
Local Driving in Higher-Order Positive Supercompilation

via the Ω-theorem

G.W. Hamilton1 and M.H. Sørensen2

1 School of Computing and Lero, Dublin City University, Ireland
hamilton@computing.dcu.ie

2 Formalit, Store Heddinge, Denmark
mhs@formalit.dk

Abstract

A program transformation technique should terminate, return efficient output programs
and be efficient itself. These requirements are mutually conflicting, so a balance must be
sought between definite termination and possible efficiency.

For positive supercompilation [17], ensuring termination requires memoisation of ex-
pressions, and these are subsequently used to determine when to perform generalization
and folding [16]. For a first-order language, every infinite sequence of transformation steps
must include function unfolding, so it is sufficient to memoise only those expressions im-
mediately prior to a function unfolding step.

However, for a higher-order language, it is possible for an expression to have an infinite
sequence of transformation steps which do not include function unfolding, so memoisation
prior to a function unfolding step is not sufficient by itself to ensure termination. But
memoising additional expressions is expensive during transformation and may lead to less
efficient output programs due to auxiliary functions. This additional memoisation may
happen explicitly during transformation or implicitly via a pre-processing transformation
as outlined in previous work by the first author [5].

We introduce a new technique for local driving in higher-order positive supercompilation which

obliviates the need for memoising other expressions than function unfolding steps, thereby improving

efficiency of both the transformation and the generated programs. We exploit the fact, due to the

second author in the setting of type-free λ-calculus [20] known as the Ω-theorem, that every expression

with an infinite sequence of transformation steps not involving function unfolding must have the term

Ω = (λx.x x) (λx.x x) embedded within it in a certain sense. The technique has proven useful on a

host of examples.

1 Introduction

Supercompilation is a program transformation technique for functional languages which can
be used for program specialization, removal of intermediate data structures, as well as other
optimizations. Supercompilation was devised by Valentin F. Turchin in the early 1970s in
the context of the language Refal [18, 19] and studied by numerous researchers in the USSR.
The original ideas had a broad scope with, for instance, a bearing on cybernetics. A specific
variant of the transformation techinque was later popularized in the setting of a more traditional
functional language in a form known as positive supercompilation [14, 17]. More recently, it has
been generalized to higher-order languages in several new lines of work [13, 2, 7, 8, 9, 5].

Ensuring termination of positive supercompilation requires the memoisation of expressions
and using these memoised expressions to determine when to perform generalization and folding.
Positive supercompilation was originally formulated for a first-order language, so it was sufficient
to memoise only the expressions immediately prior to function unfolding to ensure termination,
since in any infinite sequence of transformation steps there must be an unfolding.

36 A. Lisitsa, A. Nemytykh (eds.), VPT 2014 (EPiC Series, vol. 28), pp. 36–51

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

However, memoising expressions immediately prior to function unfolding is not sufficient to
ensure termination in a higher-order setting. For example, consider the following λ-expression:

Ω = (λx.x x) (λx.x x)

When this expression is transformed there will be an infinite sequence of transformation steps
without any unfolding (the same expression Ω is encountered in each step). Although the
expression would not be accepted by most type checkers, there are examples of expressions
which would be accepted by a type checker and which have an infinite sequence of transformation
steps without any unfolding. For example, consider the following expression in the context of
a datatype data D = F (D → D):

(λf.f (F (λx.f x x)) (F (λx.f x x))) (λy.case y of F g.g)

This expression also leads to an infinite sequence of transformation steps with no unfoldings.

To avoid non-termination, some formulations of positive supercompilation for a higher-order
language memoise all expressions [13, 2], or at least a substantial subset of them [7, 8, 9, 5].
However, this may be a costly operation during transformation and may result in less optimized
output programs (that may actually be less efficient than the input programs).

In this paper, we therefore introduce a new technique for local driving in higher-order posi-
tive supercompilation which obliviates the need for memoising other expressions than function
unfolding steps, thereby improving efficiency of the generated programs as well as of the trans-
former itself. We exploit the fact, known from type-free λ-calculus [20], that every expression
with an infinite sequence of transformation steps not involving function unfolding must have
the term Ω = (λx.x x) (λx.x x) embedded within it in a certain sense. We can see that this is,
indeed, the case for the above examples.

The core of the technique is to check each expression encountered during transformation not
involving function unfolding to see whether Ω is embedded. If so, the expression is generalized
to remove the source of infinite transformation. We prove that the resulting transformation will
always terminate, using the setting of abstract program transformers [15]. We also demonstrate
the usefulness of the technique on a range of examples.

The paper reports experimental work in progress. For instance, the relation between our
input and output programs is not formalized in terms of a model for execution cost.

The remainder of this paper is structured as follows. In Section 2, we describe the higher-
order language over which the transformations are defined. In Section 3, we recall the setting of
abstract program transformers. In Section 4, we give our formulation of the positive supercom-
pilation algorithm using the mentioned technique for local driving and prove that it terminates.
Section 5 concludes and considers related work.

2 Language

We describe the higher-order functional language which will be used throughout the paper.

Definition 2.1 (Syntax).

37

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

∆ ::= f1 =e1 . . . fn = en Definitions

e ::= x Variable
| f Function Call
| c e1 . . . en Constructor
| case e0 of p1 → e1 ; · · · pn → en ; Case Expression
| λx .e λ-Abstraction
| e0 e1 Application
| let x = e0 in e1 Let Expression

p ::= c x1 . . . xn Pattern

Informally speaking, a program is a sequence of function definitions together with an expression
that is evaluated in the context of the function definitions. An expression can be a variable,
function call, constructor expression, case, λ-abstraction, application or let.

Each constructor has a fixed arity; for example Nil has arity 0 and Cons has arity 2. We
use [] and (x : xs) as abbreviations for Nil and Cons. The patterns in a case expression
must be non-overlapping and exhaustive, and a pattern must not refer to the same variable
twice. The expressions in function definitions must refer only to functions defined in the pro-
gram. It is assumed that erroneous terms such as (c e1 . . . en) e where c is of arity n and
case (λx .e) of p1 → e1 ; · · · pn → en ; do not occur.

Variables introduced by λ-abstraction, let or case patterns are bound; all other variables
are free. We use FV(e) to denote the free variables of expression e. We identify expressions
that differ only in the names of bound variables; that is, we think of expressions as equivalence
classes of a relation that equals syntactic expressions differing only in the choice of names for
bound variables. In any situation we assume that names for bound variables are chosen so as
to avoid name capture. We also chose different names for different bound variables within an
expression.

In the context of any specific program, the number of function symbols is finite. For a case-
expression case e0 of p1 → e1 ; · · · pn → en ; the sequence p1, . . . , pn is called the brand of the
case-expression. In the context of any specific program, there are only finitely many different
brands of case-expressions. When we speak about “arbitrary” expressions it will always be in
the context of a specific program.

Definition 2.2 (Reduction Context). A reduction context R is an expression containing a
single hole [], which can have one of the following forms:

R ::= R e | case R of p1 → e1; . . . pn → en; | []

By R[e] we denote the result of replacing the hole in R by the expression e.

Definition 2.3 (Substitution). A partial map θ = {x1 7→ e1, . . . , xn 7→ en} from variables to
expressions is called a substitution. By dom(θ) = {x1, . . . , xn} we denote the domain of the
map. If e is an expression, then eθ = e{x1 7→ e1, . . . , xn 7→ en} is the result of simultaneously
substituting the expressions e1, . . . , en for the variables x1, . . . , xn, respectively, in e. We write
e ≤· e′ if e′ = eθ for some substitution θ.

Definition 2.4 (Operational Semantics). We define a one-step reduction ; on expressions (in
the context of a program ∆) as shown below, comprising function unfolding, pattern matching,

38

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

β-reduction and let-unfolding.

R[f] ; R[e] (where f = e ∈ ∆)

R[(λx.e0) e1] ; R[e0{x 7→ e1}]

R[case (c e1 . . . en) of . . . (c x1 . . . xn) : e; . . .] ; R[e{x1 7→ e1, . . . , xn 7→ en}]

R[let x = e0 in e1] → R[e1{x 7→ e0}]

3 Abstract Program Transformers

We recall how program transformers may be viewed as maps that manipulate certain trees. Our
exposition is informal; a more detailed and rigorous presentation can be found in [15]. Consider
the well-known map function which maps a function to the elements of a list.

map = λf.λxs.case xs of []→ []; (x′ : xs′)→ f x′ : map f xs′

Suppose we want to apply two functions to a list. A simple and elegant way is to use the
expression map f (map g xs). However, this expression is inefficient since it traverses xs twice.
We now illustrate a standard transformation obtaining a more efficient method.1

We begin with a tree whose single node is labeled with map f (map g xs):

map f (map g xs)

Transformation mimicks evaluation as much as possible; by an unfold step which replaces the
outer call to map, a new expressions is added as child:

map f (map g xs)

��
(λf.λxs.case xs of []→ []; (x′ :xs′)→ f x′ :map f xs′) f (map g xs)

Unfold steps are similar to evaluation steps except that the former apply to expressions with
variables. Performing a β-reduction yields another child:

map f (map g xs)

��
(λf.λxs.case xs of []→ []; (x′ :xs′)→ f x′ :map f xs′) f (map g xs)

��
(λxs.case xs of []→ []; (x′ :xs′)→ f x′ :map f xs′) (map g xs)

1Note that in this example we use f and g as variables, whereas elsewhere f ranges over names of functions
defined in a program.

39

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

Another β-reduction yields yet another child:

map f (map g xs)

��
(λf.λxs.case xs of []→ []; (x′ :xs′)→ f x′ :map f xs′) f (map g xs)

��
(λxs.case xs of []→ []; (x′ :xs′)→ f x′ :map f xs′) (map g xs)

��
case (map g xs) of []→ []; (x′ :xs′)→ f x′ :map f xs′)

Now we unfold the inner call to map followed by another two β-reductions:

map f (map g xs)

��
(λf.λxs.case xs of []→ []; (x′ :xs′)→ f x′ :map f xs′) f (map g xs)

��
(λxs.case xs of []→ []; (x′ :xs′)→ f x′ :map f xs′) (map g xs)

��
case (map g xs) of []→ []; (x′ :xs′)→ f x′ :map f xs′)

��
case ((λf.λxs.case . . .) g xs) of []→ []; (x′ :xs′)→ f x′ :map f xs′)

��
case ((λxs.case xs of . . .) xs) of []→ []; (x′ :xs′)→ f x′ :map f xs′)

��
case (case xs of . . .) of []→ []; (x′ :xs′)→ f x′ :map f xs′)

The expression in the leaf is

case (case xs of []→ []; (x′′ : xs′′)→ g x′′ : map g xs′′) of []→ []; (x′ :xs′)→ f x′ :map f xs′;

At this point evaluation is stuck, we really need to know what xs is to make progress. In this
case we move the outer case to the branches of the inner like this:

case xs of
[] → case [] of []→ []; (x′ :xs′)→ f x′ :map f xs′;

(x′′ : xs′′) → case (g x′′ : map g xs′′) of []→ []; (x′ :xs′)→ f x′ :map f xs′;

We then add the two inner (lower) case-expressions as children to transform them further and
label the arrows with the corresponding patterns. Thus the tree proceeds as follows:

...
xs=[]

uu
xs=(x′′:xs′′)

,,
case [] of [] → []; . . .

��

case (g x′′ : map g xs′′) of . . . (x′ :xs′) → f x′ :map f xs′

��
[] f (g x′′) :map f (map g xs′′)

rr ��
f (g x′′) map f (map g xs′′)

40

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

The left branch just adds another child by a single case-evaluation step. The right branch
first evaluates the case-expression and then adds a branch for each of the two parts of the
constructor-expression The expression f (g x′′) is all variables, so no progress can be made.
The expression in the rightmost child is a renaming of the expression in the root we began
with; that is, the two expressions are identical up to choice of free variable names. No further
processing of such a node is required.

The tree is now closed in the sense that each leaf expression either is a renaming of an
ancestor’s expression, or contains all variables or is a 0-ary constructor. A closed tree is a
representation of all possible computations with the expression e in the root, where branches in
the tree (labelled with patterns) correspond to different run-time values for the free variables
of e (that match the patterns). In the above tree, computation starts in the root with values
for f , g, and xs, and then branches to one of the successor states depending on the shape of
xs. Assuming xs is [], the value [] is returned. But if xs has form (x′′:xs′′), the constructor : is
emitted and control is passed to the two states corresponding to nodes labeled f (g x′′) and
map f (map g xs′′), where the latter returns control to the root.

To construct a new expression and corresponding program from a finite, closed tree, we
proceed roughly as follows. First remove any nodes that do not involve branching and do not
contain an expression that is later encountered again (up to renaming). Then every node with
free variables x1, . . . xn is viewed as a call m x1, . . . xn to a new function m, whose definition
begins with m = λx1. . . . λxn · · · . The children of the node define the right hand side of the
new function definition which, in the case of multiple children, will contain a constructor, a
let-expression, or a case-expression.

For example, from the above tree, the expression m f g xs and program

m = λf.λg.λxs.case xs of []→ []; (x′ : xs′)→ f (g x)′ : m f g xs′

can be extracted. The new expression is more efficient than the original, since the new one
traverses xs only once.

In the above transformation we ended up with a finite closed tree. Often, special generaliza-
tion steps must be performed to ensure that this situation is eventually encountered. Such steps
replace a subtree (e.g. a leaf) with expression e by a new node with expression let x = e0 in e1
such that e1{x 7→ e0} = e. The transformation adds branches for e0 and e1 which are then
processed independently.

In conclusion, a program transformer is a map from trees to trees, expressing one step of
transformation.

Definition 3.1. T∞ is the set of all trees labelled with expressions, and T is the set of all finite
trees labelled with expressions. A singleton tree is a tree with no other nodes than the root.
An abstract program transformer (for brevity also called an apt) is a map M : T → T .

An apt only computes a single step of transformation: it maps some tree to a new tree
by performing, e.g., an unfolding step. Hence, the sequences of trees in the example in this
section could be computed by iterated application of some apt. How do we express that no
more transformation steps will happen, i.e., that the apt M has produced its final result? In
this case, M returns its argument tree unchanged, i.e., M(t) = t.

Definition 3.2.

1. An apt M terminates on t ∈ T if M i(t) = M i+1(t) for some i ∈ N.2

2. An apt M terminates if M terminates on all singletons t ∈ T .

2For f : A → A, f0(a) = a, f i+1(a) = f i(f(a)).

41

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

4 Higher-order Positive Supercompilation

We now present higher-order positive supercompilation as an abstract program transformer.
Whereas the preceding sections have been largely informal leaving rigourous details to e.g. [15],
the present section attempts to be precise. However, as our main concern is to prove termination
for the technique, we focus on how to construct the trees and make them finite, not on recovering
new programs from the trees.

The first subsection presents the driving operation. The next two subsections introduce the
generalization operations, covering when to generalize and how to generalize, respectively. The
fourth subsection brings together the pieces in an algortihm for higher-order positive supercom-
pilation. The fifth subsection adds our new technique for local driving to higher-order positive
supercompilation—this is the main contribution of the paper.

4.1 Driving

When we perform unfolding steps, we instantiate variables to patterns, e.g. xs to (x’:xs’).
To avoid confusion of variables, when instantiating a variable to a pattern we are free to use
whatever fresh variable names in the pattern we like, as long as we use the same names in the
corresponding right hand side of the function definition. The following definition formalizes
what it means to be fresh.

Definition 4.1.

1. The yield of a substitution θ is: yield(θ) =
⋃
{FV (xθ) | x ∈ dom(θ)}.

2. A substitution θ is free for e if yield(θ) ∩ FV (e) = ∅.

The crucial property of a substitution θ which is free for an expression e is that the variables in
the range of θ do not occur already in e. We will always choose substitutions that instantiate
a variable to a pattern free for the expression containing the variable to be instantiated.

Unfolding steps add children to leaf nodes. The essence in defining the unfolding step is to
define how the expressions in the new children are computed from the leaf’s expression. This
computation is formalized by the following relation ⇒.

Definition 4.2. The relation e⇒ e′ is defined as follows. The expression on the left hand side
of ⇒ must be free for the substitutions used on right hand sides.

R[f] ⇒ R[e] where f = e ∈ ∆ (1)

R[(λx.e0) e1] ⇒ R[e0{x 7→ e1}] (2)

R[case (c e1 . . . en) of . . . (c x1 . . . xn) : e; . . .] ⇒ R[e{x1 7→ e1, . . . , xn 7→ en}] (3)

R[case x of p1 : e1; . . . ; pk : ek] ⇒ R[ei]{x 7→ pi} (4)

R[x e] ⇒ e,R[y] (5)

c(e1, . . . , en) ⇒ ei (6)

λx→ e ⇒ e (7)

R[let x = e0 in e1] ⇒ e0, R[e1] (8)

42

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

Rules (5) and (8) state that the left hand side is related by⇒ to two different terms; for instance
let x = y in z ⇒ y and let x = y in z ⇒ z. The fresh variable y in clause (5) reflects the idea
that we pull out the stuck application x e from the context and reduce e and R separately as
in let y = x e in R[y].

The new relation generalizes ; in several ways. First of all, the reduction for let-expressions
expresses the semantics of generalizations: that we are keeping things apart.

Next, note that the rules propagate to the arguments of constructors (including λ); that is,
we do not stop at weak head normal forms.

Finally, transformation works on expressions with free variables. Stuck case expressions are
handled by propagating unifications representing the assumed outcome of pattern matching—
notice the substitution {xi := pi} in the fourth rule.

The unfolding operation is called driving and is defined in Figure 1 together with some
generalization operations introduced in the next subsections. For a node α in a tree labeled
with expressions, we use t(α) to denote the expression that labels α.

4.2 Generalization: when

Next we formulate the generalization operations used in higher-order positive supercompila-
tion. In this subsection we present the technique which decides when to generalize; the next
subsection presents the how. The aim of when and how combined is to balance termination of
the transformer with efficiency of output programs.

To ensure the termination, generalization is performed when an expression is encountered
which contains a homeomorphic embedding of a memoised expression. Variants of this technique
have been used to ensure termination within term rewriting [3], positive supercompilation [16,
15], partial evaluation [11] and partial deduction [1, 10] (see also [4]). These papers also contain
references to the earlier classical works of Higman, Kruskal and Nash-Williams.

Later it has been used for higher-order positive supercompilation—see [13, 2, 6, 12, 7, 8, 9, 5].
In some of these works two expressions must be coupled at the outer-most level to avoid the
split-operation; but we will need that operation anyway. Also, bound variables must be match
up, but this is less important here, since we will compare fewer expressions to their ancestors.

Definition 4.3 (Homeomorphic Embedding). For expressions e, e′ define e� e′as follows.

f � f x� y

∀i ∈ {1 . . . n}.ei � e′i
c e1 . . . en � c e′1 . . . e

′
n

∃i ∈ {1 . . . n}.e� ei
e� c e1 . . . en

e� e′

λx.e� λy.e′
e� e′

e� λx.e′

∀i ∈ {0, 1}.ei � e′i
e0 e1 � e′0 e

′
1

∃i ∈ {0, 1}.e� ei
e� e0 e1

∀i ∈ {0 . . . n}.ei � e′i and pi is a renaming of p′i
case e0 of p1 → e1; . . . ; pn → en � case e′0 of p′1 → e′1; . . . ; p′n → e′n

∃i ∈ {0 . . . n}.e� ei
e� case e0 of p1 → e1; . . . ; pn → en

43

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

An expression is embedded within another by this relation if either diving or coupling can
be performed. Diving occurs when an expression is embedded in a sub-expression of another
expression, and coupling occurs when two expressions have the same top-level construct and
all the corresponding sub-expressions of the two constructs are embedded.

Example 4.4. Some examples of homeomorphic embedding are as follows:

1. f (g x) � f (g y) 6. f (g x) 6� g (f y)
2. f (h x) � f (g (h y)) 7. g (h x) � f (g (h y))
3. f x y � f z z 8. f z z � f x y
4. λx.x� λy.y 9. λx.x� λy.x
5. λx.f y � λx.f (g y) 10. λx.f x� λx.f (g x)

Theorem 4.5. The relation � is a well-quasi order; that is, for any infinite sequence of ex-
pressions e1, e2, . . . there must be i, j with ei � ej.

Proof. We can view expressions as first-order terms with two functions for abstraction and appli-
cation Lam(e) and App(e, e′). Similarly, each case-expression case e0 of p1 → e1 ; · · · pn → en ;
can be viewed as constructed from an n+1-ary function Case (different function for each brand
of case-expression).

Replacing all free and bound variables by a common 0-ary constructor, results in a first-order
term over a finite set of symbols and the relation � corresponds to the standard homeomorphic
embedding on this first-order representation. The result follows from the first-order case.

A way of using the homeomorphic embedding relation to decide whether to drive a given leaf
or generalize is as follows: if the leaf has an ancestor whose expression is embedded in the leaf’s
expression, then we should generalize; if not, we should drive.

The rationale behind using the homeomorphic embedding relation in this way is that in
any infinite sequence e0, e1, . . . of expressions, there definitely are i < j with ei � ej . Thus, if
driving is stopped at any node with an expression in which an ancestor’s expression is embedded,
driving cannot construct an infinite branch. Conversely, if ei�ej then all the subexpressions of
ei are present in ej embedded in extra subexpressions. This suggests that ej might arise from
ei by some infinitely continuing system, so driving is stopped for a good reason.

But in fact, this reason is not always good. In order to avoid premature generalization, it
is desirable that the embedding relations be as small as possible. Therefore, it is customary
to consider restrictions of it, either by explicitly restricting the relation, or by comparing fewer
expressions. In this paper, we chose the latter approach.

The homeomorphic embedding relation is defined on expressions without the let-construct.
We will start out with an expression without let-expressions. Whenever transformation intro-
duces a new node with a let-expression (by generalization), we immediately drive the node,
resulting in children without let-expressions. When a node is compared to ancestors we do not
compare it to those with let-expressions.

In conclusion, given a tree we may drive a leaf provided no relevant ancestor has an expres-
sion which is homeomorphically embedded in the leaf’s expression. In the next subsection we
present the generalization operations to be performed when some relevant ancestor does have
an expression which is homeomorphically embedded in the leaf’s expression.

4.3 Generalization: how

In generalization steps one compares two expressions and extracts common structure.

44

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

Definition 4.6 (Computing generalization).

x u x = (x, {}, {})

f u f = (f, {}, {})

(c e1 . . . en) u (c e′1 . . . e
′
n) = (c eg1 . . . e

g
n,
⋃n

i=1 θi,
⋃n

i=1 θ
′
i)

where
∀i ∈ {1 . . . n}.(egi , θi, θ′i) = ei u e′i

(λx.e0) u (λx.e′0) = (λx.eg0, θ0, θ
′
0)

where
(eg0, θ0, θ

′
0) = e0 u e′0 and x 6∈ yield(θ0) ∪ yield(θ′0)

(e0 e1) u (e′0 e
′
1) = (eg0 e

g
1, θ0 ∪ θ1, θ′0 ∪ θ′1)

where
(eg0, θ0, θ

′
0) = e0 u e′0

(eg1, θ1, θ
′
1) = e1 u e′1

(case e0 of p1 → e1; . . . ; pn → en) u (case e′0 of p1 → e′1; . . . ; pn → e′n) =
(case eg0 of p1 → eg1; . . . ; pn → egn,

⋃n
i=0 θi,

⋃n
i=0 θ

′
i)

where
(eg0, θ0, θ

′
0) = e0 u e′0

∀i ∈ {1 . . . n}.(egi , θi, θ′i) = ei u e′i and FV (pi) ∩ (yield(θi) ∪ yield(θ′i)) = ∅

e u e′ = (x, {x 7→ e}, {x 7→ e′}) in all other cases (x is fresh)

The following rewrite rule is exhaustively applied to the triple resulting from generalization
to minimize the substitutions by identifying common substitutions that were previously given
different names:

(e, θ ∪ {x 7→ e′, x′ 7→ e′}, θ′ ∪ {x 7→ e′′, x′ 7→ e′′}) ⇒ (e{x 7→ x′}, θ ∪ {x′ 7→ e′}, θ ∪ {x′ 7→ e′′})

We say that e1 and e2 are incommensurable, e1 ↔ e2, if e1 u e2 = (x, θ1, θ2).

Within these rules, if both expressions have the same top-level construct, this is made the top-
level construct of the resulting generalized expression, and the corresponding sub-expressions
within the construct are then generalized (for λ-abstractions and case-expressions it must be
ensured that the substitutions do not lead to variable capture). Otherwise, both expressions
are replaced by the same fresh variable. It is assumed that the new variables introduced are all
different and distinct from the original program variables.

The results of applying this generalization to items 1-5 in Example 4.4 are as follows:

1. (f g v, {v 7→ x}, {v 7→ y})

2. (f v, {v 7→ h x}, {v 7→ g (h y)})

3. (f v1 v2, {v1 7→ x, v2 7→ y}, {v1 7→ z, v2 7→ z})

4. (λx.x, {}, {})

5. (λx.f v, {v 7→ y}, {v 7→ g y})

45

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

Example 8 is similar to Example 3; in the remaining cases, the generalization of e1 and e2 has
form (v, {v 7→ e1}, {v 7→ e2}).

Positive supercompilation uses two types of generalization step: abstract and split; the
former type, in turn, comes in two variants, upwards abstract and downwards abstract. All
three types of steps may be invoked when the expression of a leaf node has a relevant ancestor’s
expression embedded.

In upwards abstraction we replace the tree whose root is the ancestor by a single new node
labeled with a new expression which captures the common structure of the leaf and ancestor
expressions. This common structure is computed by the most specific generalization operation.

In case the leaf expression is an instance of the ancestor expression, the msg of the two
expressions is the same as the ancestor expression. Hence, it does not make sense to attempt
to extract some common structure at the ancestor and continue with that: this structure is
the ancestor itself. However, we can replace the leaf node by a new node with an expression
capturing the common structure. This is what a downwards abstract step does. For instance, if
the leaf expression is f (x′ :xs′) and the ancestor expression is f xs, we can replace the leaf node
by a node with expression let xs=x′ :xs′ in f xs. By driving, this node will receive two children
labeled x′ : xs′ and f xs; since the latter node is now a renaming of the ancestor’s expression,
no further processing of it is required.

In some cases, the expression of a leaf node may have an ancestor’s expression embedded, and
yet the two expressions have no common structure in the sense of msg’s, i.e., the expressions
are incommensurable (their msg is a variable). In this case, performing an abstract step—
whether upwards or downwards—would not make any progress towards termination of the
supercompilation process. For instance, we might have a leaf with expression (λx.e0) e1 and an
ancestor with expression λx.e0, so their msg is a variable. Therefore, applying an abstract step
(upwards or downwards) would replace a node labeled e with a new node labeled let z=e in z
which, by driving, would spawn a child labeled e. Thus, no progress has been made.

In such cases a split step is performed. The idea behind a split step is that if the ancestor
expression is embedded in the leaf expression, then there is a subterm of the leaf expression
which has structure in common with the ancestor. Hence, the split step digs out this structure.
For example, in he above case, the leaf expression would be replaced by something similar to
let z=λx.e0 in z e1. The parts of the let-expression, which will now be transformed indepen-
dently from each other, are smaller than the original expression, and this is an important part
of the termination proof.

In conclusion, the generalization operations used in positive supercompilation are defined
in Figure 1.

Note that the abstract operation is defined only in case t(α), t(β) are not let-expressions.
This is fortunate since u is defined only on such expressions. But will we not need to invoke
the operations in cases where t(α), t(β) are let-expressions? No: let-expressions will be driven
without comparison with ancestors.

4.4 Positive supercompilation

We are finally ready to define our first variant of positive supercompilation.

Definition 4.7.

1. An expression is called terminal if it is a variable or a 0-ary constructor.

2. An expression is called trivial if it is an n-ary constructor (n > 0) or an abstraction or of
form R[x] where R is not empty, or of form R[let x = e0 in e1].

46

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

t = drive(t, β) =

�� ""
t(α)
||

t(β)

�� ""
t(α)
||

##
t(β)
|| ""

e1 . . . en

{e1, . . . , en} = {e | t(β)⇒ e}

abstract(t, β, α) = abstract(t, α, β) =

�� ""
t(α)
||

((
let x1=e1 . . . xn=en in e

�� ++
let x1=e1 . . . xn=en in e

t(α) u t(β) = (e, θ1, {x1 :=e1, . . . , xn :=en}) t(α) u t(β) = (e, {x1 :=e1, . . . , xn :=en}, θ2)

split(t, β) =

�� ""
t(α)
||

$$
let y=e inR[y]

t(β) = R[e] where e is a constructor-expression, abstraction or function call and R is not [].

Figure 1: Operations used in Positive Supercompilation

3. For a node α in a tree t, we denote by t(α) the expression in node α.

4. The relevant ancestors of a node β in tree t, denoted relanc(t, β), is the empty set if t(β)
is trivial and otherwise all non-trivial ancestors of β in t.

5. A leaf β is processed in tree t, if if t(β) is terminal or t(β) is a renaming of t(α) for a
relevant ancestor α (in the latter case, folding will be performed).

6. The tree t is closed if all leafs in t are processed.

Positive supercompilation can then be defined as follows.3

3A number of choices are left open in the algorithm, e.g. how one chooses among the unprocessed leaf nodes.

47

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

Definition 4.8. Given tree t, if t is closed P (t) = t. Otherwise, let β be an unprocessed leaf
node and proceed as follows.

if ∀α∈relanc(t, β) : t(α) 6�t(β) then P (t) = drive(t, β)

else begin

let α ∈ relanc(t, β) and t(α) � t(β).

if t(α) ≤· t(β) then P (t) = abstract(t, β, α)

else if t(α)↔ t(β) then P (t) = split(t, β)

else P (t) = abstract(t, α, β).

end

The algorithm calls abstract and split only in cases where these operations are well-defined.
Indeed, when abstract(t, β, α) is called, then α ∈ relanc(t, β). In particular, α, β are non-trivial,
so t(α), t(β) are not let-expressions. Similarly, when abstract(t, α, β) is called. Finally, when
split(t, β) is called, then β is non-trivial.

Proposition 4.9. P terminates.

Proof. Similar to the proof for the first-order case in [15]. To see that there are no infinite
sequences of direct driving steps, notice that each step decreases the lexicographically ordered
measure (m,n) of an expression e, where m is the total number of case-expressions and appli-
cations in e, and n is the size of e.

4.5 Local driving

Note that if we apply the algorithm of the preceding subsection to the example in Section 3
we have several embeddings, starting already when the first child is added under the root. In
fact, whenever we unfold a recursive definition, the resulting node will have its predecessor
embedded. It is therefore necessary with some form of policy permitting us to drive a non-
trivial expression even in the case where there is embedding. What we want is to only check
for embedding when encountering terms of form R[f] and only compare to ancestors of the
same shape R′[f ′]. This will not only permit us to continue driving but effectively ignore other
expressions than those immediately prior to function unfoldings.

In other words, our aim is to extend the notion of trivial node to all nodes except those of
form R[f]. However, the resulting algorithm does not necessarily terminate, e.g. when applied
to Ω. We now devise the solution to that problem.

Definition 4.10 (Duplicator).

1. An abstraction λx .e is a duplicator if x occurs more than once in e.

2. A case-expression case e0 of p1 → e1 ; · · · pn → en ; is a duplicator (at pi) if pi =
c x1 . . . xm where xj occurs more than once in ei, for some i and j.

3. An expression that contains a duplicator is itself a duplicator.

Definition 4.11 (Self-duplicator).

1. An expression R[(λx.e0) e1] is a self-duplicator if both λx.e0 and e1 are duplicators.

2. R[case (c e1 . . . en) of . . . (c x1 . . . xn) : e; . . .] is a self-duplicator if the case expression is
a duplicator at c x1 . . . xn and at least one ei is a duplicator.

Such details are beyond the scope of the present paper.

48

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

Example 4.12. As the following examples illustrate, the informal notion of “having Ω embed-
ded” has been made precise in terms of “being a self-duplictor.”

1. The simplest duplicator is ω = λx.x x and the simplest self-duplicator is Ω = ω ω. Any
self-duplicator will have two disjoint subexpressions that are duplicators, and these occur
in the position of a reduction context, where transformation will take place.

2. Another duplicator is w′ = λy.case (F y) of F g → g g, and two more self-duplicators
are ω′ω and ω′ ω′. Note that when transforming ω′ ω′ we never encounter any duplication
abstractions, only case-expressions.

The algorithm from the preceding subsection can now be modified as follows.

Definition 4.13 (Higher-order positive supercompilation with local driving). The defini-
tion of trivial expression is extended to include expressions of form R[(λx.e0) e1] and
R[case (c e1 . . . en) of . . . (c x1 . . . xn) : e; . . .]. The definition of P is modified as follows.

if ∀α∈relanc(t, β) : t(α) 6�t(β) then begin

if t(β) is a self-duplicator then P ′(t) = split(t, β)

else P ′(t) = drive(t, β)

end else begin

let α ∈ relanc(t, β) and t(α) � t(β)

if t(α) ≤· t(β) then P ′(t) = abstract(t, β, α)

else if t(α)↔ t(β) then P ′(t) = split(t, β)

else P ′(t) = abstract(t, α, β).

end

Proposition 4.14. P ′ terminates.

Proof. The main point is that any sequence of driving steps decreases the lexigographically
ordered measure (m,n, k) on an expression e, where m is the number of duplicators in e, n is
the number of abstractions and case-expressions in e, and k is the size of the expression. This
is similar to the proof in [15].

Note that no expressions are memoised other than those of form R[f]. The algorithm produces
exactly the tree in Section 3.

5 Concluding Remarks

In this paper, we have shown how to ensure the termination of higher-order positive supercom-
pilation without memoising other expressions than function calls.

In the higher-order formulations of positive supercompilation given by Mitchell [13] and
Bolingbroke [2], all expressions are memoised. The extra work required for the additional
computationally expensive homeomorphic embedding checks is very time consuming, which
has been borne out by experimental results. Also, memoising additional expressions to ensure
termination may result in a loss of program efficiency since new function calls may be introduced
without being offset by corresponding function unfoldings. It should also be pointed out that
the implementation of positive supercompilation in [13] will not terminate on programs such as
the second one in Section 1. This is because the simplification rules that are applied to terms
prior to transformation by positive supercompilation will not terminate for such programs which

49

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

use contravariant (negative) data types. It is argued in [13] that this problem only occurs for
contrived programs, and it is also a problem for GHC, which will not terminate when compiling
this example program. However, this seems unsatisfactory. It is noted in [13] that this non-
termination problem could be avoided by not performing simplification on negative data types.
A similar approach was also adopted by Jonsson [6] and Mendel-Gleason [12] by requiring that
all types in the input program are positive. This also seems unsatisfactory since there are many
programs containing negatives types for which transformation will still terminate. Also, such
typing schemes are not used in mainstream functional languages.

Rather than memoising all expressions, the approach taken in the higher-order supercompiler
HOSC [7, 8, 9] is to restrict this to only those expressions which are considered to be non-
trivial. In HOSC 1.0 [7], an expression is considered to be non-trivial if it either has a function
in the redex or an irreducible expression in the selector of a case expression. However, it
was subsequently discovered [8] that this was not sufficient to ensure the termination of the
supercompiler, because it will not terminate for programs which encode recursion using a data
type such as the second example in Section 1. In HOSC 1.1 [8], an expression for which the
next transformation step involves a substitution (corresponding to the left hand side of our
rules (2) and (3)) is considered to be non-trivial if it satisfies a size constraint in which the
expression resulting from the substitution is no smaller than the expression before substitution.
However, it was subsequently discovered [9] that memoising every expression for which the next
transformation step involves a β-reduction produces poor residual programs. In HOSC 1.5 [9],
expressions for which the next transformation step involves a β-reduction are not memoised,
but all applications and case expressions are, thus ensuring that in any potentially infinite
sequence of transformation steps expressions will still be memoised. However, this may result
in a loss of program efficiency since new function calls may be introduced without being offset
by corresponding function unfoldings.

In previous work by Hamilton [5], a simple pre-processing step is applied to higher-order
programs prior to transformation by positive supercompilation to ensure that in any potentially
infinite sequence of transformation steps there must be an unfolding. This involves introducing
names for some anonymous functions to ensure that only memoising expressions immediately
preceding an unfold step is sufficient to ensure termination of the transformation. Again, this
may result in a loss of program efficiency since new function calls may be introduced without
being offset by the unfolding of calls of functions from the original program.

The formulation of higher-order positive supercompilation given in this paper goes beyond
these previous lines of work by memoising fewer expressions resulting in less loss of program
and transformation efficiency, while still ensuring termination.

Acknowledgements

This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855 to Lero -
the Irish Software Engineering Research Centre (www.lero.ie), and by the School of Computing,
Dublin City University.

References

[1] R. Bol. Loop Checking in Partial Deduction. Journal of Logic Programming, 16(1–2):25–46, 1993.

[2] M. Bolingbroke and S. Peyton Jones. Supercompilation by Evaluation. In Proceedings of the Third
ACM Haskell Symposium on Haskell, pages 135–146 , 2010.

50

Local Driving in Higher-Order Positive Supercompilation G.W. Hamilton and M.H. Sørensen

[3] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, pages 244–320. Elsevier, 1990.

[4] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies for the verification
of infinite state systems. In W. Faber and N. Leone, editors, 25th GULP annual conference,
volume 13 of Theory and Practice of Logic Programming, pages 175–199. Cambridge University
Press, March 2013.

[5] G.W. Hamilton. On the Termination of Higher-Order Positive Supercompilation. In Proc. of the
First International Workshop on Verification and Program Transformation, pages 42–56, 2013.

[6] P. Jonsson. Time- and Size-Efficient Supercompilation. PhD thesis, Dept. of Computer Science
and Electrical Engineering, Lulea University of Technology, 2011.

[7] I. Klyuchnikov. Supercompiler HOSC 1.0: Under the Hood. Preprint 63, Keldysh Institute of
Applied Mathematics, Moscow, 2009.

[8] I. Klyuchnikov. Supercompiler HOSC 1.1: Proof of Termination. Preprint 21, Keldysh Institute
of Applied Mathematics, Moscow, 2010.

[9] I. Klyuchnikov. Supercompiler HOSC 1.5: Homeomorphic Embedding and Generalization in a
Higher-Order Setting. Preprint 62, Keldysh Institute of Applied Mathematics, Moscow, 2010.

[10] M. Leuschel. On the Power of Homeomorphic Embedding for Online Termination. In Proceedings
of the International Static Analysis Symposium, Pisa, Italy, pages 230–245, 1998.

[11] R. Marlet. Vers une Formalisation de l’Évaluation Partielle. PhD thesis, Université de Nice -
Sophia Antipolis, 1994.

[12] G. Mendel-Gleason. Types and Verification for Infinite State Systems. PhD thesis, School of
Computing, Dublin City University, 2012.

[13] N. Mitchell. Rethinking Supercompilation. In Proceedings of the 15th ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 309–320 , 2010.

[14] M.H. Sørensen. Turchin’s Supercompiler Revisited. Master’s thesis, Department of Computer
Science, University of Copenhagen, 1994. DIKU-rapport 94/17.

[15] M.H. Sørensen. Convergence of Program Transformers in the Metric Space of Trees. Lecture Notes
in Computer Science, 1422:315–337, 1998.

[16] M.H. Sørensen and R. Glück. An Algorithm of Generalization in Positive Supercompilation.
Lecture Notes in Computer Science, 787:335–351, 1994.

[17] M.H. Sørensen, R. Glück, and N.D. Jones. A Positive Supercompiler. Journal of Functional
Programming, 6(6):811–838, 1996.

[18] V.F. Turchin. Program Transformation by Supercompilation. Lecture Notes in Computer Science,
217:257–281, 1985.

[19] V.F. Turchin. The Concept of a Supercompiler. ACM Transactions on Programming Languages
and Systems, 8(3):90–121, July 1986.

[20] F. van Raamsdonk, P. Severi, M.H. Sørensen, and H. Xi. Perpetual Reductions in Lambda-
Calculus. Information and Computation, 149(2):173–225, March 1999.

51

	Introduction
	Language
	Abstract Program Transformers
	Higher-order Positive Supercompilation
	Driving
	Generalization: when
	Generalization: how
	Positive supercompilation
	Local driving

	Concluding Remarks

