a multi-step diagnosis methods to distinguish outlier behaviors and link
them to anomalies or faults in smart buildings. Figure 1 describes a three step approach for
monitoring smart buildings: (1) using a model-based diagnosis approach to generate the initial
diagnosis reference model; (2) unsupervised anomaly detection using a density-based clustering
approach; (3) identifying the undetected outlier groups, deriving the significant features that
characterize each outlier group from the nominal and using these significant features to complete
the diagnosis reference model. We describe each step in greater detail below.

2.1 Model-based Diagnosis

Residuals represent redundancies in the system equations. The model-based diagnosis unit in
in Figure 1, applies the set of generated residuals, R = {r1, ..., rl}, to detect and isolate system
faults. These residuals are associated to the sections of a building that the analytical model is
available and we can use analytic redundancy relationships to derive the residuals. To address
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Figure 1: A combined model-based and data-driven approach for monitoring smart buildings.

noise and uncertainty and generate robust diagnosis results, we apply a Z-test [4] to determine
when change in a residual value, r ∈ R, is statistically significant.

We consider the last N2 residual values to compute the mean value of residual distribution
(assumed to be a normal distribution):

µr(k) =
1

N2

k∑
i=k−N2+1

r(i). (1)

The last N1 samples (typically, N1 � N2) to compute the variance:

σ2
r(k) =

1

k −N1 − 1

k∑
i=k−N1+1

(r(i)− µr(k))2. (2)

The confidence level for the Z-test, α, determines the bounds, z−, and z+, and, therefore, the
sensitivity of the residuals.

P (z− < (r(k)− µr(k)) < z+) = 1− α. (3)

The Z-test is implemented as follows:

mr =

{
0 if z− < r(k)− µr(k) < z+
1 otherwise.

(4)

where mr represents the monitor derived from residual r. Ideally, a monitor fires when at least
one fault has occurred in the system, and the set of monitors derived from system equations,
Mr = {mr|∀r ∈ R}, are adequate to detect and isolate all the system faults. When the system
model is incomplete and the set of monitors derived from system equations, Mr is not enough
to achieve complete diagnosability performance, the system’s historical data can be used to
derive additional monitors.
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2.2 Data-driven anomaly detection

2.2.1 Clustering the data objects:

Clustering is a process of partitioning a set of objects into clusters such that objects in the
same cluster are more similar to each other than objects in different clusters according to some
defined criteria [14]. Clustering methods can be applied to unsupervised anomaly detection.
Li et al [12] used a density-based clustering approach to detect anomalous flights based on
onboard-recorded flight data. In previous work [3] we used a hierarchical clustering to identify
anomalies in a spacecraft telemetry data.

Typically, a large majority of the data-points will represent nominal operations of a building
but a small subset may represent anomalous and faulty behaviors. For unsupervised learning
in step 2, we use the density-based spatial clustering of applications with noise (DBSCAN)
algorithm [6] to cluster the data and detect anomalies sample points in smart buildings. We
hypothesize that the clusters or groups that contain a large number of the time segments
represent nominal operations, whereas outliers (the objects that are not reachable from any
other object in the DBSCAN) and smaller clusters may represent anomalous situations. In
previous work, Li et al [11] have used DBSCAN for anomaly detection.

DBSCAN considers an object o a core object if at least MinObj objects are within its ε
distance (including o). MinObj and ε are input parameters determined by users. An object q
is said to be directly reachable from a core object o if dis(o, q) ≤ ε. An object q is reachable
from a core object o if there is a path p1, ..., pn with p1 = o and pn = q, where each pi+1 is
directly reachable from pi (all the objects on the path must be core objects, with the possible
exception of q). If an object is reachable from any object of the cluster, it is part of the cluster
as well. All objects not reachable from any other object are outliers.

The DBSCAN algorithm automatically determines the clusters and the anomalies in the
dataset. The time complexity of DBSCAN is mostly governed by finding the neighbors of each
sample point, which in the worst case has O(n) complexity, where n is the number of objects.
Therefore, the complexity of the DBSCAN algorithm is O(n2). This time complexity can be
reduced to O(nlogn) by building more sophisticated data structures [10].

2.2.2 Discovering undetected faults and their significant features:

Steps 3 is designed to assign meanings or labels to the derived clusters to help the experts to
identify undetected faults. As a first step, we consider large groups derived from the clustering
algorithm to be nominal (this corresponds to the assumption that the system operates nor-
mally most of the time). The smaller clusters that are sufficiently distant from the nominal
clusters are labeled as outliers. As discussed earlier, smart buildings are complex, and they
may involve multiple phases and operational modes, corresponding to different operation times
or environmental conditions. Some of the smaller clusters that are not detected by the model-
based diagnoser, may, in reality correspond to special modes of operation, and, therefore, are
not of interest in discovering discrepant and faulty behavior. Therefore, an additional challenge
we face in this work is separating the special modes of operation from truly undetected faults.

We have developed an approach to extract additional cues to identify special operating
modes. To facilitate discovery of anomalies, we defined significant features in a previous work
[3] as the set of features that best differentiate each anomalous group from the nominal groups.
These features help our human experts better understand and characterize the anomalous sit-
uation as potential faults, or special modes of operation. In previous work [3], we developed
an Euclidean distance based measure to identify and extract significant features. To be consis-
tent with the DBSCAN algorithm we redefine the significant features as follows in this paper.
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Figure 2: Importance of a feature.

Consider the k pair of objects with minimum distances in a way that each pair has an object
in normal cluster a and an object in a small cluster b. Figure 2 shows an example where k = 3.
In this case d1, d2 and d3 are the 3 minimum distances between objects in a and b. We define
the distance measure between normal operation cluster, a, and a small cluster, b, for signal
variable, j, Dj

ab, as the sum of distances between the value of signal j in the k selected pairs.
For example Dx

ab = d1x + d2x + d3x, where dix is the distance between feature x in the ith pair
in Figure 2. The total distance between cluster a and cluster b can be computed as

Dab =

√√√√ m∑
j=1

(Dj
ab)

2, (5)

where m is the number of features in the data.
We define the importance of each feature vj in distinguishing an outlier cluster, b, from

normal operations, a, Iab(vj), as the ratio of Dj
ab to Dab, i.e.,

Iab(vj) =
Dj

ab

Dab

(6)

The importance of a set of features, Vk = {v1, v2, ..., vk} in distinguishing b from normal oper-
ation, a, is defined as:

Iab(Vi) =

√√√√ k∑
i=1

(Iab(vk))2. (7)

Let V = {v1, v2, ..., vm} denote the set of features. We select a subset of features Vb to guarantee
a minimum required importance, Ir, in distinguishing b from normal operation with minimum
cardinality, i.e.,

min Vb ⊆ V
s.t. Iab(Vb) > Ir

(8)

Once the significant features have been established, like model-based diagnosis, we can apply
the Z-test to detect significant changes in the features. Consider Vs as the set of significant
features for the system. We consider the last N2 values to compute the mean value of a feature
v ∈ Vs, µv(k), and the last N1 samples ( N1 � N2) to compute the feature variance, σ2

v(k) at
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sample time k. The confidence level for the Z-test, α, determines the bounds, z−, and z+, and,
therefore, the sensitivity to the feature changes. The Z-test for feature v is:

mv =

{
0 if z− < v(k)− µv(k) < z+
1 otherwise.

(9)

where mv represents the monitor derived from v, and Mv is the set of monitors derived from
the significant features Vs.

2.3 Model-based + data-driven anomaly detection

A common approach to detect and isolate system faults is to derive a diagnosis reference model
(see Figure 6) which is a bipartite graph that captures the causal relations between a fault
(cause) and observed symptoms, which are deviant feature values. In traditional diagnosis
systems, deviant feature values are captured in the form of monitors. In the model-based
approach, the monitors are the outputs of the hypothesis tests that represent statistically sig-
nificant changes in the residuals. In the data-driven approach, the monitors are the outputs
of the hypothesis tests that represent statistically significant changes in the individual features
or combinations of features. By considering the residual outputs and the significant features
simultaneously, we combine model-based diagnosis and data-driven approach to achieve better
fault detection and isolation. Therefore, we define the set of monitors for our hybrid diagnosis
approach, Mh, as the union of the model-based monitors and data-driven monitors.

Mh = Mr ∪Mv. (10)

In the diagnosis step, our goal is to use the set of monitors, Mh = {m1,m2, ...mp}, to
estimate the probability of each potential fault, f ∈ F , P (f |Mh). The diagnoser uses the
likelihood of each potential fault to rank the fault hypotheses and generate alarms. To estimate
the probability of each potential fault a reasoning approach such as Bayesian Networks (BN) [2]
can be applied. When the monitors are independent, we can make the Naive Bayes assumption
and update the likelihood of a fault mode, f as follows.

P (f |Mh) = αP (Mh|f) = αP (m1|f)× ...× P (mp|f) (11)

where α is a normalizing constant. As additional monitors fire, the number of likely fault hy-
potheses, defined by their likelihood of occurrence, become smaller, and with a lot of supporting
evidence, may reduce to a most likely single fault. When more than one failure mode is likely,
the reasoner ranks the active hypotheses in the order of their likelihood of occurrence.

In a previous work Mack et al [13] applied the Tree Augmented Naive Bayesian learning
algorithm (TAN) to estimate the probability of each potential fault when the Naive Bayes
assumption does not hold. The TAN structure provides a simple extension to the Naive Bayes
model by capturing the dependencies among the monitors in the diagnosis reference model.
Like the aircraft flight data [13], the monitors in the smart building data-set in our case study
are not independent. Therefore, we use the Bayesian TAN classifier to update the likelihood of
the fault modes in the next section.

3 Case study

The outdoor air unit (OAU) that we study in this paper was designed by Trane R© and installed
in Lentz public health center in Nashville to improve indoor air quality and reduce heating,
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Figure 3: Output air unit (OAU).

ventilation and air conditioning (HVAC) costs. As it is shown in Figure 3, the OAU has two
fans; the exhaust fan, and the outside fan. These fans control the building’s input and output
airflow in order to improve the indoor air quality, relative humidity and save energy by reducing
the load on other HVAC equipments in the building.

3.1 The OAU model

It is challenging to model the OAU in sufficient detail to construct a model based diagnoser for
the system. The relationship between a fan’s static pressure and airflow has been shown to be
nonlinear and a function of the fan’s rotational speed1. The performance of the exhaust fan
and the output fan are not independent. However, it is not trivial to mathematically model the
effect of one on the other one. Finally, there are several system and environmental parameters
such as wind speed, and the air filter’s resistance that affect the model but are unknown.

Even though, deriving a complete model for the OAU system is not feasible, we can use
physical laws to derive the relationships between the exhaust fan and the outside fan speed,
static pressure and airflow. The law for incompressible flow applied to this configuration is
given as:

Q2 = Q1(
D2

D1
)3
N2

N1

P2 = P1(
D2

D1
)2(

N2

N1
)2(

ρ2
ρ1

),

(12)

where Qi is the airflow in fan i, Di is the diameter of fan i, Ni is the rotational speed of fan i,
Pi is the static pressure in fan i, and ρi is the air/gas density in fan i.

3.2 The OAU system measurements

The OAU has 6 sensors that measure the statistic pressure in the output fan, the statistic
pressure in the exhaust fan, the output fan rotational speed, the exhaust fan rotational speed,
output fan airflow, and exhaust fan airflow. In addition to these continuous measurements,
there are 14 sensors that record binary events such as the fire alarm status (on/off) or a fan
filter status (clean/dirty). Therefore, the data we use for this case study contains 20 time-series
waveforms. The sampling rate is 6 samples per hour and we have access to approximately 3
months of data. Overall, the data set contains 11193 samples. There are several data points

1 https://www.trane.com/content/dam/Trane/Commercial/global/products-systems/

education-training/continuing-education-gbci-aia-pdh/Fans-in-Air-Handling-Systems-/Trane_ENL_

Fans_in_Air-Handling_Systems.pdf
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Figure 4: Value of residuals.

with missing values in the data-set. We remove these data points in the per-processing step.
After removing the incomplete data points, each time series contains 10316 samples.

3.3 Model-based FDI

We can generate the following residuals to monitor the exhaust fan and the outdoor fan using
the fan laws in (12).

r1 = Qe − σek1Ne

r2 = Qo − σok2No

r3 = Pe − σek3N2
e

r4 = Po − σok4N2
o ,

(13)

where Qe is the exhaust fan airflow, Ne represents the exhaust fan rotational speed, Qo is the
outdoor fan airflow, No represents the outdoor fan rotational speed, and Pe and Po represent
the exhaust fan static pressure and the outdoor fan static pressure respectively. σe and σo are
binary variables, where σe = 1 means the exhaust fan is on, σe = 0 means the exhaust fan is
off, σo = 1 means the outdoor fan is on, and σo = 0 means the outdoor fan is off.

k1, k2, k3, and k4 are constants and can be computed using fan parameters, initial conditions,
and air density or estimated using the historical data. In this paper, we use a maximum
likelihood estimator to estimate these parameters. Table 1 represents the estimated parameters
for the OAU system. Figure 4 shows the value of residuals for the estimated parameters. We
consider 0.99 confidence level, α, for the Z-test. α defines the lower and upper bounds, z−
and z+ in equation (4). Figure 5 shows the model based FDI results using the Z-test, where 1
represents abnormal behavior and 0 represents normal operation.

Figure 6 shows the diagnosis reference model using the set of residuals. We derived the
residuals in equation (13) using the OAU system’s steady state equations. Therefore, when the
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Table 1: Residual parameters.

Parameter Value
k1 86.2834
k2 91.84286
k3 0.0001472726
k4 0.0001595658

Figure 5: Hypothesis test outputs.

system is in a transition mode, it can trigger any of the derived residuals. Transition mode is
not an abnormal behavior, and it is important to isolate this mode from potential abnormal
behaviors. The first fault in the system, f1, occurs when the exhaust fan or the outdoor fan
is operating and the other one is off. The exhaust fan and the outdoor fan are supposed to
always work together. However, it is possible that because of a software error, one of them
starts operations earlier than the other fan. As we mentioned earlier, the performance of the
exhaust fan and the output fan are not independent and when one of them stops, it affects the
other one. We used normal operational data, where both of the fans work at the same time, to
estimate residual parameters in Table 1. Therefore, when only one of them is working a number
of residuals can be triggered. We show this in Figure 6 by connecting f1 to all the residuals.

The fan filters can accumulate dirt as the system operates overtime. When a fan’s filter
becomes dirty, the resistance to airflow in the fan increases and the fan laws in equation (12)
with the estimated parameters in Table 1 are not sufficiently representative of the observed
behavior. Therefore, the exhaust fan filter status or the outdoor fan filter status can trigger the
exhaust fan residuals (r1 and r3) and the outdoor fan residuals (r2 and r4) respectively. We can
see that the diagnosis reference model in Figure 6 is not enough to isolate the transition mode
and the faults. In the next subsection, we use a data-driven anomaly detection approach to
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Figure 6: Diagnosis reference model using residuals.

extract significant features of each operation mode and fault to complete the diagnosis reference
model.

3.4 Data-driven anomaly detection

3.4.1 Pre-processing:

When the measures are sensitive to the amplitude of the input signals, it is necessary to stan-
dardize the time-series waveforms before running a clustering algorithm to discover different
modes of operation, including anomalous and faulty modes. Milligan and Cooper [15] performed
an experimental study of seven standardization methods for clustering plus no standardization
at all and concluded the approaches which standardize by division by the range of the variable
give superior performance in recovering the cluster structure in the presence of noise. These
approaches use the range of each feature to standardize it. A common method to standardize
feature, F , is

Fs =
F −min(F )

max(F )−min(F )
, (14)

where 0 ≤ Fs ≤ 1.

3.4.2 Choosing the DBSCAN algorithm parameters:

To the best of our knowledge, all of the well-known clustering algorithms require some input
parameters. These parameters have a significant influence on the clustering result and typically,
there is no unique approach to determine them. Unlike the k-means algorithm, DBSCAN does
not require the number of clusters as an input. However, as it is mentioned earlier, it has two
inputs: ε and MinObj. A common approach to determine ε is to compute the distance of k
nearest neighbors of each object point for some k determined by the user and select ε where
a sharp change is observed [7]. Figure 7 represents the K-dist plot for the OAU data-set for
k = 5. The graph has a knee at ε = 0.02. In this work, we are interested to identify small
clusters as the possible anomalous groups. Therefore, we set MinObj = 10.

3.4.3 Clustering:

We apply the DBSCAN clustering algorithm (the R function, dbscan2)) to cluster the OAU
system data-set. Figure 8 shows that the algorithm generates six clusters. From the 10316

2 see https://cran.r-project.org/web/packages/dbscan/dbscan.pdf
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Figure 7: K-dist plot for the OAU system.

Figure 8: Clusters and outliers.

samples in the data-set, there are 64 outliers (cluster 0 in Figure 8), 6299 samples are grouped
in cluster 1, 852 samples are grouped in cluster 2, 19 samples are grouped in cluster 3, 2968
samples are grouped in cluster 4, 55 samples are grouped in cluster 15, and cluster 6 has 59
samples. Cluster 1 is the largest cluster in the data-set and we assume that it represents the
nominal behavior of the system. We study the other clusters in greater detail by comparing
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Table 2: Summary description of the detected modes and anomalies
Cluster Detected Mode or

Anomaly
Significant Features Description

1 Normal operation
mode

2 Mode: the system is
off • Exhaust fan status

• Outdoor fan status

The OAU is off in this
mode

3 Mode: transition

• Outdoor fan static pres-
sure

• Outdoor fan airflow

• Outdoor fan speed com-
mand

Low pressure and air-
flow when the system
starts

4 Fault: only one fan is
working • Exhaust fan speed com-

mand

• Exhaust fan status

Exhaust fan off and
outdoor fan on

5 Fault: the exhaust
fan filter and the out-
door fan filter are
dirty

• Exhaust fan filter status

• Outdoor fan filter status

The exhaust fan fil-
ter and the outdoor
fan filter have to be
changed.

6 Fault: the outdoor
fan filter is dirty • Outdoor fan filter status

The outdoor fan filter
has to be changed.

7 Fault: the exhaust
fan filter is dirty • Exhaust fan filter status

The exhaust fan filter
has to be changed.

them against the nominal cluster to determine if they represent special modes or anomalies.

3.4.4 Extracting the significant features of each cluster:

To characterize the clusters, we extracted the significant features that differentiated each cluster
from the nominal cluster. Using equation (8) we selected significant features by setting the
threshold, Ir = 0.9. The significant features represented an ordered subset of features that
contributed the largest amounts to the distance from the object in the outlier cluster to the
object in the nominal with minimum distance, and the chosen subset accounted for 90% of
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Figure 9: Outdoor fan airflow and outdoor fan static pressure in cluster 1 (blue) and cluster 3
(red).

the distance between the outlier and nominal cluster closest objects. Table 2 summarizes the
significant features of six outlier clusters we identified by our clustering approach. We presented
the significant features for each anomalous cluster to our experts to help us further characterize
and classify the special modes and anomalies.

For example, consider cluster 3. In this cluster, the binary variables are the same with
nominal cluster. However, as shown in Figure 9, the outdoor fan airflow and outdoor fan
static pressure in cluster 3 are significantly different from the nominal cluster. The experts in
the department of general services confirmed that this cluster represents the transition period,
where the system is operating, but the airflow and the statistic pressure have not reached to
their nominal values. We consider 0.99 confidence level, α, for the Z-test. α defines the lower
and upper bounds, z− and z+ in equation (4). Figure 10 shows the Z-test results for the first
two significant features of cluster 3, the outdoor fan static pressure and the outdoor fan airflow,
where 1 represents abnormal behavior and 0 represents normal operation.

3.5 Fault diagnoser

In the first step, we use the significant features in Table 2 to complete the diagnosis reference
model in Figure 6 as shown in Figure 11. Then we use the TAN classifier from the R package
bnlearn3 to train the reasoner. To validate the performance of our proposed approach, we
implement a tenfold cross validation approach for two scenarios for our experimental study. In
the first scenario, we use the diagnosis reference model derived from the residuals in Figure 6
and in the second scenario, we use the updated diagnosis reference model in Figure 11. Table 3
shows significant improvement in the average accuracy and the false positive rate when we use
the combined model-based and data-driven approach.

3 see https://cran.r-project.org/web/packages/bnlearn/bnlearn.pdf
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Figure 10: Hypothesis test outputs for outdoor fan static pressure and the outdoor fan airflow.
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Outdoor fan filter status
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Figure 11: Diagnosis reference model using residuals and significant features.

Table 3: Accuracy and false positive rate for classifiers.

Diagnosis approach Accuracy False positive rate
Model-based approach 87.1% 12.7%

Hybrid approach 92.5% 2.5%
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4 Conclusions

In this paper, we presented a methodology that combines model-based and data-driven meth-
ods to improve fault diagnosis performance in complex systems with incomplete models. Our
approach applies an unsupervised learning method combined with human-expert support to
update and complete the diagnosis reference model derived from the system model. We have
described different steps of the method from the model-base FDI, data-driven anomaly de-
tection, associating significant features with the outlier groups, generating diagnosis reference
model, and designing classifiers. To demonstrate and validate the proposed method, we applied
our hybrid approach to analyzing the data from a subsystem of Lentz Public Health Center in
Nashville. The experimental results show the proposed hybrid approach significantly improves
the diagnosis accuracy and reduces false positive rate.
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