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Abstract

In many areas, some geometry problems can not be solved using only geometry and are treated by

means of algebraic tools. However, geometric properties can be still employed to simplify the system

of equations. This allows either to speed up the treatment or, more radically, to make the treatment

possible. In this article, we illustrate this approach with a family of problems involving the construction

of triangles. In all these problems the goal it is to determine if there is a compass-and-straightedge

construction of the three vertices of a triangle knowing only three located points of this triangle such as

altitudes, inner center, circumcenter and so on. Algebraic tools, basically Galois theory, are needed to

answer the question. In this paper we describe a geometric reasoning phase that is required to provide

a polynomial algebraic system that algebraic softwares can address within an acceptable time despite

the exponential complexity of the underlying algorithms.

1 Introduction

Geometric constructions are well known for who is interested in the epistemology of mathe-
matics. Indeed, they played a central role in the definition and understanding of numbers in
Ancient Greece. Besides, they also have a practical aspect in several technical domains like
architecture, mechanical design or topography. Straightedge (or ruler) and compass construc-
tions in short RC-constructions are geometric constructions performed using only straightedge
and compass. They are famous since they allowed to precisely define a class of constructions
meeting philosophical considerations for the Ancient Greeks. Through the ages, they have also
provided to generations of students in mathematics a plethora of problems in geometry where
the imaginations and the inventivenesses of the students are exercised. This is still the case
today. Moreover, such problems have also a recreational aspect in mathematical circles: they
are not difficult to understand, some are easy while other are difficult but the solution, usually,
does not invoke big specialized theories. For instance, in the eighties, William Wernick pro-
posed a list of 139 construction problems about triangles [14], this corpus has been extended by
Harold Connelly [2] by adding four characteristic points related to the nine points circle (also
known as the Euler circle). We shortly present these corpora in the section 2.

By a strange paradox, RC-construction problems are also famous because of problems that
are not solvable using only straightedge and compass. The most famous of them is perhaps the
problem of squaring the circle which passed to the common language as a synonym of problem
impossible to solve. It was not before the nineteenth century that this kind of problems was
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proved not RC-constructible by going outside the RC-construction theory through the algebraic
notion of field extensions.

Nevertheless, even today with powerful computer algebra systems, it is not easy to prove
that a geometric construction problem cannot be solved by a RC-construction (we will say
RC-solvable). Even with small geometric problems involving 5 or 6 points, the polynomials
that the user has to handle can grow exponentially in size and the resolution time can become
huge. For common desktop computers, it is usual to overflow the memory and to be unable
to complete the calculus. In a previous work [10], we designed an automatic tool implemented
with one of the most famous CAS (Computer Algebra System), namely Maple, to decide if a
problem coming from Wernick corpus is RC-solvable or not.

Unfortunately, when tackling Connelly corpus, we find that the techniques that we used for
Wernick corpus are not powerful enough to solve all the problems. In order to solve the whole
Connelly corpus, we had to pre-process the algebraic systems to make them simple enough to
be solved with our Maple program. This article explains how geometrical knowledge is used for
this purpose.

The rest of the paper is organized as follows. Section 2 briefly summarizes the basic algebraic
notions underlying geometric constructions. Section 3 presents a method to dynamically set up
algebraic systems by taking the properties between the given characteristic points into account.

2 Some basics about RC-constructions and algebra

2.1 RC-constructibility and algebra

Let us begin with this classical definition of RC-constructibility.

Definition 1. Given a finite set of points B = {B0, . . . , Bm} in the Euclidean plane, a point
P is RC-constructible from the set B if there is a finite set of points {P0, . . . , Pn} such that
P = Pn, P0 ∈ B and every point Pi (1 ≤ i ≤ n) is either a point from B or is obtained as
the intersection of two lines, or of a line and a circle, or of two circles, themselves obtained as
follows:

• any considered circle has its center in the set {P0, . . . , Pi−1} and its radius is equal to the
distance PjPk for some j < i and k < i;

• any considered line passes through two points from the set {P0, . . . , Pi−1}.

The sequence of these points with their basic construction in terms of intersection between lines
and circles is called a RC-construction of point P .

An ambiguity which will be crucial in the following lies in the status of the points in B :
they can be real points in the plane, or variable points also called free points in the dynamic
geometry terminology or also parameters in constraint system domain. It should be noticed
that the notion of RC construction is in fact a little bit more complicated when all the cases,
included the degenerated ones, are taken into account [6]. We will not go any further with this
notion, but this will be discussed in the following.

When considering the problems of construction which are expressible by means of polyno-
mial equations involving the coordinates of the points, Wantzel result can be used in order to
prove that a problem is not RC-solvable. This theorem states that if F is the field extension
of Q containing the coordinates of point set B, the sought points are straightedge and compass
constructible in F if and only if their coordinates can be expressed by arithmetic expressions

131



Compass and straightedge unconstructibility in triangles Mathis and Schreck

with radicals involving only numbers in F , arithmetic operations and square roots. Such num-
bers are algebraic in F , and their degrees over F are some powers of two. However, the converse
of the later result is false. So if a number is the solution of an irreducible polynomial of degree
three, it can be established that it is not constructible. But if the degree of this polynomial
is four, we can not decide. This is why a stronger result is generally needed. This result is
a consequence of Galois theory: an algebraic number on F is constructible if and only if the
splitting field of its minimal polynomial; P , is an extension of degree 2m for some m over F .
The degree of this extension, 2m, is also the cardinal of the Galois group of P [12].

It is important to notice that, in general, the considered problems are generic, that is,
the coordinates of points in B are parameters. Furthermore, proving that a problem is RC-
solvable consists in showing that whatever the values of the parameters, the solutions are
RC-constructible. If one wants to prove that a problem is not RC-solvable, it is enough to
compute a counterexample, and if one wants to prove RC-constructibility, the generic problem
has to be solved. Proving RC-constructibility leads in general to heavier computations. It is
also worth to mention that there are some constructive algebraic methods, that is, methods
which give formulas expressing the solutions. To our knowledge the first method is due to
Lebesgue [5] and has been implemented by our team in 1992 (see the report [1], unfortunately
not published). A more recent and more tractable method is described in [3]. Both methods
are usable to solve problems with equations of degree at most four and are impracticable for
equations of degree 8. Geometric construction can be extracted from the algebraic formula but
these constructions are very complicated, and they are not appealing [10].

2.2 Triangle problems

In the folklore of geometric constructions, problems around triangles are often considered.
For instance, William Wernick proposed in 1982 to consider all the problems consisting in
constructing a triangle ABC given three characteristic points among the points

• A, B, C, themselves and their circumcenter O ;

• Ma, Mb, Mc, G: the side midpoints and gravity center ;

• Ha, Hb, Hc, H: three feet of altitudes and orthocenter ;

• Ta, Tb, Tc, I: three feet of the internal angle bisectors, and incenter.

More recently, Harold Connelly completed this framework by adding the possibility of consid-
ering 4 more points :

• Ea, Eb, Ec the midpoints of H and respectively A, B and C; and N the center of the
nine-points circle i.e. the circle passing by Ea, Eb, Ec, Ma, Mb, Mc, Ha, Hb and Hc.

Wernick and Connelly drew up the lists of all not trivial problems up to some symmetries
giving 139 distinct problems for Wernick corpus and 140 distinct problems for Connelly corpus.
Wernick problems are presented in Table 1 and Connelly’s ones in Table 2 where each problem
is given with its status and with a bibliographic reference for the most recent results. The
status is either Solvable, Unsolvable, Redundant or Locus-restricted.

Problems with a R or L status refer to over-constrained problems but in two different
manners. The three points of each problem must be chosen arbitrarily, in other words each
point has two degrees of freedom. But for some problem, one point can be constrained by the
two others. In problem W3, which is the third problem in Wernick list, point Mc, the middle
point of AB, is completely defined by the two other points A and B, so Mc is redundant, Mc
can not be freely chosen. In problem W1, O must lie on the perpendicular bisector of segment
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AB. If it does not, there is no solution. If it does, the set of solutions is infinite. So, if one
point has zero degree of freedom, the problem is redundant, if it has one degree of freedom, the
problem is locus restricted.

This list served as a benchmark for automated geometric construction [7]. We developed
an automatic method [10] able to prove (by giving counterexamples chosen arbitrary) the RC-
unconstructibility of all problems in Wernick corpus with status U . We also proved, but not
automatically, that problems W108 and W119 are RC-constructible. But trying to use our
method for Connelly corpus, we discover that for eight problems (whose marked with an asterisk
on Table 2, six for unconstructibility and two for constructibility) using a näıve algebraic method
does not work with a standard 2015 computer (say with a standard Intel i7 processor and 16Gb
of memory). But we manage to completely treat the corpus by preprocessing the problems using
geometric knowledge as explained in the next section. Notice that among all the problems
in that list which were not solved by Connelly, problem C81 is the only one which is RC-
constructible. We prove it by considering the generic case and using a special pre-treatment
as explained below. Unfortunately, the resulting polynomials are too complicated for hoping a
readable geometric construction.

1. A, B, O L 36. A, Mb, Tc S 71. O, G, H R 106. Ma, Hb, Tc U [8]

2. A, B, Ma S 37. A, Mb, I S 72. O, G, Ta U [8] 107. Ma, Hb, I U [8]

3. A, B, Mc R 38. A, G, Ha L 73. O, G, I U [8] 108. Ma, H, Ta S [10]

4. A, B, G S 39. A, G, Hb S 74. O, Ha, Hb U [8] 109. Ma, H, Tb U [11]

5. A, B, Ha L 40. A, G, H S 75. O, Ha, H S 110. Ma, H, I U [11]

6. A, B, Hc L 41. A, G, Ta S 76. O, Ha, Ta S 111. Ma, Ta, Tb U [11]

7. A, B, H S 42. A, G, Tb U [8] 77. O, Ha, Tb U [10] 112. Ma, Ta, I S

8. A, B, Ta S 43. A, G, I S [8] 78. O, Ha, I U [10] 113. Ma, Tb, Tc U [10]

9. A, B, Tc L 44. A, Ha, Hb S 79. O, H, Ta U [8] 114. Ma, Tb, I U [8]

10. A, B, I S 45. A, Ha, H L 80. O, H, I U [8] 115. G, Ha, Hb U [8]

11. A, O, Ma S 46. A, Ha, Ta L 81. O, Ta, Tb U [10] 116. G, Ha, H S

12. A, O, Mb L 47. A, Ha, Tb S 82. O, Ta, I S [8] 117. G, Ha, Ta S

13. A, O, G S 48. A, Ha, I S 83. Ma, Mb, Mc S 118. G, Ha, Tb U [10]

14. A, O, Ha S 49. A, Hb, Hc S 84. Ma, Mb, G S 119. G, Ha, I S [10]

15. A, O, Hb S 50. A, Hb, H L 85. Ma, Mb, Ha S 120. G, H, Ta U [8]

16. A, O, H S 51. A, Hb, Ta S 86. Ma, Mb, Hc S 121. G, H, I U [8]

17. A, O, Ta S 52. A, Hb, Tb L 87. Ma, Mb, H S [8] 122. G, Ta, Tb U [10]

18. A, O, Tb S 53. A, Hb, Tc S 88. Ma, Mb, Ta U [8] 123. G, Ta, I U [10]

19. A, O, I S 54. A, Hb, I S 89. Ma, Mb, Tc U [8] 124. Ha, Hb, Hc S

20. A, Ma, Mb S 55. A, H, Ta S 90. Ma, Mb, I U [11] 125. Ha, Hb, H S

21. A, Ma, G R 56. A, H, Tb U [8] 91. Ma, G, Ha L 126. Ha, Hb, Ta S

22. A, Ma, Ha L 57. A, H, I S [8] 92. Ma, G, Hb S 127. Ha, Hb, Tc U [10]

23. A, Ma, Hb S 58. A, Ta, Tb S [8] 93. Ma, G, H S 128. Ha, Hb, I U [10]

24. A, Ma, H S 59. A, Ta, I L 94. Ma, G, Ta S 129. Ha, H, Ta L

25. A, Ma, Ta S 60. A, Tb, Tc S 95. Ma, G, Tb U [8] 130. Ha, H, Tb U [8]

26. A, Ma, Tb U [8] 61. A, Tb, I S 96. Ma, G, I S [8] 131. Ha, H, I S [8]

27. A, Ma, I S [8] 62. O, Ma, Mb S 97. Ma, Ha, Hb S 132. Ha, Ta, Tb U [10]

28. A, Mb, Mc S 63. O, Ma, G S 98. Ma, Ha, H L 133. Ha, Ta, I S

29. A, Mb, G S 64. O, Ma, Ha L 99. Ma, Ha, Ta L 134. Ha, Tb, Tc U [10]

30. A, Mb, Ha L 65. O, Ma, Hb S 100. Ma, Ha, Tb U [8] 135. Ha, Tb, I U [10]

31. A, Mb, Hb L 66. O, Ma, H S 101. Ma, Ha, I S 136. H, Ta, Tb U [10]

32. A, Mb, Hc L 67. O, Ma, Ta L 102. Ma, Hb, Hc L 137. H, Ta, I U [10]

33. A, Mb, H S 68. O, Ma, Tb U [8] 103. Ma, Hb, H S 138. Ta, Tb, Tc U [13]

34. A, Mb, Ta S 69. O, Ma, I S 104. Ma, Hb, Ta S 139. Ta, Tb, I S

35. A, Mb, Tb L 70. O, G, Ha S 105. Ma, Hb, Tb S

Table 1: Wernick problems represented by their three characteristic points, their status by a
letter in {L, R, S, U}, and for the recently solved problems, a bibliographic reference.
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1. A,B,Ea S 36. A,Ma, N S 71. Ea, H, Tb U 106. Ea,Mb, Tc U

2. A,B,Ec S 37. A,Mb, N S 72. Ea, Ha, Hb S 107. Ea, N,O S

3. A,B,N S 38. A,N,O S 73. Ea, Ha, I S 108. Ea, N, Ta S

4. A,Ea, Eb S 39. A,N, Ta U 74. Ea, Ha,Ma L 109. Ea, N, Tb U

5. A,Ea, G S 40. A,N, Tb U 75. Ea, Ha,Mb S 110. Ea, O, Ta U

6. A,Ea, H R 41. Ea, Eb, Ec S 76. Ea, Ha, N L 111. Ea, O, Tb U

7. A,Ea, Ha L 42. Ea, Eb, G S 77. Ea, Ha, O S 112. Ea, Ta, Tb U

8. A,Ea, Hb L 43. Ea, Eb, H S 78. Ea, Ha, Ta L 113. Ea, Tb, Tc U

9. A,Ea, I S 44. Ea, Eb, Ha S 79. Ea, Ha, Tb U 114. G,H,N R

10. A,Ea,Ma S 45. Ea, Eb, Hc S 80. Ea, Hb, Hc L 115. G,Ha, N S

11. A,Ea,Mb S 46. Ea, Eb, I U 81. Ea, Hb, I S * 116 G, I,N U

12. A,Ea, N S 47 Ea, Eb,Ma L 82. Ea, Hb,Ma L 117. G,Ma, N S

13. A,Ea, O S 48. Ea, Eb,Mc S 83. Ea, Hb,Mb S 118. G,N,O R

14. A,Ea, Ta S 49. Ea, Eb, N L 84. Ea, Hb,Mc S 119. G,N, Ta U

15. A,Ea, Tb U 50. Ea, Eb, O S 85. Ea, Hb, N L 120. H,Ha, N S

16. A,Eb, Ec S 51. Ea, Eb, Ta U 86. Ea, Hb, O S 121. H, I,N U *

17. A,Eb, G S 52. Ea, Eb, Tc U 87. Ea, Hb, Ta U 122. H,Ma, N S

18. A,Eb, H S 53. Ea, G,H S 88. Ea, Hb, Tb U 123. H,N,O R

19. A,Eb, Ha S 54. Ea, G,Ha S 89. Ea, Hb, Tc U 124. H,N, Ta U

20. A,Eb, Hb L 55. Ea, G,Hb S 90. Ea, I,Ma S 125. Ha, Hb, N L

21. A,Eb, Hc S 56. Ea, G, I U 91. Ea, I,Mb U 126. Ha, I, N S

22. A,Eb, I U 57. Ea, G,Ma S 92. Ea, I, N S * 127. Ha,Ma, N L

23. A,Eb,Ma S 58. Ea, G,Ma S 93. Ea, I, O U * 128. Ha,Mb, N L

24. A,Eb,Mb S 59. Ea, G,N S 94. Ea, I, Ta U 129. Ha, N,O S

25. A,Eb,Mc S 60. Ea, G,O S 95. Ea, I, Tb U 130. Ha, N, Ta S

26. A,Eb, N S 61. Ea, G, Ta U 96. Ea,Ma,Mb L 131. Ha, N, Tb U

27. A,Eb, O S 62. Ea, G, Tb U 97. Ea,Ma, N R 132. I,Ma, N S

28. A,Eb, Ta U 63. Ea, H,Ha L 98. Ea,Ma, O S 133. I,N,O U *

29. A,Eb, Tb U 64. Ea, H,Hb L 99. Ea,Ma, Ta S 134. I,N, Ta U *

30. A,Eb, Tc U 65. Ea, H, I S 100. Ea,Ma, Tb U 135. Ma,Mb, N L

31. A,G,N S 66. Ea, H,Ma S 101. Ea,Mb,Mc S 136. Ma, N,O S

32. A,H,N S 67. Ea, H,Mb S 102. Ea,Mb, N L 137. Ma, N, Ta S

33. A,Ha, N S 68. Ea, H,N S 103. Ea,Mb, O S 138. Ma, N, Tb U

34. A,Hb, N S 69. Ea, H,O S 104. Ea,Mb, Ta U 139. N,O, Ta U *

35. A, I,N U 70. Ea, H, Ta S 105. Ea,Mb, Tb U 140. N, Ta, Tb U *

Table 2: Connelly corpus [2]. A status written in boldface indicates that the result was not
known. An asterisk means that a geometric preprocessing was needed. Notice that problems
C81 and C92 were treated, after the automatic process, by hand considering parameters.

2.3 From geometry to algebra

Translating a problem from geometry to algebra requires to choose coordinates for the involved
points and then to translate the geometric constraints into polynomial equations.

Concerning the first issue, it is easy to see that one of the three points can be chosen to be at
coordinates (0, 0) and a second one on the x-axis for instance. Actually, since the problems are
invariant by similarities, or in other words, the scale can be chosen, this second point can put at
coordinates (v, 0) where v has some arbitrarily chosen not zero value (for instance 10). For the
third point, if we want to prove the RC-constructibility, we set it at coordinates (a, b) where a
and b are some parameters, and, on the contrary, if we want to check the RC-unconstructibility,
the coordinates of the third point are integers more or less randomly chosen : we just verify
that there is at least one solution with that choice of coordinates. Notice that we only consider
integers as coordinates because, first, we want to perform exact computations and, second, in
our case, we consider some transcendental field extension of Q for the computation of the Galois
groups of the produced polynomial.

For the second issue, a first idea is to exploit some static algebraic definitions of the char-
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Point Equation Term for equations

A A = A

Ma
xMa = xB+xC

2 Ma=midpoint(B,C)

yMa = yB+yC

2

G
xG = xA+xB+xC

3 G=bar(A,B,C)

yG = yA+yB+yC

3

Ha

−−→
AHa.

−−→
BC = 0 perpend(A,Ha,B,C)

det(
−−−→
BHa,

−−→
BC) = 0 collinear(B,Ha,C)

H

−−→
AH.
−−→
BC = 0 perpend(A,H,B,C)

−−→
BH.
−→
AC = 0 perpend(B,H,A,C)

Ta
det(
−−→
AB,

−−→
ATa).||AC|| = det(

−−→
ATa,

−→
AC).||AB|| onAngleBisector(Ia,A,B,C)

det(
−−→
BTa,

−−→
BC) = 0 collinear(B,Ia,C)

I
det(
−−→
AB,

−→
AI).||AC|| = det(

−→
AI,
−→
AC).||AB|| onAngleBisector(I,A,B,C)

det(
−−→
BC,

−→
BI).||BA|| = det(

−→
BI,
−−→
BA).||BC|| onAngleBisector(I,B,C,A)

Ea
xEa

= xA+xH

2 Ea=midpoint(A,H)

yEa
= yA+yH

2

Table 3: Usual definitions of some characteristic points. These formulas can be straightfor-
wardly translated into polynomial equations

acteristic points such as depicted on Table 3. This table shows equations for expressing the
statement about points but, for the sake of simplicity, we use the term in the third column
instead of the equations. Unfortunately, this leads sometimes to unnecessary complicated poly-
nomials. For instance, in problem C81, one of the given characteristic points is the incenter I:
it can be defined as the intersection of the two inner bisectors of respective angles ∠ABC and
∠BAC, but since point Hb which is on line AC is given, it is better to define point I as the
intersection of the two inner bisectors of respective angles ∠BCHb and ∠BAHb where lesser
unknowns are involved. In this paper, we propose a heuristic to systematize this trick.

3 Geometric reasoning for algebraic systems

In this section, we show how geometry rules are applied in the process of determining the status
of a problem. We only mention rules about geometric reasoning. Other rules are also needed for
term management, for instance, permutation rules. For a problem p, the pipeline is as follows:

1. Determining a set of problems S from the corpus that are geometrically equivalent to p

2. For each pi ∈ S

(a) set up a default system of equations for pi

(b) replace some equations by simpler ones according to some geometric rules

3. Choosing one of these systems among the easiest to solve
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This pipeline outputs a system that will be triangularized. Then algebraic reasoning will be
performed in order to establish the status. This section explains each step of the pipeline.

3.1 Reduction and constructibility classes

In papers presenting Wernick and Connelly corpora, equivalent problems up to some basic
symmetries have been removed so that only one representative occurs in the list. For example,
the first Wernick problem is A,B,O which is equivalent to B,C,O or A,C,O. However some
problems are equivalent in terms of constructibility [9]. For example, problem A,O,G (W13)
has the same properties as the problem A,O,H (W16). Indeed, it is known that points O,G,H
are located on the Euler line and are linked by the relationship HO = 3

2HG. There is thus a
simple construction to go from W13 to W16 and conversely. So if one of the problems can be
constructed the others can be constructed as well. It is the same for unconstructibility.

However, in terms of symbolic processing, these two problems are not equivalent. Recall
that the degree of a polynomial is the highest degree of its monomials. Thus the degree of the
polynomial x2

AyB + xAyB is three. The degree of a system is the product of the degrees of
polynomials.

Consider equations on Table 3. The two equations for point H are two polynomials of degree
two with four unknowns each (the coordinates of points B and C). While the two equations
for point G have degree one and each contain two unknowns.

The first stage in the treatment of a new problem p is to identify any problem pi such that
there is a known construction that gives pi from p. For this, some replacement rules are used.
We give a list of these rules where x denotes any point A, B or C. Of course, these rules
are made to fit exactly Connelly corpus and new rules must be added for other corpora. We
designed the rules by expressing interesting properties on the specific points used in this corpus.
In [9], a method based on a knowledge base is described in order to discover these rules in the
case of Wernick corpus and then to gather problems in that list in classes. Rule 1 expresses
the symmetry of Ex and Mx from center N, indeed, for any x, segment ExMx is a diameter of
the Euler circle. Rule 2 comes from the well-known metric relations among points G,H,O,N
which all lie on the Euler line. Rule 3 translates the fact that Ex is the midpoint of x and H.

Rule 1: Replace Ex by Mx (and conversely) if N is also in the statement
Rule 2: If there are two points among G,H,O,N then each of these two points can be replaced
by one of the two others
Rule 3: If there are two points among x,Ex, H then each of these two points can be replaced
by the third

With problem C53 : Ea, H,G, the application of rule 2 leads to the 5 following problems:

Ea, H,O : C69 Ea, H,N : C68
Ea, G,O : C60 Ea, G,N : C59
Ea, N,O : C107

Then, by applying rule 1, it comes:
Ea, H,N →Ma, H,N : C122
Ea, G,N →Ma, G,N : C117
Ea, N,O →Ma, N,O : C136

Rule 3 then gives:
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Ea, H,O → A,H,O : W16 Ea, H,O → A,Ea, O : C13
Ea, H,G→ A,H,G : W49 Ea, H,G→ A,Ea, G : C5
Ea, H,N → A,H,N : C32 Ea, H,N → A,Ea, N : C12

From these new triples, rule 2 applies again:

Ma, O,G : W63 Ma, O,H : W66
Ma, G,H : W93 A,O,G : W13
A,O,N : C38 A,G,N : C31

Thereby, from problem C53, a set of 21 problems are identified as similar. The status of
all these problems are the same. Problem A,H,N seems to be one of the easiest to solve since
point A is already given. Indeed, a construction can be easily found:

1. set Ea the midpoint of segment AH and Ma the symmetric of Ea from N

2. draw circle C, the Euler circle, with center N and radius NEa

3. line AH intersects C at Ea and Ha

4. circle of diameter AH intersects C at Hb

5. point B is on line HHb and line HaMa

6. point C is the symmetric of B from Ma

Consequently, all these 21 problems are constructible and their constructions easily derive
from the reduction rules.

In Wernick list, problem O,G, Ta (W72) is said to be not constructible. By applying rule 2,
this problem is in a set containing:
O,H, Ta : W79
O,N, Ta : C139
G,H, Ta : W120
H,N, Ta : C124
G,N, Ta : C119

If W72 is not constructible, it is the same for the problems of the whole set.
In such a set, the aim is now to find the simplest problem in terms of symbolic expression.

To achieve this, a system of equations is set for each problems. One system is selected according
to some combinatorial criteria. This latter will be analyzed to establish the status of all the
problems of the set. But first, let us examine how to design the system.

3.2 Replacing equations

Each point of the statement gives rise to two equations. For point H for example, we have:
perpend(H,A,B,C)

perpend(H,B,A,C)

Each algebraic equation has degree two and eight monomials. For point Ha, equations are:
perpend(Ha,A,B,C)

collinear(Ha,B,C)

Again, each of these two polynomials are of degree 2 and they have respectively eight and six
monomials. We will call these equations for each point the default equations.
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But we can do better. If point H and Ha are together in a statement, we could express
that A,H and Ha are collinear. The equation for collinear(A,Ha,H) is of degree one and has
three terms. It could replace one equation among the four equations above of degree two.

Rather than considering each point independently, a simpler system can be built by con-
sidering several points of the statement in the equations. Each of these equations replaces a
default equation. However, the replacement should be done with caution. Consider problem
W112 : I, Ta,Ma. The default system could be this one:

For I: (eq1) onAngleBisector(I,A,B,C)

(eq2) onAngleBisector(I,B,A,C)

For Ta: (eq3) onAngleBisector(Ta,A,B,C)
(eq4) collinear(Ta,B,C)

For Ma: (eq5, eq6) Ma=midpoint(A,B)

Specific equations for that problem are possible. We know that points A, I and Ta are
collinear and that points Ta, Ma and B (or C) are collinear:

(eq7) collinear(Ta,I,A)

(eq8) collinear(Ta,Ma,B)

Equations (eq7) and (eq8) could replace two equations in the default system. Since (eq7)
involves I and Ta, it has to replace an equation among (eq1), (eq2), (eq3) or (eq4). If (eq4)
is selected, the system becomes misconstrained since (eq7) is a consequence of (eq1) and (eq3)
but also of (eq2) and (eq3). So, (eq7) has to take the place of (eq3). This operation is relevant
because an equation of degree four with more than ten monomials is simplified into a degree
one polynomial with three monomials.

3.3 Rules for setting up a system of equations

Each polynomial system is made in two steps. First, a default system is built. Next, a rule-based
system applies basic geometric rules in order to replace some equations by simpler ones.

The first step consists in choosing the default equations. For most points, they are clearly
defined. But some centers of triangle like I,O,N,H are defined as the meeting point of three
lines and two of them could be chosen for expressing the intersection. Centroid G is not
concerned since to get simpler equations it is better to express it as the barycenter of A,B,C
than as the intersection of the medians.

Wernick and Connelly built their list by putting forward point A first and then point B. For
example, problem C,Mc,Mb is not in the list and is represented by the symmetric equivalent
A,Ma,Mb. Then, for most centers, the best way to set up the equations is to put forward
points A and B. For instance, point O is given by the two equations:

onPerpBisector(O,A,B)

onPerpBisector(O,A,C)

But for incenter I, equations must be chosen carefully. The point I lies on angle bisectors
that are expressed by a polynomial of degree four that computer algebra systems have trouble
triangularizing. If point, say, Mb is given, instead of expressing onAngleBisector(I,A,B,C)
we can use onAngleBisector(I,A,B,Mb). This kind of transformation is performed by the
rule-based system used in the second step (see below). But the latter relies on equations of the
default system and the change can be done only if onAngleBisector(I,C,A,B) appears.

For point I, we apply the following rule to select our two bisectors with x, y and z three
different points among A, B and C:
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if neither Tx nor Hx nor Mx appear in the problem
then insert onAngleBisector(I,y,x,z)

In problem O,Ma, I (W69) applying this rule leads to the two following equations for I:
onAngleBisector(I,B,A,C)

onAngleBisector(I,C,B,A)

So, the equation onAngleBisector(I,A,B,C) is avoided. An example below shows how this
will allow to introduce point Ma in both angle bisector equations.

In the second step, the default system is simplified according to some rules implemented by a
rule-based system (RBS). The inputs are the three given points and the six terms expressing the
polynomials. These are the nine facts for the RBS. As usual with RBS, the set of rules can be
dynamically extended. The set of rules is given in Table 4. Each rule is preceded by a comment
indicating its role in a specific case. The first three sets of rules are trivial. The fourth set
corresponds to more sophisticated theorems. For instance, rule IVc allows to translate problem
C81 : Ea, I,Hb into a system that can be triangularized within a few seconds. If the default
system is used for that problem, the triangularization can not be achieved in a computer with a
memory of 16Gb. Each rule applies on more than 10 problems. For instance, rule IVa simplifies
13 problems (C12, C26, ...).

In the rules, a premise such Ma means Ma is a given point. As above, x, y and z stands for
any of the points A, B and C but differently instantiated i.e. if x is point A then y is either B
or C. P is any point of the statement. When a fact has to be named, we use the notation f
<- fact meaning that the variable f corresponds to fact. The instruction retract removes
a fact from the base while insert adds a fact. Symbol is a wildcard that matches all possible
values. Comments are introduced by a semicolon. The function mostPresent(l) returns a
point among A B and C that is not in the list l and which appears the most in the fact. The
goal of the function is to keep the system of equations as triangular as possible.

In problem W131: Ha H I default equations are replaced in the following way:

For Ha: perpend(A,Ha,B,C)
Rules I−−−−−→ collinear(A, H,Ha)

collinear(B,Ha,C)

For H: perpend(A,H,B,C)

perpend(B,H,A,C)

For I: onAngleBisector(I,B,A,C)
Rules III−−−−−−→ onAngleBisector(I,B,A,Ha)

onAngleBisector(I,C,A,B)
Rules III−−−−−−→ onAngleBisector(I,C,A,Ha)

Notice that substitutions for equations of point I can be made because the two angle bisec-
tors where chosen in such a way that Ha, Ma or Ta can be introduced. Since the points of the
statement have numerical coordinates, new equations have four unknowns instead of six.

3.4 Selecting a system

Now a set of statements similar to the original one is built and a algebraic system is associated
with each of these statements. The best algebraic system has to be chosen, that is the easiest
to triangularize by means of regular chains. However, the selection criterion is difficult to
determine. We use a heuristic that mainly relies on the degree of the system.

Among the 21 problems of section 3.1 derived from problem Ea, H,G, seven problems are of
degree four, 11 of degree 16 and three problems are of degree 64. To select a system among those
having a minimal degree, we use two criteria: the average number of unknowns per polynomial
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; Rules I

; if H and Ha are given then express that A H Ha are collinear
if H, Hx, f <- perpend(x,Hx,y,z)
then retract f

insert collinear (x,H,Hx)

; similar rules for
; I and Tx : collinear(x,I,Tx) ; Ex and Hx : collinear(x,Ex,Hx)
; Ex and H : collinear(x,Ex,H) ; G and Mx : collinear(x,G,Mx)

; Rules II

; if Ha and Ta are given then express that Ha Ta and either B or C are collinear
if Hx, Tx, f <- onAngleBisector(Tx,x, , ) or f <- perpend(x,Hx, , ), y = mostPresent([x])
then collinear(Hx,y,Tx)

; similar rules with Hx and Mx ; Tx and Mx

; Rules III

; if Ha is given and onAngleBisector(I,C,A,B) then replace this latter equation
; with onAngleBisector(I,C,A,Ha)
if Hx, f <- onAngleBisector(P,y,x,z)
then retract f

insert onAngleBisector(P,y,x,Hx)

; similar rules with Mx instead of Hx ; Tx instead of Hx

; Rules IV
; A few rules for useful theorems

; Rule IVa. if Ea and N are given then Ma is the symmetric of Ea from N
if Ex, N, f <- perpend(x,Ex,y,z)
then retract perpend(x,Ex,y,z)

insert midpoint(y,z) - (2*N-Ex) ; meaning that midpoint(y,z)=(2*N-Ex)

; Rule IVb. if Ea and Hb then EaHb = EaA and B H Hb are collinear
if Ex, Hy, f1,f2 <- two equations involving Ex
then retract f1, retract f2

insert onPerpBisector(Ex,x,Hy)
insert collinear(2*Ex-x,Hy,y)

; Rule IVc. midpoint of segment MaA is the midpoint of segment EaO
if Ex, O, f1,f2 <- two equations involving Ex
then retract f1, retract f2

insert midpoint(midpoint(y,z), x) - midpoint(Ex,O) ; two equations

Table 4: Substitution rules for equations

and the total number of monomials in the system. Our heuristic estimated that A,O,G is the
best with a degree four and an average of 2.66 unknowns per polynomials. With Maple 18 using
an Intel c©Core i5, it takes 0.04 sec. Besides problem Ea, H,O has a degree 64, an average of
5.33 unknowns and 40 monomials. The status is given in 0.66 s.

For all of the problems of the second class presented in 3.1, triangularization by regular
chains shows that the first equation to solve is a polynomial of degree six. Three of them have
a degree 32 and theirs status are determined within less than 0.5 sec. The other three have a
degree 128 and their computation take between 2 and 2.5 sec.
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4 Conclusion

The issue of constructibility by ruler and compass of certain geometrical figures is one of the
oldest mathematical questions. Algebra and results of Galois give results about constructibility
which is not always easily usable if one wants an effective geometric construction, but they are
useful if one wants to know if a problem is RC-unconstructible.

Recent progresses in implementation of regular chains and Galois theory allowed us to
successfully check the whole Wernick corpus. Unfortunately, our automatic method was not
powerful enough to deal with Connelly corpus. In this paper, we show how to use geometry in
order overcomes this issue for RC-unconstructible problems. To this end, we use a rule based
system to set up the algebraic system coming from the geometrical one. Some rules are basic,
others have been added for specific set of problems that have not been solvable otherwise. New
rules can further enrich the database but the ones proposed here are sufficient for making every
problem treated within seconds. According to the order of rules application, the system may be
different but in any case the resulting system is quicker to triangularize than the intial system.

This work illustrates our approach aiming at marrying geometry with algebra, analysis or
graphs (See for instance [4]). Other corpora could be studied: for instance by considering
Feuerbach points which are related to Euler circle, incircle and excircles. Besides, some issues
remain open: could RC-unconstructible problems be constructed using other tools such, for
instance, origami foldings which allow to solve polynomials of degree three and four ? Is
it possible to automatically simplify the ruler and compass construction driven by algebraic
expression ?
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