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Abstract 

In the first decade of the 21st century, many revolutionary properties of quantum 
channels were discovered. These phenomena are purely quantum mechanical and completely 
unimaginable in classical systems. Recently, the most important discovery in Quantum 
Information Theory was the possibility of transmitting quantum information over zero-
capacity quantum channels. In this work we prove that the possibility of superactivation of 
quantum channel capacities is determined by the mathematical properties of the quantum 
relative entropy function. 

1   Introduction 

The superactivation of quantum channels is an extreme violation of the additivity of quantum channels 
(Hastings, 2009). This effect makes possible the communication over zero-capacity quantum channels. The 
superactivation effect was discovered by Smith and Yard in 2008 (Smith and Yard, 2008), who 
demonstrated that this effect works for the quantum capacity (Smith et al., 2011). Later, these results were 
extended to the classical zero-error capacity (Cubitt and Smith 2009), (Cubitt et al., 2009) and to the 
quantum zero-error capacity (Duan, 2009). An algorithmic solution to the problem was developed in 
(Gyongyosi and Imre, 2012). Currently, we have no theoretical background for describing all possible 
combinations of superactive zero-capacity channels; hence, there may be many other possible combinations 
(Gyongyosi and Imre, 2012), (Gyongyosi and Imre, 2012a), (Brandao and Oppenheim, 2010), (Brandao et 
al, 2011).  

In this paper we prove that the problem of superactivation is rooted in information geometric issues and 
there is a strict connection between the mathematical properties of the quantum relative entropy function 
and the possibility of superactivation. As we have discovered, the set of superactive channel combinations 
is limited and determined by the quantum relative entropy function. Before our work this fundamental and 
purely mathematical connection between the quantum relative entropy function and the superactivation 
effect was completely unrevealed. We demonstrate the results for the quantum capacity; however the 
proposed theorems and connections hold for all other channel capacities of quantum channels for which the 
superactivation is possible (Imre and Gyongyosi, 2012), (Imre and Balazs, 2005). 

 



2   The Quantum Capacity of a Quantum Channel 
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The classical and the quantum capacities of quantum channels are described by the Holevo-
Schumacher-Westmoreland (HSW) (Holevo, 1998), (Schumacher and Westmoreland, 1997) and the Lloyd-
Shor-Devetak (LSD) (Lloyd, 2009), (Shor, 2002), (Devetak, 2005) theorems (Gyongyosi and Imre, 2011) , 
(Gyongyosi and Imre, 2012), (Imre and Gyongyosi, 2012a). In case of the quantum capacity , the 

correlation measure is the quantum coherent information function. The single-use quantum capacity of 
quantum channel  is the maximization of the  quantum coherent information:   
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The   :coh A AI    quantum coherent information can be expressed as 
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where     logTr    S  is the von Neumann entropy and   :E A A S  is the entropy exchange. 

In the proof we exploit a connection1 between the Holevo information and the quantum coherent 
information. As it has been shown by Schumacher and Westmoreland (Schumacher and Westmoreland, 
2000), the quantum coherent information also can be expressed with the help of Holevo information, as 
follows 
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1 This connection is a rather surprising but not well known result in Quantum Information Theory, for the details see the proof of Eq. 70 in 

(Schumacher and Westmoreland, 2000). 

 



where  i

i

 represents the i-th output density matrix obtained from the quantum channel input density 

matrix  . The asymptotic quantum capacity  Q   can be expressed by 
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As summarize, the quantum capacity  Q   of a quantum channel  can be defined by , the Holevo 

quantity of Bob’s output and by ,  the information leaked to the environment during the transmission. 

The quantum relative entropic distance between quantum states 

 AB

AE

  and   is defined by the quantum 

relative entropy function  D    as 
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The Holevo quantity can be expressed by the quantum relative entropy function as (Cortese, 2002), 
(Cortese, 2003), (Schumacher and Westmoreland, 1999), (Schumacher and Westmoreland, 2000), (Petz and 
Sudar, 1996), (Petz, 2007), (Petz, 2008), 

  kD   ,                                           (9)                                           

where k  denotes an optimal (for which the Holevo quantity will be maximal) channel output state and 

kp k   is the mixture of the optimal output states (Schumacher and Westmoreland, 1999). The 

Holevo information  can be derived in terms of the quantum relative entropy in the following way 
(Cortese, 2002), (Cortese, 2003), (Schumacher and Westmoreland, 1999), (Schumacher and Westmoreland, 
2000),  
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We express the Holevo information between Alice and Bob as 
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The second quantity measures the Holevo information which is leaked to the environment during the 
transmission as 
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2.1   Quantum Relative Entropic Expression  

Using the resulting quantum relative entropy function and the Lloyd-Shor-Devetak (LSD) theorem (Lloyd, 
2009), (Shor, 2002), (Devetak, 2005), the asymptotic LSD capacity  Q   can be expressed with as 

follows  
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where  is the Holevo quantity of Bob’s output,  is the information leaked to the environment 

during the transmission, 

AB AE
AB
k  is Bob's optimal output state, AE

k  is the environment’s optimal state, AB  is 

Bob's optimal output average state, AE  is the environment’s average state, while  is the final 

optimal output channel state and  is the final output average state. The term AB-AE denotes the 
information which is transmitted from Alice to Bob minus the information which is leaked to the 
environment during the transmission. For joint structure  the single-use joint quantum 

capacity can be expressed by the 

AB AE
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where 12
AB  is the optimal output state of joint channel , and 12 12

AB  is the average state of joint channel 

 between Alice and Bob. The term E denotes the environment, and AE is the channel between Alice 

and the environment with the optimal state 

12

12
AE  , and average state 12

AE . The final optimal output channel 

state is depicted by , while  is the final output average state of the channel between Alice 

and the environment. Q  only if the  joint structure is superactive, otherwise 

. The fact that the superactivated quantum capacity can be described 

by the joint output states of  is summarized in Theorem 1. 
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3   Results 

Theorem 1. The superactivation of joint structure   can be analyzed by the joint average 

 and joint optimal states . 
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Theorem 1. 

■ 
These results from the superactivation of the joint structure  are extended to the properties of the 

joint optimal and average states in 
1  

Theorem 2. 
Theorem 2. The quantum channels  and  of the joint structure  are superactive if and only if 

the  joint average state and the  joint optimal output state of the joint channel structure are 

entangled states. 
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Proof. Using the results derived by Cortese (Cortese, 2002), (Cortese, 2003), and Petz et al. (Petz and 
Sudar, 1996), (Petz, 2007), (Petz, 2008) and Schumacher and Westmoreland (Schumacher and 
Westmoreland, 1999), (Schumacher and Westmoreland, 2000) the following statements can be made. The 
“product state formula” form expresses that the channels  and  of the joint structure  cannot 
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If the joint average state and the joint optimal output state are entangled states, then the joint channel 

structure  is superactive and the quantum relative entropic distance between the joint states   

and  is greater than zero. If the quantum channels  and  of the joint structure  can 
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where  and  are the d dimensional identity matrices (d=2 for the qubit case),  1I 2I 12
AB  is the optimal 

output state of the joint channel  between Alice and Bob, and 12  
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These results conclude the proof of Theorem 2. 

■ 
From Theorem 2 also follows that possible set of superactive quantum channels  is also limited 

by the mathematical properties of the quantum relative entropy function.   
1 

4   Conclusions 

In this paper we proved that the properties of the quantum relative function also determine the 
superactivation of quantum channels. Our purely mathematical results have demonstrated that the effect of 
superactivation also depends not only on the channel maps and the properties of the quantum channels of 
the joint structure as was known before, but on the basic properties of the quantum relative entropy 
function. Before our work this connection was completely unrevealed in Quantum Information Theory. 
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