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Abstract

This article introduces a novel system for deriving upper bounds on the heap-space
requirements of functional programs with garbage collection. The space cost model is
based on a perfect garbage collector that immediately deallocates memory cells when they
become unreachable. Heap-space bounds are derived using type-based automatic amor-
tized resource analysis (AARA), a template-based technique that efficiently reduces bound
inference to linear programming. The first technical contribution of the work is a new
operational cost semantics that models a perfect garbage collector. The second technical
contribution is an extension of AARA to take into account automatic deallocation. A
key observation is that deallocation of a perfect collector can be modeled with destructive
pattern matching if data structures are used in a linear way. However, the analysis uses
destructive pattern matching to accurately model deallocation even if data is shared. The
soundness of the extended AARA with respect to the new cost semantics is proven in
two parts via an intermediate linear cost semantics. The analysis and the cost semantics
have been implemented as an extension to Resource Aware ML (RaML). An experimental
evaluation shows that the system is able to derive tight symbolic heap-space bounds for
common algorithms. Often the bounds are asymptotic improvements over bounds that
RaML derives without taking into account garbage collection.

1 Introduction
The memory footprint of a program is an important performance metric that determines if
a program can be safely executed on a given system. Ideally, developers should describe or
approximate the memory footprint of programs as functions of the inputs. However, such
memory bounds are often difficult to derive and to prove sound. To assist programmers with
deriving memory bounds, the programming language community has developed automatic and
semi-automatic analysis techniques [24, 12, 2]. These systems are often special cases of more
general resource bound analyses that are based on abstract interpretation [18, 7, 37], recurrence
solving [16, 1, 14, 28], type systems [27, 22, 29, 43, 42, 15], program logics [5, 10, 9, 35], proof
assistants [33, 11], and term rewriting [6, 34, 17].

This article introduces a novel type system for automatically deriving upper bounds on
the heap-space requirements of functional programs with garbage collection (GC). Due to the
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challenges of modeling and predicting garbage collection, most existing techniques for automat-
ing and guiding the derivation of bounds on the heap memory requirements assume manual
memory management or simply ignore deallocation in the analysis [24, 26, 36, 13, 12, 2]. As
a result, the derived bounds are not accurate when the underlying system employs garbage
collection. The only exceptions we are aware of are the works by Albert et al. [3, 4], Braberman
et al. [8], and Unnikrishnan et al. [40, 39]. They analyze the heap-space usage of programs
with GC in two steps. First, they make the deallocation of GC explicit; for example with a
static analysis for estimating object lifetimes [4] or with a program translation [39]. Second,
they extract and solve recurrence relations to derive a bound. The difference of our work is
that our technique is based on a type system, which is proved sound with respect to a formal
cost semantics. Advantages of a type-based approach include natural compositionality and the
use of type derivations as certificates for resource bounds.

We model the (highwater mark) memory usage based on a perfect garbage collector that
immediately deallocates memory cells when they become unreachable. The bounds that are
derived with respect to this cost model are not only a good theoretical measure of the heap-space
consumption of the program but also have practical relevance. Consider a function f : A→ B
and assume we derived a bound bf : JAK→ N. In an execution of f(a), we can then keep track
of the memory usage and start the garbage collector whenever the bound bf (a) is reached. It is
then guaranteed that the evaluation will succeed using bf (a) heap-memory cells.1 To improve
performance, we could trigger GC more often (to compactify the heap) or allow memory use of
more than bf (a) cells (to amortize the cost of garbage collection).

The first technical contribution of the work is a new operational cost semantics that models
a perfect garbage collector. The cost semantics is a big-step (or natural) semantics that keeps
track of the reachable memory cells in the style of Spoonhower et al. [38] and Minamide [30].
Operationally, this cost is the highwater mark on the heap usage, or the maximum number of
cells used in the mutable store during evaluation. If we traverse the evaluation tree in preorder
and view each node as a “step” of the computation, then a cell is used in the current node if it is
reachable from the reminder of the computation. Our formalization of reachability is identical to
the concept that garbage collectors implement to decide if a cell can be freed during evaluation.
For simplicity, we assume that evaluation of the cons node allocates one fresh heap cell and
that all other operations do not allocate heap cells. However, the semantics can be instantiated
with more realistic cost metrics. A difference to existing formulations of cost semantics with
GC [31, 38, 30] is that we update the highwater mark when reachability changes at inner nodes
of the derivation of the evaluation judgement instead of at leaves. Moreover, we use a freelist,
which represents named cells available for evaluation. This alternative formulation is equivalent
to the existing semantics and mainly motivated by the soundness proof of our type system for
bound analysis. However, the cost semantics is a natural approach and different enough from
its predecessors [38, 30] to be of interest in its own right.

Our second technical contribution is the type system for deriving bounds on the heap-space
for programs with perfect GC. The type system is an extension of type-based automatic amor-
tized resource analysis (AARA) [24, 27, 41, 21, 22, 32]. AARA is a template-based technique
that introduces potential functions to efficiently and automatically reduce bound inference to
linear programming. Existing type systems based on AARA can derive bounds on the high-
water mark of the heap usage for programs with manual deallocation [27], but can only derive
a bound on the number of total heap allocations for programs with GC [22]. This is usually
a gross over-approximation of the actual memory requirement. Our extension is based on the
observation that deallocation of a perfect collector can be modeled with destructive pattern

1We are not considering memory fragmentation, which can be avoided using a copying collector.
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matching (deallocating the matched cell) if data structures are used in a linear way. In the
type system, we extend this observation to non-linear programs and use destructive pattern
matching to accurately model deallocation even if data is shared.

The third technical contribution is to prove the soundness of the extended AARA with
respect to the GC-based cost semantics. The proof is non-trivial and proceeds in two parts:
First, we prove the soundness of the type system with respect to a semantics that copies data
structures if they are shared. Second, we prove for all programs that our GC semantics uses less
memory than this copying semantics. While the proofs are relatively standard, many details—
like relating program states of the two semantics in the simulation proof—are quite involved.
Briefly, we have to provide and maintain a mapping γ from the heap used in the GC semantics
Hgc to subsets of the heap used in the copying semantics Hcopy such that the image of Hgc

under γ forms a partition on the second heap. The intuition is that given a cell l ∈ Hgc, there
must be multiple cells γ(l) ∈ Hcopy that were allocated during sharing, and thus “morally the
same” as l.

The analysis and the cost semantics have been implemented as an extension to Resource
Aware ML (RaML) [21, 22]. RaML is an implementation of AARA for a subset of OCaml that
can derive multivariate polynomial bounds. However, we restrict the technical development in
this paper to a simple first-order language with tuples and lists. The proofs and ideas carry
over to the more complex case of RaML.2 An experimental evaluation shows that the system
is able to derive tight symbolic heap-space bounds for common algorithms. Our results suggest
that our new analysis provides asymptotic bound improvements to several classes of commonly
used functions and programming patterns. We examine the reasons for these improvements
and design decisions throughout the system.

2 Setting the Stage
In the technical part of the paper, we focus our attention to a first-order, strictly evaluated
functional language. One can think of this language as a simple subset of OCaml or SML. The
only recursive data type in the language is the list type. However, our work extends to the
expected algebraic data types definable in RaML. Being first order, the language does not allow
arbitrary local functional definitions. Instead, all functions are defined at the top level and are
mutually recursive by default. The types of these functions form a signature for the program,
and the semantics and typing judgments will be indexed by this signature. Thus, the function
types of the language can be expressed as arrows between zero-order (base) types. Types are
formally defined in Figure 1. Like in all grammars, we provide the abstract (left) and concrete
(right) syntax for every type former [19]. A signature Σ : Var→ FTypes is a map from variables
to first-order types. A program P is a Σ indexed map from Var to pairs (yf , ef )f∈Σ, where
Σ(yf ) = τ → τ ′, and Σ; yf : τ ` ef : τ ′ (the type system is discussed in Section 4). We write
P : Σ to mean P is a program with signature Σ.

To simplify the presentation, the expressions of our language (see Figure 1) are in let normal
form (also A normal form). The one nonstandard construct is share x as x1, x2 in e, which
we will explain in more detail in the following sections. We introduce two distinct notions of
linearity, one on the syntactic level, and one on the semantic level. Syntactic linearity is linearity
in expression variables, while semantic linearity is linearity in locations (defined below). We
say that a semantics is linear if it respects semantic linearity.

In line with previous works on space cost semantics [38, 30], we employ a heap, which

2An exception are function closures that we discuss in the Section 7.
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BTypes τ ::=
nat nat

unit unit

bool bool

prod(τ1; τ2) τ1 × τ2
list(τ) L(τ)

FTypes ρ ::=
arr(τ1; τ2) τ1 → τ2

Val v ::=
val(n) n
val(T) T

val(F) F

val(Null) Null

val(l) l
val(pair(v1; v2)) 〈v1, v2〉

Exp e ::=
var(x) x
nat[n] n
unit ()
T T

F F

if(x; e1; e2) ifx then e1 else e2
ap(f ;x) f(x)
tpl(x1;x2) 〈x1, x2〉
matchP(x1, x2.e1) match p {(x1;x2) ↪→ e1}
nil []
cons(x1;x2) x1 :: x2
matchL{l}(e1;x, xs.e2) match l {nil ↪→ e1 | cons(x;xs) ↪→ e2}
let(e1;x : τ.e2) let x = e1 in e2
share(x;x1, x2.e) share x as x1, x2 in e

Figure 1: Simple Types, Values, and Expressions

persistently binds locations to values (normalized terms). As usual, we derive the cost of a
(terminating) program from the number of heap locations used during execution, which in our
case is the maximum difference between the sizes of the initial and final freelist. We let Loc be
an infinite set of names for addressing the heap. For the rest of the paper, we use the following:
Stack , {V | V : Var → Val} and Heap , {H | H : Loc → Val} for the set of stacks and heaps
respectively.

Reachability Before we define the rules for the cost semantics, we relate the heap locations
to values with the 3-place reachability relation reach(H, v, L) on Heap×Val×℘(Loc), where ℘ is
the powermultiset. This is read as “under heap H, the value v reaches the multiset of locations
L”. Write L = reachH(v) to indicate this is a functional relation justified by the (valid) mode
(+,+,−). We say that the reachable set of v is L.

A = reachH(v1) B = reachH(v2)

A ]B = reachH(〈v1, v2〉)
A = reachH(H(l))

{l} ]A = reachH(l)

v ∈ N ∪ {T, F, Null}
∅ = reachH(v)

In the rules, ] is multiset union. L is a multiset because we need to keep track of the number
of ways a location might be reached in order to prove soundness. However, the cost semantics
can be read by truncating any multiset to a set. Furthermore, we will sometimes mix multiset
and set operations as the situation calls for. For example, we will write l ∈ S for a multiset S
if S(l) ≥ 1.

The notion of reachability naturally lifts to expressions and contexts:

reachH(V ) =
⊎

x∈dom(V )

reachH(V (x)) locsV,H(e) = reachH(V �FV (e))

Where FV : Exp→ P(Var) denotes the set of free-variables of expressions as usual.

Towards the Garbage Collection Cost Semantics Now we are ready to give a first
attempt to modeling the cost semantics for a tracing garbage collector. Before we present our

546



Automatic Space Bound Analysis for Funct. Progs. with GC Niu and Hoffmann

new semantics, we explain an existing cost semantics we experimented with [30]. Judgements
have the form V,H,R ` e ⇓s v,H ′, which can be read as follows. Under stack V ∈ Stack, heap
H ∈ Heap, and continuation set R ⊆ Loc, e evaluates to v and H ′ using s heap locations. The
idea is that R keeps track of the set of locations necessary to complete the evaluation after e is
evaluated (hence the name continuation). For example, we have the let rule:

V,H,R ] locsV,H(x.e2) ` e1 ⇓s1 v1, H1 V [x 7→ v1], H,R ` e2 ⇓s2 v2, H2

V,H,R ` let(e1;x : τ.e2) ⇓max s1,s2 v2, H2

Notice that to evaluate e1, we have to extend the continuation R with locations in e2, which
will be used after e1 is evaluated. The total space used is the max of the component, indicating
that locations used for e1 can be reused for e2. This is clear when we look at the variable rule:

V (x) = v

V,H,R ` x ⇓|dom(R]reachH(v))| v,H

It states that evaluating a variable x requires the locations reachable from x as well as the
continuation set R. While this way of counting heap locations does model a tracing garbage
collector, it is not compatible with the existing type systems for amortized analysis. In these
systems, such as RaML, the type rules count the heap locations as data is created, i.e. at each
data constructor. Thus looking up a variable incurs no cost, since it was accounted for during
creation. On the other hand, the cost of indexing a variable in the semantics includes the
cost of the entire continuation set, which is potentially unbounded. This mismatch between
the dynamics and statics of language prevents us from proving the soundness of the analysis.
We give a new cost semantics that is 1) compatible with the type system and 2) also a more
concrete model of a garbage collector since costs are realized with explicit locations.

3 Garbage Collection Cost Semantics
In this section, we present our novel cost semantics by combining freelist semantics from [25]
with the cost semantics for modeling perfect GC [30] that we discussed in the previous section.
The resulting semantics, called Egc, is well suited for proving the soundness of the novel type-
based bound analysis.

The garbage collection cost semantics Egc is defined by a collection of judgement of the form

C `P :Σ e ⇓ v,H ′, F ′

Where C ∈ Stack×Heap×℘(Loc)×P(Loc) is a configuration usually written with variables
V,H,R, F . Because the signature Σ for the mapping of function names to first-order functions
does not change during evaluation, we drop the subscript P : Σ from `P :Σ when the context of
evaluation is clear. Given a configuration C = (V,H,R, F ), the evaluation judgment states that
under stack V , heap H, continuation (multi)set R, freelist F , and program P with signature
Σ, the expression e evaluates to value v, and engenders a new heap H ′ and freelist F ′. In
comparison with the attempt from the previous section, the key ingredient we added is the
freelist, which serves as the set of available locations. Similar to the predicate reach, We call
R a (multi)set since the fact that it’s a multiset is only useful during the soundness proof. For
evaluation, it is convenient to just view R as a set. Define a computation as a pair (C, e) of a
configuration C and an expression e.

The semantics Egc is designed to model the heap usage of a program running with a tracing
counting garbage collector: whenever a heap cell becomes unreachable from the root set, it
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V1 = V �FV (e1) R
′

= R ∪ locsV,H(lam(x : τ.e2))

V1, H,R
′
, F ` e1 ⇓ v1, H1, F1 V2 = (V [x 7→ v1]) �FV (e2) g = {l ∈ H1 | l /∈ F1 ∪ R ∪ locsV2,H1

(e2)}
V2, H1, R, F1 ∪ g ` e2 ⇓ v2, H2, F2

V,H,R, F ` let(e1; x : τ.e2) ⇓ v2, H2, F2

(F:Let)

V (x) = T V
′

= V �FV (e1)

g = {l ∈ H | l /∈ F ∪ R ∪ locsV ′,H(e1)} V
′
, H,R, F ∪ g ` e1 ⇓ v,H′

, F
′

V,H,R, F ` if(x; e1; e2) ⇓ v,H′
, F

′ (F:CondT)

V (x) = F V
′

= V �FV (e2)

g = {l ∈ H | l /∈ F ∪ R ∪ locsV ′,H(e2)} V
′
, H,R, F ∪ g ` e2 ⇓ v,H′

, F
′

V,H,R, F ` if(x; e1; e2) ⇓ v,H′
, F

′ (F:CondF)

V (x) = v
′

P (f) = (yf , ef )
V

′
= ([yf 7→ v

′
]) �FV (ef ) g = {l ∈ H | l /∈ F ∪ R ∪ locsV,H(ef )} V

′
H,R, F ∪ g ` ef ⇓ v,H′

, F
′

V,H,R, F ` ap(f ; x) ⇓ v,H′
, F

′ (F:App)

V,H,R, F ` nil ⇓ val(Null), H, F
(F:Nil)

v = 〈V (x1), V (x2)〉 l ∈ F H
′

= H{l 7→ v}
V,H,R, F ` cons(x1; x2) ⇓ l, H′

, F \ {l}
(F:Cons)

V (x) = Null V
′

= V �FV (e1)

g = {l ∈ H | l /∈ F ∪ R ∪ locsV ′,H(e1)} V
′
, H,R, F ∪ g ` e1 ⇓ v,H′

, F
′

V,H,R, F ` matchL{x}(e1; xh, xt.e2) ⇓ v,H′
, F

′ (F:MatNil)

V (x) = v

V,H,R, F ` x ⇓ v,H, F
(F:Var)

V (x) = l H(l) = 〈vh, vt〉 V
′

= (V [xh 7→ vh, xt 7→ vt]) �FV (e2)

g = {l ∈ H | l /∈ F ∪ R ∪ locsV ′,H(e2)} V
′
, H,R, F ∪ g ` e2 ⇓ v,H′

, F
′

V,H,R, F ` matchL{x}(e1; xh, xt.e2) ⇓ v,H′
, F

′ (F:MatCons)

V (x) = v
′

V
′

= (V [x1 7→ v
′
, x2 7→ v

′
]) �FV (e)

g = {l ∈ H | l /∈ F ∪ R ∪ locsV ′,H(e)} V
′
, H,R, F ∪ g ` e ⇓ v,H′

, F
′

V,H,R, F ` share(x; x1, x2.e) ⇓ v,H′
, F

′ (F:Share)

Figure 2: Cost Semantics for Perfect Garbage Collection

becomes collected and added to the freelist as available for reallocation. As before, the contin-
uation set R represents the set of locations required to compute the continuation excluding the
current expression. We define the root set as the union of the locations in the continuation set
R and the locations in the current expression e.

The inference rules for the semantics are given in Figure 2. For example, the rule F:CondT
states that, to evaluate a conditional, look in the stack for the value of the branching boolean.
In the case it is true, we proceed to evaluate the first branch. Furthermore, we collect cells in
the heap that are not reachable from the root set (R ∪ locsV ′,H(e1)) or already in the current
free-list F , and add them (g) to the available cells for evaluating e1.

Another example is the rule F:Let for let expressions: to evaluate the expressions
let(e1;x:τ.e2), we evaluate the first expression with the corresponding restricted stack V1 and
an expanded continuation set R′. The extra locations come from the free variables of e2 (not
including the bound variable x), which we cannot collect during the evaluation of e1. Next, we
restrict the extended stack to only free variables of e2, and evaluate e2 with this stack and the
original continuation set R. The other rules are similar.

Note that in contrast to the semantics in the previous section, evaluating a variable does not
incur any cost. This ensures that we will be able prove the soundness of the type system. Also,
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since we don’t allow local function definitions, we do not create closures during evaluation. Also
note that we restrict the domain of the stack to the appropriate variables during evaluation.
This is only to facilitate the proof of the linearity of the copying semantics introduced later,
and not necessary for the implementation.

For example, we can implement the append and appTwice function, which has variable
sharing. First, we analyze the heap usage of append under Egc. We case on the first component
of the input. In case it’s nil, we just return l2, and there are no allocations or deallocations. In
case it’s cons of x and xs, we need to allocate one heap location for the cons cell binding x and
the recursive result, for which we can use the just matched-on cell. Again, the net overhead is
zero. Thus, the total space overhead of append is zero.

For appTwice, we first share the list l as l1 and l2. In the first let, the locations in l2
are added to the continuation set, which prevents the first call to append from destructing l1.
Thus size of l1 new locations are allocated from the freelist to construct l1’. The second call
has no net increase in heap allocations since l2 can be destructed along the way. The return
value is a pair which is stack-allocated and doesn’t require a heap allocation. Thus, the total
space overhead for appTwice is size of the input list l.

From this, we see that the minimum size for the initial freelist to successively evaluate a call
to appTwice is exactly the length of the input. In general, we define the cost of a closed program
to be the minimum size of the initial freelist that guarantees successful evaluation, which is
equivalent to the cost annotation in the previous cost semantics introduced in Section 2.

4 Automatic Amortized Heap-Space Analysis with GC
Automatic Amortized Resource Analysis (AARA) The idea of AARA [24, 27, 21, 22]
is to automate the potential method of amortized analysis using a type system. Types introduce
potential functions that map data structures of the given type to non-negative numbers. The
type rules ensure that there is always sufficient potential to cover the evaluation cost of the
next step and the potential of the next program state.

let rec append ( l1 , l 2 ) =
match l 1 with
| [ ] −> l2
| x : : xs −> x : : ( append ( xs , l 2 ) )

let appTwice l =
share l as l1 , l 2 in
let l1 ’ = append ( l1 , [ ] ) in
let l2 ’ = append ( l2 , [ ] ) in
( l1 ’ , l2 ’ )

Figure 3: Functions append and appTwice

To illustrate the idea, we informally ex-
plain the linear potential method for the func-
tions in Figure 3. We will use the alloca-
tion/heap metric which simply counts the
number of cons constructor calls during the
evaluation.3 With this metric, the cost of
evaluating append(l1,l2) is m, where m is
the number of cons constructors in l1, and
the resource annotated type of append is

L1(int) × L0(int)
0/0−−→ L0(int). This type

says that to type append(l1,l2), we need l1
to have 1 potential per element, l2 to have 0
per element, and the result will be a list with 0 potential per element. Additionally, the function
uses 0 constant potential, and leaves 0 constant potential after evaluating. This translates to a
bound which states that the number of allocations append makes is bounded by 1 times size of
the first list. For appTwice(l), the cost under the heap metric is 2m, where m is the number
of cons constructors in l. This is because we have to share the input list across two calls of
append, which each requires lists with unit potential per element. For example, if l : L2(int),

3This is in contrast to the highwater mark for the GC semantics Egc that is targeted by our new analysis.
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n ∈ Z
H � val(n) 7→ n : nat

(V:ConstI)
H � val(Null) 7→ val(Null) : unit

(V:ConstI)

A ∈ BType

H � val(Null) 7→ val(Null) : L(A)
(V:Nil)

H � val(T) 7→ val(T) : bool
(V:True)

H � val(F) 7→ val(F) : bool
(V:False)

H � v1 7→ a1 : A1 H � v2 7→ a2 : A2

H � 〈v1, v2〉 7→ 〈a1, a2〉 : A1 ×A2

(V:Pair)

l ∈ Loc H(l) = 〈vh, vt〉 H � vh 7→ a1 : A H � vt 7→ [a2, . . . , an] : L(A)

H � l 7→ [a1, . . . , an] : L(A)
(V:Cons)

Figure 4: Mapping Locations to Semantic Values

then l1 and l2 both get 1 potential per element so that l1 : L1(int), l2 : L1(int), which covers
the cost of the next 2 calls to append, and the resulting pair of lists both have 0 potential per
element.

More generally, we can give the following types to append and appTwice:

append : Lp(int)× Lq(int)
r/r′−−→ Ls(int), where p ≥ s+ 1, q ≥ s and r ≥ r′

appTwice : Lp(int)
q/q′−−→ Lr(int)× Ls(int), where p ≥ r + s+ 2 and q ≥ q′

Notice that the constant potentials r and q are unconstrained since the functions don’t use
any potential in the base cases. With AARA, the type system keeps track of this collection
of constraints on resource annotations and passes them to an off-the-shelf LP-solver which
finds the minimum solution. This is then translated to concrete resource bounds like the ones
we derived by hand. It has been shown that this technique can be extended to polynomial
potential functions, user-defined data types, and higher-order functions while still relying on
linear constraint solving [21, 22].

Linear Potential Functions Before giving the type rules, we need to formalize linear po-
tential as explained above. Since potential is associated with the structure of a value and not
the particular heap locations, it is helpful to introduce a mapping from heap values to semantic
values of a type. First, we give a denotational semantics for (define the structures of) the
first-order types:

JunitK = {val(Null)}
JboolK = {val(T), val(F)}
JnatK = N

JA1 ×A2K = JA1K× JA2K
nil ∈ JL(A)K

cons(a; l) ∈ JL(A)K if a ∈ JAK and l ∈ JL(A)K

The meaning of each type is the least set such that the above holds. As usual, we write
[a1, ..., an] for cons(a1; , ..., cons(an; nil)).

In Figure 4 we give the judgements relating heap values to semantic values, in the form
H � v 7→ a : A , which can be read as follows: Under heap H, heap value v defines the semantic
value a ∈ JAK. Given a stack V , we write H � V : Γ if dom(V ) ⊆ dom(Γ) and for every
x 7→ v ∈ V , H � V (x) 7→ a : Γ(x) for some a ∈ JAK.
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We introduce linear potential for structures corresponding to the base types. The definition
of linear potential is standard [20]. Below is the grammar for resource-annotated types:

BTypes A ::= FTypes ρ ::=

. . . arr(A1;A2; p; q) A1
p/q−−→ A2

listp(A) Lp(A)

The intended meaning is that a list of Lp(A) has p units of potential per cons cell, and a

function of type A
p/q−−→ B takes constant potential p to run and q is the constant potential left

afterwards.
With linear potential, each component of a structure is associated with a constant amount

of potential. Given a structure a in a heap H, where H � v 7→ a : A, we define its potential
ΦH(a : A) by recursion on A:

ΦH(v : A) = 0 if A ∈ {unit, bool, nat}
ΦH(〈v1, v2〉 : A1 ×A2) = ΦH(v1 : A1) + ΦH(v2 : A2)

ΦH(l : Lp(A)) = p+ ΦH(vh : A) + ΦH(vT : Lp(A)) if H(l) = 〈vh, vh〉

Write ΦV,H(Γ) for Σx∈dom(V )ΦH(V (x) : Γ(x)).
Now define AgA1, A2, n as the sharing relation for resource-annotated types:

Lp(A)gn Lq(A1), Lr(A2) if p = q + r + n and Agn A1, A2

A×B gn A1 ×B1, A2 ×B2 if Agn A1, A2 and B gn B1, B2

Agn A,A if A ∈ {unit, bool, nat}

The sharing relation captures the amount of potential needed to copy a type A where each cons
node in any structure in JAK has a copying overhead n.

Type Rules The type system FOgc consists of rules of the form Σ; Γ
q′
q
e : A , read as under

signature Σ : Var → FTypes, typing environment Γ : Var → BTypes, e has type A starting with
q units of constant potential and ending with q′ units.

Our type system is based on the one of classic linear AARA [24]. We give a review of the
rules in Figure 5. Since we are interested in the number of heap locations, there is an implicit
side condition in all rules which ensures all constants are assumed to be nonnegative.

For example, L:Cons states that to add an element to a list with p potential per element,
we need p + 1 units of constant potential: p to maintain the potential of the list, and 1 for
allocating the cons cell. L:MatL states that matching on a list with type Lp(A), we need to
type the nil case with the same constant potentials, and we need to type the cons case with an
additional p units of constant potential, since we get the spill of p from the definition of linear
potential. As the last example, we look at L:Share, which states that to share a variable x of
type A, we need to split the potential between A1 and A2, and type the rest of the expression
with the two new variables x1 : A1, x2 : A2.

New Rules The new type system for programs with garbage collection replaces the rules
L:MatL and L:Share. The observation is that if we ensure that locations are used linearly,
we can use destructive pattern matching to model local garbage collection by returning the
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Σ; x : B q
q
x : B

(L:Var)
Σ(f) = A

q/q′−−−→ B

Σ; x : A
q′
q
f(x) : B

(L:Fun)
Σ; Γ

q′
q
et : B Σ; Γ

q′
q
ef : B

Σ; Γ, x : bool
q′
q

if x then et else ef : B
(L:Cond)

Σ; x1 : A1, x2 : A2 q
q 〈x1, x2〉 : A1 × A2

(L:Pair)
Σ; Γ, x1 : A1, x2 : A2

q′
q
e : B

Σ; Γ, x : (A1, A2)
q′
q

match x {(x1; x2) ↪→ e} : B
(L:MatP)

Σ; ∅ q
q
nil : L

p
(A)

(L:Nil)
Σ; xh : A, xt : L

p
(A) q

q+p+1
cons(xh; xt) : L

p
(A)

(L:Cons)

Σ; Γ
q′
q
e1 : B Σ; Γ, xh : A, xt : L

p
(A)

q′
q+p

e2 : B

Σ; Γ, x : L
p
(A)

q′
q

match x {nil ↪→ e1 | cons(xh; xt) ↪→ e2} : B
(L:MatL)

A g A1, A2 Σ; Γ, x1 : A1, x2 : A2
q′
q
e : B

Σ; Γ, x : A
q′
q

share x as x1, x2 in e : B
(L:Share)

Σ; Γ1 p
q
e1 : A Σ; Γ2, x : A

q′
p
e2 : B

Σ; Γ1,Γ2
q′
q

let(e1; x : τ.e2) : B
(L:Let)

Figure 5: Type Rules of Classic AARA [24]

potential associated with the constructor location (notice the extra +1 in the second premise):

Σ; Γ
q′
q
e1 : B Σ; Γ, xh : A, xt : Lp(A)

q′
q+p+1

e2 : B

Σ; Γ, x : Lp(A)
q′
q
matchx {nil ↪→ e1 | cons(xh;xt) ↪→ e2} : B

(L:MatLD)

This is validated by the fact (Lemma 3) that in the auxiliary copying semantics (introduced
in later), once a cons-cell is matched on, there can be no live references from the root set to it,
and thus we are justified in restituting the potential to type the subexpression e2.

However, the rule L:MatLD is not sound for programs with aliasing of data. We address
this issue by replacing the rule L:Share with the rule L:ShareCopy:

A g1 A1, A2 Σ; Γ, x1 : A1, x2 : A2 q′
q
e : B

Σ; Γ, x : A
q′
q
share x as x1, x2 in e : B

(L:ShareCopy)

To share a variabe of type A, we need to split the potential between two new annotated
types A1 and A2 as usual. In addition, we have to pay an “overhead” of 1 for every cons node
in any structure in JAK. The idea is that we treat data as if it is actually copied. This is sound
w.r.t. the copying semantics because the size of the domain of the reachable set of a value v is
exactly the linear potential of v : A with all resource annotations set to 1.

For example, Figure 6 contains derivations for append and appTwice. Here, A is short for

int and Σ = [append 7→ Lp(A)× Lp(A)
q/q−−→ Lp(A)] is the program signature (since append is

the only function actually invoked in the program). From these derivations, we get the improved
space overhead bound to append and appTwice:

append : Lp(int)× Lq(int)
r/r′−−→ Ls(int), where p ≥ s, q ≥ s, and r ≥ r′

appTwice : Lp(int)
q/q′−−→ Lr(int)× Ls(int), where p ≥ r + s+ 1 and q ≥ q′

Cost Metrics In previous versions of AARA [27, 21], the typing judgment and cost semantics
are parametrized by a cost metric m : res_const→ Q, which assigns a constant cost to each
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Σ; l2 : Lp(A) q
q
l2 : Lp(A)

L:Var

Σ(append) = L
p
(A)× Lp

(A)
q/q−−→ L

p
(A)

Σ; l2 : L
p
(A), xs : L

p
(A) q+p+1

q+p+1
append(xs, l2) : L

p
(A)

L:App

Σ; x : A, r : L
p
(A) q

q+p+1
x :: r : L

p
(A)

L:Cons

Σ; l2 : L
p
(A), x : A, xs : L

p
(A) q

q+p+1
let (append(xs, l2); r.x :: r) : L

p
(A)

L:Let

········

Σ; l1 : Lp(A), l2 : Lp(A) q
q
matchL{l1}(l2; x, xs.let (append(xs, l2); r.x :: r)) : Lp(A)

L:MatL

L
r+s+1

(A)g1
L

r
(A), L

s
(A)

〈l1, []〉 : L
r
(A)× Lr

(A)

Σ(append) = L
r
(A)× Lr

(A)
q/q−−→ L

r
(A)

Σ; l1 : L
r
(A) q

q
append(l1, []) : L

r
(A)

L:Fun

〈l2, []〉 : L
s
(A)× Ls

(A)

Σ(append) = L
s
(A)× Ls

(A)
q/q−−→ L

s
(A)

Σ; l2 : L
s
(A) q

q
append(l2, []) : L

s
(A)

L:Fun

Σ; l1
′

: L
r
(A), l2

′
: L

s
(A) q

q 〈l1′
, l2

′〉 : L
r
(A)× Ls

(A)
L:Pair

···········
Σ; l2 : L

s
(A), l1

′
: L

r
(A) q

q
e0 : L

r
(A)× Ls

(A)
L:Let

···········
Σ; l1 : L

r
(A), l2 : L

s
(A) q

q
let (append(l1, []); l1′

.e0) : L
r
(A)× Ls

(A)
L:Let

···

Σ; l : Lr+s+1(A) q
q
share(l; l1, l2. let (append(l1, []); l1′.e0)) : Lr(A)× Ls(A)

L:ShareCopy

Figure 6: Type derivations for the functions append and appTwice. In the derivation for
appTwice we write e0 for let (append(l2, []); l2′.〈l1′, l2′〉).

step in the semantics. Recall the heap metric introduced above; formally, this is the function
k 7→ 1k=kcons . We instantiate the previous type system with this metric (which only accounts
for heap allocations), resulting in a concrete type system RaMLheap. We give a full evaluation
of the improvements of FOgc over RaMLheap in Section 7. Although we defined the constructor
to cost 1 heap location (as shown in L:Cons and L:MatLD), it can be any constant as long as
the introduction and elimination rules agree on the constant. Thus we can extend the type
system to accurately track constructors which vary in size depending on the argument.

Type Inference One of the benefits of AARA is efficient type inference using off-the-shelve
LP solvers [24], even for non-linear potential functions [21, 22]. The new rules do not complicate
inference and previous techniques still apply. In a nutshell, inference is performed in three steps:
First, perform a standard Hindley-Milner type inference for the base types. Then, annotate the
type derivation with (yet unknown) variables for the potential annotations and collect linear
constraints that are derived from the type rules. Finally, solve the constraints with an LP
solver and minimize the potential annotations of the inputs. Details can be found in previous
work [24, 22].

5 Soundness of FOgc

We seek to prove the following theorem.
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Theorem 1 (Soundness). Let H � V :Γ, Σ; Γ
q′
q
e : B, and V,H `Eoper e ⇓ v,H ′. Then for all

configurations W,Y, F,R, if V,H ∼W,Y and |F | ≥ ΦV,H(Γ) + q, there exists a value w, and a
freelist F ′ such that

W,Y,R, F `Egc e ⇓ w, Y ′, F ′ and v ∼H′

Y ′ w .

Here, Eoper is a standard big-step semantics, with judgments of the form V,H ` e ⇓ v,H ′

derived from Egc, V,H ∼ W,Y is context equivalence, and v ∼H′

Y ′ w is value equivalence (these
are defined below). The theorem states that, given a terminating expression and a freelist that
is sufficiently large (as predicated by the type derivation), a run with Egcwill normalize to an
equivalent value.

To facilitate the proof, we define an intermediate semantics Ecopy which is semantically
linear. The proof has two stages: First, we show Ecopy over-approximates Egc, meaning that any
computation that succeeds with Egc will succeed with an equally-sized or smaller freelist with
Egc. Then we show FOgc is sound with respect to Ecopy, and thus by the previous step sound
with respect to Egc.

As mentioned above, we introduce a big step semantics Eoper that does not use freelists or
account for garbage collection. We use it to characterize expressions that normalize to values
when initialized with a sufficient freelist. This technique has also been employed in earlier work
on AARA [25]. In the judgment V,H ` e ⇓ v,H ′, the “freelist” is the whole ambient set of
locations Loc, and thus we never run out of locations during evaluation. This introduces a
problem for value and context equivalence: when comparing evaluation results between a run
with Ecopy and Eoper, the return values might not be syntactically equal. Due to the difference in
allocation strategies and the fact that both are nondeterministic, we need a more robust notion
of equality for values. Luckily, we can just use the structures from the denotational semantics
(defined in Section 4). In both runs, the return value maps to the semantic value [5]. Thus
we use structural equality as the basis for value and context equivalence:

Definition 1 (Value Equivalence). Two values v1, v2 are equivalent (with the presupposition
that they are well-formed w.r.t. heaps H1, H2) iff H1 � v1 7→ a : A and H2 � v2 7→ a : A. Write
value equivalence as v1 ∼H1

H2
v2.

Definition 2 (Context Equivalence). Two contexts (V1, H1), (V2, H2) are equivalent iff
dom(V1) = dom(V2) and for all x ∈ dom(V1), V1(x) ∼H1

H2
V2(x). Write context equivalence

as (V2, H2) ∼ (V2, H2)

Linear Garbage Collection Cost Semantics To establish the soundness of the type sys-
tem, we need an intermediary semantics Ecopy, which is semantically linear. As mentioned in
Section 2, this means that locations are treated linearly, that is, no location can be used twice
in a program. Variable sharing is achieved via copying : the shared value is created by allo-
cating a fresh set of locations from the freelist and copying the locations of the original value
one by one. This is also sometimes referred to as deep copying. Let copy(H,L, v,H ′, v′) be a
5-place relation on Heap×P(Loc)× Val× Heap× Val. Similar to reachability, we write this as
H ′, v = copy(H,L, v) to signify the intended mode for this predicate: (+,+,+,−,−).

v ∈ {n, T, F, Null}
H, v = copy(H,L, v)

l′ ∈ L H ′, v = copy(H,L \ {l′}, H(l))

H ′{l′ 7→ v}, l′ = copy(H,L, l)

L1 t L2 ⊆ L |L1| = |dom(reachH(v1)|
|L2| = |dom(reachH(v2)| H1, v

′
1 = copy(H,L1, v1) H2, v

′
2 = copy(H1, L2, v2)

H2, 〈v′1, v′2〉 = copy(H,L, 〈v1, v2〉)
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Primitives require no cells to copy; a location value is copied recursively; a pair of values is
copied sequentially, and the total number of cells required is the size of the reachable set of the
value. Now, consider Egc with the share rule F:Share replaced with the following rule.

V (x) = v′ L ⊆ F
|L| = |dom(reachH(v′))| H ′, v′′ = copy(H,L, v′) V ′ = (V [x1 7→ v′, x2 7→ v′′]) �FV (e)

F ′ = F \ L g = {l ∈ H | l /∈ F ′ ∪R ∪ locsV ′,H(e)} V ′, H ′, R, F ′ ∪ g ` e ⇓ v,H ′′, F ′′

V,H,R, F ` share x as x1, x2 in e ⇓ v,H ′′, F ′′ (E:Share)

To share a variable, we first copy the shared value. The number of cells required is equal
to the size of the reachable set from the value. This copying sharing semantics is what justifies
the analysis to restitute the potential when matching on a cons node, since even if the node was
shared, we had to pay for the cost by copying the node when sharing the original value. Next,
we restrict the stack to the appropriate variables. Lastly, any locations not reachable from the
current subexpression e are collected. This is for the case when a variable is shared but not
used later.

Recall that a computation is a pair (C, e) consisting of a configuration C = (V,H,R, F ) and
an expression e. Since the cost semantics can only preserve the linearity of a computation, we
restrict our attention to computations that are linear initially, and show that Ecopy respects the
linearity of any initially linear computation. This motivates the following definitions:

Definition 3. (Linear context) Given a context (V,H), let x, y ∈ dom(V ), x 6= y, and rx =
reachH(V (x)), ry = reachH(V (y)). It is linear given that set(rx), set(ry), and rx ∩ ry = ∅.

Where set(S) means S a proper set (∀x, S(x) ≤ 1). Denote this by linearCtxt(V,H). When-
ever linearCtxt(V,H) holds, there is at most one path from a variable on the stack V to any
location in H. Now we can formalize our intuition for linear computations:

Definition 4 (Linear computation). Given a configuration C = (V,H,R, F ) and an expression
e, we say the 5-tuple (C, e) is a computation; it is a linear computation given that dom(V ) =
FV (e), linearCtxt(V,H), and disjoint({R,F, locsV,H(e)}). We write linearComp(V,H,R, F, e)
(equivalently linearComp(C, e)) to denote this fact.

Over-Approximation Intuitively, we expect that any terminating compuation with Ecopy
has a corresponding run with Egc that can be instantiated with an equally-sized or smaller
freelist. Although this seems quite straightforward to prove, a complete characterization of the
relationship between the space allocations of two runs with each semantics is necessary. To
demonstrate the difficulties involved, consider the following proof attempt:

Attempt 1. Let C2 = (V,H,R, F ) be a configuration and (C2, e) be a linear computation. Given
that C2 `Ecopy e ⇓ v,H ′, F ′, for all configurations C1 = (W,Y,R,M) such that W,Y ∼ V,H and
|M | = |F |, there exists a triple (w, Y ′,M ′) ∈ Val× Heap× Loc such that

C1 `Egc e ⇓ w, Y ′,M ′ and v ∼H′

Y ′ w and |M ′| ≥ |F ′| .

We proceed with induction on the derivation of the judgment in Ecopy. Almost every case
goes through, save for E:Let. First, we get W1, Y ∼ V1, H and we have the following from
induction on the first premise:

W1, Y, R
′,M `Egc e ⇓ w1, Y1,M1 and v1 ∼H1

Y1
w1 and |M1| ≥ |F1|
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To instantiate the induction hypothesis on the second premise, we need to show that, among
other things, |M1 ∪ j| ≥ |F1 ∪ g|, where j is the set of collected locations in the Egc judgment.
We cannot show this precisely because g might contain more cells then j due to the linearity
of Ecopy, thus preventing a piecewise comparison. But of course |j| is always less than |g|, since
Egc doesn’t copy to share values! This shows that there is a mismatch between the induction
hypothesis and the relationship between the sizes of the respective freelists and the garbage
sets. Specifically, we need to know exactly how much larger M1 is compared to F1 at any given
step.

Having a sense of what is missing, we formulate the criteria which characterize the required
equivalence between two configurations, which we call copy extension.

Definition 5. A configuration C2 = (V2, H2, R2, F2) is a copy extension of another configuration
C1 = (V1, H1, R1, F1) iff

1. V1, H1 ∼ V2, H2

2. There is a proper partition γ : dom(H1) \ F1 → P(dom(H2) \ F2) such that for all
l ∈ dom(γ), |γ(l)| = reachH1

(V1)(l) +R1(l)

3. For all l ∈ dom(γ), x ∈ dom(V1), sequence of directions P which is valid w.r.t. V1(x),
|reachH2

(V2(x;P )) ∩ γ(l)| = reachH1
(V1(x;P ))(l).

4. For all l ∈ dom(γ), |γ(l) ∩R2| = R1(l)

5. |F1| = |F2|+ | � (γ)|, where �(γ) =
⋃
P∈ec(γ) P \ {rep(P )}

Write this as C1 � C2.

The intention is that C2 is a configuration for an evaluation using Ecopy, and C1 a configuration
for Egc. The first condition is the straightforward context equivalence. The second condition
requires the existence of a mapping γ that tells us given a location in H1 \ F1, which locations
in H2 \ F2 are shared instances.

For example, consider the expression share x as x1, x2 in e and assume the stack is
[x 7→ 1], and the heap equals [1 7→ 〈0, Null〉], i.e. x is the list [0]. In an evaluation with Egc,
the stack becomes [x1 7→ 1, x2 7→ 1], and the heap does not change. With Ecopy, we allocate
a new location in the heap: [1 7→ 〈0, Null〉, 2 7→ 〈0, Null〉], and the stack changes accordingly:
[x1 7→ 1, x2 7→ 2]. Now γ would map 1 to {1, 2}, since both are shared instances of the former.

Thus, the image of γ is a collection of disjoint subsets whose union is dom(H2)\F2, and each
location in dom(H2) \F2 belongs to a unique class whose preimage is the unique representative
in dom(H1) \ F1. Furthermore, we noticed it is crucial to include the fact that the size of
γ(l) must be the sum of the number of references from the stack and the continuation set.
Furthermore, we also require each subset γ(l) (also referred to as class) to be nonempty (this
is the proper partition condition).

While γ gives us a relation between the active regions of two respective heaps, we still need
to know exactly how variables on the stack factor in this relationship. Let l ∈ H1. Specifically,
we need to know that the number of references to l from every subvalue in V1 is equal to the
size of the corresponding part of the class γ(l). First, we need to access subvalues of a value
using directions:

Definition 6. Let Dir be the set {L,R,N}, denoting left, right, and next respectively. We define
the function getH : (1⊕ Val)× Dir→ 1⊕ Val which indexes values via directions:

getH(Just(〈v1, v2〉), L) = Just(v1) getH(Just(l),N) = Just(H(l))
getH(Just(〈v1, v2〉),R) = Just(v2) getH(_,_) = None
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Let P ∈ S(Dir), where S(X) denotes the set of sequence with elements from X. We define
findH : (1⊕ Val)× S(Dir)→ 1⊕ Val, which extends getH to sequences of directions:

findH(v,D :: P ) = findH(getH(v,D), P )

findH(v, []) = v

Call P valid w.r.t. a value v if findH(v, P ) = Just(v′) for some v′. Given a sequence P that
is valid w.r.t. V (x), write VH(x;P ) for fromJust(findH(V (x), P )) and reachH(V (x;P )) for
reachH(VH(x;P )).

With this, the third condition gives us a more fine grained restriction: for any subvalue in
V1, the number of references from it to l is equal to the size of the intersection of the reachable
set of the corresponding subvalue in V2 with the appropriate class γ(l) .

The next condition simply states that the continuation sets respect γ. Lastly, we have that
F1 is greater than F2, with the overhead �(γ) being exactly the sum

∑
l∈γ |γ(l)| − 1. Here

ec(γ) is the image of γ: {γ(l) | l ∈ dom(γ)}. Since each class γ(l) is non-empty, we use rep(l)
to choose an arbitrary element from the class. Now we can state the key lemma:

Lemma 2. Let (C2, e) = (V,H,R, F, e) be a linear computation. Given that C2 `Ecopy e ⇓
v,H ′, F ′, for all configurations C1 such that C1 � C2, there exists a triple (w, Y ′,M ′) ∈ Val ×
Heap× Loc and γ′ : dom(Y ′) \M ′ → P(dom(H ′) \ F ′) s.t.

1. C1 `Egc e ⇓ w, Y ′,M ′

2. v ∼H′

Y ′ w

3. γ′ is a proper partition, and for all l ∈ dom(γ′), |γ′(l)| = |reachY1
(w1)(l)|+ S(l)

4. For all l ∈ dom(γ′) and P ∈ S(Dir) that is valid w.r.t. v, |reachH′(findH′(v;P ))∩γ′(l)| =
reachY ′(findY ′(w;P ))(l)

5. For all l ∈ dom(γ′), γ′(l) ∩R = γ(l) ∩R

6. |M ′| = |F ′|+ | � (γ′)|

Thus we can execute a computation using Egc given that the computation suceeded in a run
with Ecopy, which shows that Ecopy is an over-approximation of Egc.

Soundness of FOgc For the second part of the proof, we show FOgc is sound w.r.t. Ecopy:

Lemma 3 (Linearity of Ecopy). Let C = (V,H,R, F ) be a configuration, H � V : Γ,
Σ; Γ

q′
q
e : B, and C `Ecopy e ⇓ v,H ′, F ′. Given linearComp(C, e), we have set(reachH′(v))

and disjoint({R,F ′, reachH′(v)}).

Theorem 4 (Soundness). let Ho � Vo : Γ, Σ; Γ
q′
q
e : B, Vo, Ho ` e ⇓ vo, H

′
o. Then for

all C ∈ Q+ and configurations (V,H,R, F ) s.t. Vo, Ho ∼ V,H, linearComp(V,H,R, F, e), and
|F | ≥ ΦV,H(Γ) + q + C, there exists a triple (v,H ′, F ′) and a freelist F ′ s.t. V,H,R, F `Ecopy

e ⇓ v,H ′, F ′, vo ∼
H′

o

H′ v, and |F ′| ≥ ΦH′(v : B) + q′ + C

In other words, given a terminating expression (verified by succeeding with the run using
Eoper) and given a freelist that is sufficiently large (as predicated by the type derivation), a run
with Ecopywill normalize to an equivalent value, and the resulting freelist will be sufficiently
large (as predicated by the type derivation).
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6 Implementation and Evaluation
Implementation We have implemented the novel cost semantics and the type system in
Resource Aware ML (RaML). The implementation covers full RaML, including user-defined
data types, higher-order functions, and polynomial potential functions. However, there is no
destructive match for function closures and analyzing the heap-space usage of closures still
amounts to counting allocations only. The main changes that where necessary have been in the
rules for sharing and pattern matching as described earlier. We also needed to change some
elaboration passes that were no longer cost preserving with the GC cost model.

The garbage collection cost semantics is implemented as an alternative evaluation module
inside RaML. As mentioned before, RaML leverages the syntax of OCaml programs. First, we
take the OCaml type checked abstract syntax tree and perform a series of transformations. The
evaluation modules operate on the resulting RaML syntax tree. In the gc evaluation module,
evaluate has the following signature:

eva luate : ( ’ a , un i t ) Expres s ions . exp r e s s i on −> in t
−> ( ( ’ a va lue ∗ ’ a heap ∗ Int . Set . t ) opt ion )

Here, the second argument int specifies the size of the initial freelist. The result is an
option triple of the return value, heap, and freelist; None is returned in case the freelist was
not sufficient for the evaluation. Whereas the normal evaluation boxes every value (everything
evaluates to a location), the gc module follows the cost semantics and only boxes data construc-
tors. The rationale is that the size for other values can be computed statically and thus stack
allocated. One difference between the cost semantics and its implementation is that while in
the language presented here list is the only data type, our implementation supports user defined
data types. The extension is straightforward except the treatment of the nil constructor, or
generally “empty” constructors that have arity zero. For simplicity of presentation, we evaluate
all nil constructors to the same null value in the cost semantics. This is natural for lists because
all nil constructors are the same, and every list has at most one nil node. However, for custom
data types that have more than one kind of empty constructor, it is not possible to map every
constructor to the same null value. Thus, the implementation treats all constructors uniformly,
so each empty constructor also costs one heap location.

As mentioned before, all functions used in a program are declared in a global mutually
recursive block, and we do not account for the constant space overhead for this block in the
cost semantics. In order to implement this global function block, we allow closure creation
during program evaluation. However, we allocate all closures from a separate freelist into a
separate heap. This ensures that data constructors are allocated from the correct freelist and
no space overhead is created by allocating closures for function declarations.

Evaluation We evaluated our new analysis on a number of functions. Table 1 contains a
representative compilation. It shows the type signature for each function. Table 2 presents
the test data that showcase the difference between RaMLheap, the previous RaML type system
instantiated with the heap metric (the old analysis which only counts heap allocations), and
FOgc, which includes deallocations and copying cost for sharing. For each type system, we
show the heap space bound computed by RaML, the number of constraints generated, and the
time elapsed during analysis. The last column gives the expression for the exact heap high
watermark derived by hand and verified by running the cost semantics.

Except for bfs and dfs, all functions in the table take a principal argument of type list. The
variables in the table refer to this argument (for example, the type of the principal argument
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of quicksort is ’a list). In general, M refers to the number of cons constructors of the principal
argument (or the number of outer cons nodes in case of nested lists); L refers to the maximum
number of cons nodes of the inner lists.

function type
quicksort [’a ->’a ->bool; ’a list] ->’a list
mergesort [[’a; ’a] ->bool; ’a list] ->’a list
ocamlsort [[’a; ’a] ->bool; ’a list] ->’a list
selection sort int list ->int list
eratosthenes int list ->int list
dfs [btree; int] ->btree option
bfs [btree; int] ->btree option
transpose ’a list list ->’a list list
map_it [’a ->’b; ’a list list] ->’b list list * ’b list list
pairs ’a list ->(’a * ’a) list

Table 1: Signature of Test Functions

For the sorting functions,
aside from mergesort, the new
analysis using the gc metric
derived asymptotically better
bounds when compared to the
heap metric. Furthermore, all
bounds are exact with respect
to the cost semantics. In re-
gards to mergesort, the anal-
ysis was not able to derive a
tight bound due to the limita-
tions of AARA in deriving log-
arithmic bounds. A particu-
larly nice result is that for quicksort, we derive that the space usage is exactly 0, which justifies
its use as a zero space-overhead (or “in place”) sorting algorithm.

Next, we have have the graph search algorithms operating on a binary tree. Again, the gc
metric was able to derive exact space overheads, while the heap metric derived linear bounds
for both. For transpose, the gc metric derived an asymptotically better bound, but was not
able to derive the exact overhead. We implement matrices as lists-of-lists in row-major order.
The transpose function is implemented tail-recursively, with the accumulator starting as the
empty list. When “flipping” the first row r of the input and appending this to the accumulator,
we need to create |r| many new nil and cons constructors to store the row as a column. While
this overhead only occurs once, RaML is unable to infer this from the source code, and thus
the cost is repeated over the entire input matrix, resulting in the linear bound (w.r.t. the size
of the matrix). This artifact is unrelated to the new extension; it is a limitation due to the
implementation of RaML.

The last two functions demonstrate how the gc metric performs when there is variable shar-
ing. map_it maps the input function across each list in the principal argument twice, returning
a tuple of nested lists. The gc metric dictates that every outer data constructor in the principal
argument needs to be copied, and thus gives the linear bound M + 1. In this case, the bound is
exact. The function “pairs” takes a list and outputs all pairs of the input list which are ordered
ascending in input position. For example, pairs [1;2;3;4] = [(1,2);(1,3);(1,4);(2,3);(2.4);(3,4)].
For pairs, the gc metric derived a bound that is asymptotically the same as the heap metric, but
with better constants. An exact bound could not be derived because the deallocation potential
from the pattern match in the definition of pairs is wasted since the matched body could already
be typed with zero cost. However, this deallocation is used as usual in the cost semantics. Thus
the slack in the bound totals to the size of the input.

7 Conclusion and Future Work
In this article, we introduced a novel operational cost semantics that models a perfect tracing
garbage collector and an extension to AARA that is sound with respect to the new semantics.
We implemented the new semantics and analysis as modules in RaML and found through
experimental testing that the extended AARA was able to derive asymptotically better bounds
for several commonly used functions and programming patterns; often, the bounds are optimal
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RaMLheap FOgc

function computed bound constraints time computed bound constraints time optimal
quicksort 1.00 + 3.50M + 1.50M2 8515 0.52 0 8519 0.48 0
mergesort 1.00− 4.67M + 6.33M2 9572 0.64 −0.50M + 0.50M2 9578 0.58 blog(M)c
ocamlsort 7.50 + 5.50M + 1.00M2 8565 0.51 1.00 + 1.00M 8573 0.50 M + 1
selection sort 2.00 + 3.00M + 1.00M2 639 0.06 0 642 0.05 0
eratosthenes 1.00 + 1.50M + 0.50M2 515 0.06 0 517 0.04 0
dfs 3.00 + 2.00M 5481 0.90 2 5483 0.36 2
bfs 5.00 + 10.00M 24737 4.15 4 24742 1.62 4
transpose 1.00 + 3.50LM + 0.50LM2 10680 0.50 1.00 + 2.00LM 10684 0.50 max (0, 2L− 1)
map_it 2.00 + 2.00LM + 4.00M 30699 1.58 1.00M + 1.00 30703 1.57 M + 1
pairs 1.00 + 1.00M2 10214 0.60 0.50M + 0.50M2 10217 0.64 0.5M2 − 1.5M + 2

Table 2: Automatic Bound Analysis with RaML

with respect to the cost semantics.
One direction for future work is using the cost free metric cf to model global garbage

collection. In cf, all resource constants, including constructor nodes, are set to 0. A cost-free
typing judgment then captures how an expression manipulates the structures in the context into
the structure induced by its type. Using this fact, we could express the maximum space usage
in the sequential composition let(e1;x : τ.e2) by analyzing e1 twice—once with the cost-free
metric and once with the regular metric—and assign potential to x using the result type in
the cost-free typing. In prior work [23], the authors have successfully employed this cost-free
metric to analyze parallel programs. Here, the difficulty is showing the simultaneous soundness
of both destructive pattern matching and the cost-free composition. Another complication is
the choice between local variable sharing and global context sharing. We leave the exploration
of this area to future work.

Another direction for future work are function closures. The current treatment in our
implementation is unsatisfactory since there is no equivalent to the destructive pattern match
for closures. As a result, the GC metric in RaML only accounts for allocation of closures, which
is not an improvement over the existing implementation. Ideally, we would like to account
for deallocation at function applications and treat closures similar to other data structures in
sharing. However, the size of closures cannot be determined easily statically and closures can
not capture potential and are currently shared freely in RaML. As a result, the techniques we
developed here do not directly carry over to closures.

Finally, we are interested in exploring if our work can be used to improve the efficiency of
garbage collection in languages like OCaml. A guaranteed upper bound on the heap space can
be used in different ways to control the frequency of the collections and the total memory that
is requested from the operating system.
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