
Challenges in Using OpenTheory to Transport

Harrison’s HOL Model from HOL Light to

HOL4

Ramana Kumar

Computer Laboratory, University of Cambridge, UK
Ramana.Kumar@cl.cam.ac.uk

Abstract

OpenTheory is being used for the first time (in work to be described at ITP 2013) as a
tool in a larger project, as opposed to in an example demonstrating OpenTheory’s capabil-
ity. The tool works, demonstrating its viability. But it does not work completely smoothly,
because the use case is somewhat at odds with OpenTheory’s primary design goals. In this
extended abstract, we explore the tensions between the goals that OpenTheory-like sys-
tems might have, and question the relative importance of various kinds of use. My hope
is that describing issues arising from work in progress will stimulate fruitful discussion
relevant to the development of proof exchange systems.

1 The OpenTheory Vision: Reusable Theory Packages

OpenTheory [3] is a format for representing theories in higher-order logic, inspired by an anal-
ogy: theories are software packages, which may depend on one another, and proofs are bytecode
for a portable virtual machine. Just as a piece of software (especially a library) can be useful in
the development of another (library or application), so can the definitions and theorems in one
formal development be a useful component for another. For example, existing theories about
floating-point numbers and finite words might both be used in the development a formal model
of an instruction set architecture. The problem is that these theories may have been developed
in different provers and may not be directly compatible.

There are multiple HOL prover implementations, analogous to different platforms, includ-
ing HOL Light, HOL4, ProofPower, and Isabelle/HOL, each with a broadly similar logic and
architecture, but with significant differences in their libraries of native theories and their in-
tegrated proof development (e.g. automation) tools. The aim of OpenTheory is to support
theory engineering across provers, akin to the software engineering applicable to large software
developments. (OpenTheory does not yet support provers using different logics like Coq or
Twelf: bridging the differences between HOL-based systems is enough of a challenge already.)
Large formal developments that span multiple provers require methods of exchange, and benefit
when those methods promote reuse of native theories as opposed to isolated duplications.

OpenTheory’s approach to exchange is based on a standard format for low-level proofs
coupled with a standard library of theory packages. The standard format enables capture and
replay of proof work in any prover supporting the format. The standard library factors out
various core theories that are likely to be used by many developments and provides a standard
interface for depending on such library theories by reusing a prover’s native theories as opposed
to rederiving them on import. (For example, if the standard library has some basic theorems
about foo and HOL4 has an equivalent constant FOO, then we map foo to FOO on import
and enable reuse of all of HOL4’s FOO theorems, rather than importing foo theorems, proving
` foo = FOO, and mediating any combined reasoning through the equivalence.)

110 J.C. Blanchette, J. Urban (eds.), PxTP 2013 (EPiC Series, vol. 14), pp. 110–116

Challenges in Using OpenTheory to Transport Harrison’s HOL Model Ramana Kumar

When using OpenTheory, the goal therefore is to create a package that is independent
of any particular prover in the sense that its dependencies are all standard theories that are
supposed to be supported by every prover. Furthermore, the package should have a clear
topic and a clean interface (the theorems and definitions it exports should be meaningful,
useful results, as opposed to auxiliary constants or intermediate lemmas), because these criteria
promote reusability in different environments: if intermediate steps can be handled entirely
within OpenTheory, they never need to be proved at the endpoints.

2 The Use Case: Proof Transport, with Modifications

John Harrison [2] created a formal model of HOL in HOL Light and proved it sound1. We
(Myreen et al. [5]) are working on tools in HOL4 for verifying implementations of code derived
from shallow embeddings. Harrison’s soundness proof for HOL supports an excellent case study
for our tools wherein we will verify an implementation of HOL Light, but it lives in a different
prover. Our options to use his work are:

• Manually port the high-level script files from HOL Light to HOL4.

• Automatically port the low-level proofs from HOL Light to HOL4.

• (Manually port our verification tools from HOL4 to HOL Light: too much work.)

• (Automatically port the high-level script files: we are unaware of any tools for that.)

A manual port of the high-level scripts would have been feasible, although more work than
using the OpenTheory link. It would also have been tedious, and would not scale to larger
developments, so we went for the automatic option. OpenTheory is currently the only tool for
low-level proof transport with an exporter for HOL Light and an importer for HOL4, so it was
the obvious choice.

Transport Overview

We used Joe Hurd’s proof-logging fork of HOL Light2, rather than mainline HOL Light, because
that is the only version with an OpenTheory exporter. The key steps to transport the contents
of a single HOL Light script file are:

1. Modify the HOL Light script file so that it builds in the proof-logging fork.

2. Mark each theorem that is desired in the exported output.

3. Run the exporter to create an OpenTheory article.

4. Run the OpenTheory tool on the article to compress it and clean it of artefacts3 produced
by the HOL Light exporter.

5. Run the HOL4 importer on the article, and find which constants and theorems the article
requires as assumptions. (These should only be standard library theorems, but HOL4
does not yet automatically support everything in the standard library.)

1Specifically, his theories define the syntactic inference rules of HOL and their intended semantics, and prove
soundness (statements derived by the rules are true in the semantics) and consistency (some statement cannot
be derived).

2http://src.gilith.com/hol-light.html
3For example, the identity function NUMERAL wrapped around numerals to aid parsing and printing.

111

http://src.gilith.com/hol-light.html

Challenges in Using OpenTheory to Transport Harrison’s HOL Model Ramana Kumar

6. Create a HOL4 script that proves the article’s assumptions, imports the article, and saves
the theorems. The result is a HOL4 theory suitable for native use.

We only transported a single script, the one defining Harrison’s inference rules for HOL. We
made little use of OpenTheory’s facilities for composing theory packages, since our focus was
getting all the results rather than packaging them nicely for others.

The Need for Modifiability

Harrison’s model of HOL does not include rules for defining new constants, but the implemen-
tation we plan to verify will support definitions. Therefore, we would like to extend his model
and soundness proof with support for definitions. The problem is that low-level proofs are
effectively unmodifiable.

After following the transport process above, the original HOL Light script files remain the
only human-modifiable sources for the theory. We must work with them to make our extensions,
and then transport the results. The transport process thus becomes part of our development
chain.

We contend that most uses of proof transport will share this feature of wanting access
to modifiable sources. Even when no major extensions need to be made to the transported
theory, it is often necessary to tweak definitions or expose internal results to make downstream
development possible or easier. Harrison’s proofs could be packaged, as they are, as a reusable
theory, but we would still want the option for an easy re-export of the proofs after—and while—
we modify and extend them to support definitions.

Specific Experiences

In this section, I describe some of the particular issues that affected our use of OpenTheory. At
present, we have successfully transported Harrison’s definition of the syntactic inference rules
of HOL (130 theorems/definitions in total). We also updated his definition to support constant
definition (and transported it again). We have not yet updated or transported the soundness
proof.

The main result of transport is the definition of the provability relation, |-, and all the
constants it depends on (such as ACONV). The theorem in HOL4 after transport, shown partially
below, looks the same as the original4 in HOL Light.

` (∀t defs. welltyped in t defs =⇒ ((defs, []) |- t === t)) ∧
(∀asl1 asl2 l m1 m2 r defs.

((defs, asl1) |- l === m1) ∧ ((defs, asl2) |- m2 === r) ∧
ACONV m1 m2 =⇒
((defs, TERM UNION asl1 asl2) |- l === r)) ∧

(∀asl1 l1 r1 asl2 l2 r2 defs.
((defs, asl1) |- l1 === r1) ∧ ((defs, asl2) |- l2 === r2) ∧
welltyped (Comb l1 l2) =⇒
((defs, TERM UNION asl1 asl2) |- Comb l1 l2 === Comb r1 r2)) ∧

. . .

4Not Harrison’s original, but the extended version with support for definitions; the extension was made to
the HOL Light script file before transport.

112

Challenges in Using OpenTheory to Transport Harrison’s HOL Model Ramana Kumar

Some of the issues described below arise in part because the tools (the HOL Light exporter,
the OpenTheory tool, and the HOL4 importer) and the OpenTheory standard library are all
still young. I expect that if OpenTheory is used more, and the standard library gains traction,
proof transport will enjoy much better support.

Reuse of native constants and theorems On the whole, the standard ontology provided
by OpenTheory was a useful intermediary for mapping constants in HOL Light to their moral
equivalents in HOL4. For our work a direct mapping of constants would also have been fine,
but we would have had to write it. The advantage of using standard library constants is that
both the HOL Light exporter and the HOL4 importer contained (most of) the mappings we
needed before we started. We needed to manually provide only six additional mappings, mostly
for constants in the standard library that don’t exist (and hence also had to be defined) in
HOL4, for example the standard library’s BIT0 constant for numerals (since HOL4 uses BIT1

and BIT2 instead).
It was also good that many of the assumptions of the transported theory were satisfied

by corresponding native theorems in HOL4. We needed, however, to state and prove sixty
additional theorems in order to match the article’s assumptions exactly. All of these had trivial
(less than two lines) proofs, and were often rephrasings of native theorems.

For example, the standard library asks for both

` ∀p. EVERY p [] and ` ∀p h t. EVERY p (h::t) = p h ∧ EVERY p t,

whereas HOL4 has a single theorem

` (∀P. EVERY P [] = T) ∧ (∀P h t. EVERY P (h::t) = P h ∧ EVERY P t).

Slightly less trivially, the standard library asks for

` ∀p g h. ∃f. ∀x. f x = if p x then f (g x) else h x,

whereas HOL4 has a constant, WHILE, and a theorem saying it is a suitable witness for f .
The HOL4 importer might be augmented to try strategies for automatically proving such

assumptions on import. Alternatively, since all the assumptions are supposed to be in the
standard library, HOL4 might want a native copy of every theorem in the standard library. It
is unclear which of these approaches is better.

Representation of sets OpenTheory represents sets as an abstract type (A set), which
leads to a clean interface and easy import, but can make exporting scripts that represent sets
as predicates (A → bool) difficult. Harrison’s work, especially the soundness proof, makes
considerable use of sets as predicates5. We hope to port his proof, but doing so would be
non-trivial because it has not been made to work with the proof-logging fork of HOL Light and
makes extensive use of sets represented by predicates.

Source annotations The proof-logging fork of HOL Light was designed primarily for creating
theory packages for the standard library. As such, many of HOL Light’s native theories have
been modified so they can be exported as the standard library theories, and the exporter is not
designed to accept native HOL Light theories without modifications.

5His use of predicates is in addition to his definition of a new type for representing sets in the HOL semantics;
being of a separate type, the latter “sets” pose no problem.

113

Challenges in Using OpenTheory to Transport Harrison’s HOL Model Ramana Kumar

At best, these modifications include marking each theorem in the script that is desired as
an output of the final theory package, which for us meant marking essentially every theorem
proved in the file.

At worst, proof scripts need to be changed substantially to accommodate the standard
library’s representation of sets and the fact that some of HOL Light’s automation has not
yet been made to work with the rest of the fork. We ran into this problem when one of the
definitions required some of HOL Light’s advanced recursive function definition tools, which
did not work in the proof-logging fork. After failing to devise an alternative proof, we called
on Joe Hurd to upgrade the fork. Thankfully he was able to do so.

Article file size, and transport efficiency The transport process centres around an article
file that contains the log of primitive inferences comprising the theory. The generated article
for Harrison’s definition of HOL’s inference rules is around twelve megabytes in size. The
original script file is only thirty kilobytes in size. Having such a large file in the development
chain is unwieldy, especially when using version control since it increases our repository size
significantly. We opt to keep the article in our repository because we don’t expect everyone
using the repository to have the tools necessary to generate it (e.g. an installation of proof-
logging HOL Light). Processing (exporting, compressing, importing) the article also takes
several minutes.

Kaliszyk and Krauss [4] will present techniques for efficient proof transport, in terms of both
speed and size, at ITP 2013. We hope these will be adopted by OpenTheory, where efficiency
has been an important concern but not the highest priority.

Theorem names OpenTheory avoids names wherever possible, and refers to theorems by
their statements. This policy has the benefit of reducing opportunities for conflict. But nicely
named theorems are useful in most provers, including HOL4. A principled approach, which is
currently unimplemented, would be to pass names and other metadata (e.g. whether a theorem
should be an automatic rewrite rule) on a separate channel alongside the OpenTheory proof
data. We used the simpler hack of encoding the theorem name in the theorem itself (as the
name of an extra variable).

3 The Impossible Wish: Script Portability

In light of the need for modifiability, the holy grail of theory exchange would be automatic
methods for porting high-level script files. This corresponds to porting software between high-
level languages as opposed to compiling to a common bytecode that has an interpreter on
each platform. But just as software ports are usually done manually, I expect the variety and
complexity of script files to make automatic ports unlikely: HOL Light/HOL4 script files may
contain arbitrary OCaml/SML code.

Another approach would be to generate script files by “decompiling” low-level proofs. This
idea is relatively unexplored in the context of proofs, but the analogous field of decompilation
for software binaries may offer some ideas. Recovering an invocation of a high-level tactic from
the trace of its primitive inferences sounds like a difficult problem, but perhaps the traces are
sufficiently idiosyncratic.

The Common HOL platform, as used by HOL Zero [1], is aimed in the direction of script
file portability. It defines an API of high-level functions that a HOL-based prover might use

114

Challenges in Using OpenTheory to Transport Harrison’s HOL Model Ramana Kumar

in a script file. Beyond such an API, one could use a standard, purpose-built script file lan-
guage, such as the Isar formal proof language [6] used by Isabelle. Or, going further, we might
standardise on a single prover and eliminate the need for exchange at all.

Of course, diversity has its advantages: there are various factors affecting the experience of
using a prover including the interface, the speed, the automation libraries, the theory libraries,
and the degree to which hacking the prover is encouraged. There are different trade-offs to
make between these; we don’t know the single best answer and there probably isn’t one.

4 Summary of Tensions

In the table below, we characterise the two ways to consider a proof exchange system that we
have explored in our use of OpenTheory.

For Making Reusable Packages For Proof Transport
export a clean interface export everything
depend on and produce standard results depend on standard results
export once and archive export and import with every modification
export can be expensive so import is cheap export and import must be cheap
can expect script file preparation should accept script files untouched

In some ways, the differences are in degree rather than in kind. For example, reusable
packages may have a clean interface that happens to include everything, or may need occasional
modification for maintenance. But when modifications are being made in a development cycle,
where one is experimenting with the effects of changes in imported definitions on further theories
in the target system, cheap proof transport becomes more important.

Should more work be done by the importer or the exporter? OpenTheory tries to find a
balance in the middle, but perhaps biases against the exporter since the work to make a native
theory into an OpenTheory package is slightly different for each theory, and must be done for
each one, whereas the work required to import any OpenTheory package (which respects the
standard library) as a native theory can be done once and for all.

Two Modes of Use

Direct proof transport is likely to be a commonly desired function of proof exchange systems
like OpenTheory. Such usage benefits from the existence of a well-supported (by provers) well-
designed standard library of theories. However, the concerns when creating such a library can
get in the way of making the transport process smooth. Efficient transport is necessary as long
as the original sources remain the only modifiable ones.

It might be possible, however, for OpenTheory to support two modes of use. One mode
would be for creating theory packages fit for public consumption, and conforming to the stan-
dards required by a high-quality package repository. The other mode would be for porting a
theory from one prover to another wholesale, without modifications. Implementing the second
(proof transport) mode would require more ingenuity, since the source theory may depend on
particular representations and theories that are outside the standard library. However, one
could always fall back on exporting a larger, less reusable package that derives its results from
(at worst) the axioms.

115

Challenges in Using OpenTheory to Transport Harrison’s HOL Model Ramana Kumar

Acknowledgements I am grateful to Magnus Myreen for discussion about his experiences
with OpenTheory, and for advice and comments on this paper. I appreciate feedback on this
paper from Mike Gordon, and from the anonymous reviewers. I thank Joe Hurd for introduc-
ing me to OpenTheory and keeping me involved in its development. My work is supported
financially by the Gates Cambridge Trust.

References

[1] Mark Adams. Introducing HOL Zero - (extended abstract). In Komei Fukuda, Joris van der Hoeven,
Michael Joswig, and Nobuki Takayama, editors, ICMS, volume 6327 of Lecture Notes in Computer
Science, pages 142–143. Springer, 2010.

[2] John Harrison. Towards self-verification of HOL Light. In Ulrich Furbach and Natarajan Shankar,
editors, IJCAR, volume 4130 of Lecture Notes in Computer Science, pages 177–191. Springer, 2006.

[3] Joe Hurd. The OpenTheory standard theory library. In Mihaela Bobaru, Klaus Havelund, Gerard J.
Holzmann, and Rajeev Joshi, editors, Third International Symposium on NASA Formal Methods
(NFM 2011), volume 6617 of Lecture Notes in Computer Science, pages 177–191. Springer, April
2011.

[4] Cezary Kaliszyk and Alexander Krauss. Scalable LCF-style proof translation. To appear in ITP
2013.

[5] Magnus Myreen, Scott Owens, and Ramana Kumar. Steps towards verified implementations of
HOL Light. To appear in ITP 2013.

[6] Markus Wenzel. Isar - a generic interpretative approach to readable formal proof documents. In
Yves Bertot, Gilles Dowek, André Hirschowitz, C. Paulin, and Laurent Théry, editors, TPHOLs,
volume 1690 of Lecture Notes in Computer Science, pages 167–184. Springer, 1999.

116

	The OpenTheory Vision: Reusable Theory Packages
	The Use Case: Proof Transport, with Modifications
	The Impossible Wish: Script Portability
	Summary of Tensions

