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Abstract

Evaluating improvements to modern SAT solvers and comparison of two arbitrary
solvers is a challenging and important task. Relative performance of two solvers is usually
assessed by running them on a set of SAT instances and comparing the number of solved
instances and their running time in a straightforward manner. In this paper we point to
shortcomings of this approach and advocate more reliable, statistically founded method-
ologies that could discriminate better between good and bad ideas. We present one such
methodology and illustrate its application.

1 Introduction

Many SAT solvers have been developed and various improvements to them have been proposed
over the years, especially in the domain of heuristic components.

In order to assess the quality of a proposed modification, one usually runs a modified and the
base version of the solver on some set of SAT instances. The solver that solves more instances,
or the same number of instances in less time is considered to be better. This approach can
be flawed because solving times of instances can significantly vary depending only on trivial
properties of the formula like ordering of clauses and literals, or on random seeds used, which
can lead to different experimental results by chance.

We performed experiments to investigate this claim using four solvers were chosen from the
MiniSAT hack track of the SAT 2009 competition and two benchmark sets — the first consisting
of 292 industrial instances used at the MiniSAT hack track and the second consisting of 300
graph coloring instances from the SAT 2002 competition. Each solver was run on 50 shuffled
variants of each benchmark (obtained by reordering the clauses, literals in each clause, and
renaming the variables) with cutoff time of 1200 seconds. Each two solvers were compared on
both benchmark sets. In three comparisons the probabilities of solvers swapping places when
the shuffled variants of formulae were chosen on random weren’t negligible (6%-26%). Also,
observed variation of number of solved formulae was large. More information can be found in
[Nik10].

In addition to the problem just discussed, there is a problem of drawing conclusions from the
available experimental results. Sometimes, the results are presented by tables showing that the
new SAT solver is performing better than the base one on some subsets of instances, and worse
on the others, without clear conclusion about the overall effect. Also, SAT solver comparisons
are concluded without discussion if the observed differences could be obtained by chance or are
a consequence of a genuine effect.

The goal of this work is the formulation of statistically founded methodology of SAT solver
comparison that would i) eliminate chance effects from the results, ii) give an answer if there is
a positive (or negative) overall effect of the proposed modification to SAT solver performance,
and iii) give an information of statistical significance of that effect. Such a methodology would
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enable more reliable discrimination between good and bad ideas, enabling the community to
focus on the more promising ones.

There are several issues that have to be addressed in devising such methodology. The first
is a presence of censored data. If the formula is not solved in a given cutoff time, it is only
known that it needs more time to be solved, but not how much exactly. The second is a
need to compare runtime distributions instead of single solving times that are unreliable. The
third issue is finding a way to combine conclusions for different formulae to derive an overall
conclusion.

The rest of the paper is organized as follows. The proposed methodology is sketched in
Sect. 2 and the experimental results are given in Sect. 3. In Sect. 4, related work is discussed.
In Sect. 5 final conclusions are drawn. A more detailed description of the methodology and the
concepts used can be found in [Nik10].

2 The Methodology

Let random variable τ j represent runtimes of the solver Sj (j = 1, 2) on SAT instance F . Since
solving times can be too large for practical evaluation, a cutoff time T is used, and thus dis-
tributions of random variables τ j are truncated to the right at the point T . The difference of
SAT solver performances should be defined by some function δ(τ1, τ2) measuring the suitably
chosen difference between distributions of these variables. Since the random variables them-
selves are not available, inferences about them are made using samples of runtimes. The value
of the function δ should be approximated by a difference d between samples. The differences
δi of random variables corresponding to formulae Fi can be averaged to obtain a value δ which
measures the overall difference between solvers on given corpus of formulae. Sample estimate
of δ, the average of di values, will be denoted d. Distribution of the average of d under the
hypothesis δ = 0 will be denoted by Θ.

The methodology is outlined in Fig. 1. It can be considered as a statistical test with the
null hypothesis that there is no overall effect — H0: δ = 0.

Obviously, in order to use this methodology, its various aspects must be discussed. The most
important ones are the choice of the function d, estimation of distribution Θ, and interpretation
of the magnitude of d. We will propose some choices for each of these aspects.

The role of function d is to quantify the difference in performance of two solvers on one
instance based on samples of corresponding solving times. For that we use effect size measures
for difference between two samples.

As an indicator that two solvers perform the same on some instance F , we take

P (τ1 > τ2) = P (τ1 < τ2)

or equivalently
ω = P (τ1 > τ2)− P (τ1 < τ2) = 0

where τ j is a random variable representing solving times of the solver Sj on instance F . These
two probabilities need not sum to 1 in case that censored data are present. In that case

π =
1− ω

2
= P (τ1 < τ2) +

1

2
P (τ1 = τ2)

which is a quite intuitive measure that combines the evidence of one solver performing bet-
ter than the other with the uncertainty that appears if both solvers haven’t solved the same
benchmarks. ω can be estimated by Gehan statistic WG [Geh65, Man67].
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• INPUT: Solvers S1 and S2, and the set of benchmark instances

• OUTPUT: Information if one solver is better than the other and estimate of the
effect size

• Choose the level of statistical significance α (α < 1)

• For each formula Fi from corpus F consisting of M instances:

– Take a sample T j
i of size N of random variable τ ji (j = 1, 2)

– Calculate the difference di = d(T 1
i , T

2
i ) between obtained solving

times

• Calculate the average d of values di

• Estimate Θ — the distribution of d under the null hypothesis

• Calculate the p value for d according to the distribution Θ

• If p ≤ α

– Declare the first solver to be better if d < 0

– Declare the second solver to be better if d > 0

– Report d as the estimate of the magnitude of the difference between
performances of two solvers

• otherwise, declare the difference insignificant

Figure 1: Outline of the proposed methodology.

Point biserial correlation ρpb is a commonly used and well understood effect size measure
with some known technical advantages [Coh88, GK05].

To establish a relation between estimates of technically more suitable ρpb, and more intuitive
ω and π, we present the following theorem, showing that all three can be used interchangeably
(the proof is given in the appendix). For observations Xi of a random variable X, by S2

X we
denote

∑
(Xi −X)2 where X is an average of observations Xi.

Theorem 1. Let T 1 and T 2 be two samples of two random variables τ1 and τ2. Let Xi be
the i-th element in the sorted pooled sample, Ri its rank in that sample, Yi the corresponding
indicator variable, and rpb the sample point biserial correlation between Ri and Yi. Then, if
there are no ties in uncensored data and the censoring time is unique, the following relation
holds

WG = rpbSRSY /|T 1||T 2| (1)

Additionally, if |T 1|/|T 2| approaches finite positive constant when |T 1| → ∞,

var(WG)→ var(rpb)S
2
RS

2
Y /|T 1|2|T 2|2 (2)

also holds when |T 1| → ∞.

Note that the assumptions of the theorem are fulfilled in the context of SAT solving.
We say that two solvers perform the same on one instance if ρpb = 0, or if rpb is not

significantly different from 0 in sense of statistical testing. Also, for the measure of difference
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Industrial Graph coloring
A B C D A B C D

A - -0.097 -0.249 -0.229 - 0.206 0.453 0.461
B 0.097 - -0.241 -0.208 -0.206 - 0.327 0.333
C 0.249 0.241 - 0.072 -0.453 -0.327 - -0.001
D 0.229 0.208 -0.072 - -0.461 -0.333 0.001 -

Table 1: Estimates of ρpb when comparing various solvers. Following labels are used A =
MiniSAT 09z, B = minisat cumr r, C = minisat2, D = MiniSat2hack.

di between samples of random variables τ1i and τ2i we can take ri — the estimate of ρpb for Fi.
Statistical significance testing based on rpb values is usually done after the Fisher transformation
z = 1

2 log 1+r
1−r . To check the statistical significance of the overall test, for each ri, value z(ri)

is computed, and those values are averaged. Since all the z(ri) are asymptotically normally
distributed, it is easy to see (using the properties of the normal distribution and asymptotics)
that the average z is also asymptotically normally distributed:

z ∼ N

(
1

M

M∑
i=0

z(ρi),
1

M2

M∑
i=1

var(ri)

(1− r2i )2

)

where ρi is the population parameter estimated by ri. To see if the null hypothesis δ = 0 holds,
one should check if the difference of obtained average z from z(δ) = 0 is statistically significant
with respect to distribution of z. The p value (two tailed) is 2(1− Φ(z/

√
var(z))), where Φ is

the distribution function of standard normal distribution. Note that we don’t directly use the
distribution Θ of d because the use of transformed values is more reliable.

The estimate of the effect size d is the average of values ri or values 1−WG

2 which estimate
the probabilites.

3 Experimental Results

The experiments on industrial and graph coloring instances indicate that the values of rpb
and WG sabilize when the number of shuffled variants is around 10 to 15. More about these
experiments can be found in [Nik10]. In Table 1 we present estimates of ρpb for comparisons
of each pair of solvers using 15 shuffled variants. The obtained results are not surprising with
respect to the results of MiniSat hack track. Only the ordering of minisat2 and MiniSat2hack
is different. In all the comparisons the p values (two tailed) are less than 0.001 except when
comparing original MiniSAT version and MiniSat2hack on graph coloring instances when it
is 0.945. Nevertheless, note that some statistically significant differences can be considered
negligible since rpb values are too small (namely, less than 0.1). The ranking is easy to establish.
It is ABDC on industrial and CDBA on graph coloring instances, where the same labels are
used as in Table 1.

4 Related Work

There are already several papers concerning the comparison of SAT solvers. Le Berre and
Simon recognize the importance of this question [LS04]. Also, the possibility that shuffling can
change the order of solvers was noticed. It is suggested that the corpora could include shuffled
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variants of formulae. On the other hand, this paper is concerned with the usual way of solver
comparison. Audemard and Simon further analyze the impact of the shuffling on the number
of solved formulae, and conclude that it can be large [AS08].

Etzoni and Etzoni propose the use of statistical tests for censored data for evaluation of
speedup learning systems, but the comparison of runtime distributions of instances is not dis-
cussed in their context [EE94]. Brglez et al. stress the importance of statistical approach
for SAT solver comparison [BLS05, BO07]. Also the importance of runtime distributions for
SAT solver comparison is recognized. Statistical tests are used to compare performances of
two solvers, but only on one instance. Full methodology that could use a corpus of instances
and combine results of testing on individual instances is not devised. Moreover, we exploit the
notion of the effect size which is important for such methodology and propose the extension to
ranking several solvers using method which takes the nontransitivity issue into account.

Pulina gives an excellent empirical analysis of ranking methods for systems used in auto-
mated reasoning and more importantly establishes reasonable properties that those ranking
methods should possess [Pul06].

5 Conclusions

We demonstrated that comparison methods that are widely used can be unreliable, and depend
on variable naming, ordering of clauses and literals, and random seeds used (see Sect. 1). A
new, statistically founded, methodology is proposed for comparison of SAT solvers. It is based
on the comparison of runtime distributions instead of single solving times and uses standard
effect size measures to quantify the difference between those distributions.

It is found that the needed number of shuffled variants to estimate the effect size between
solvers is around 10 to 15. The testing corpora could be somewhat reduced to compensate for
this increase of solving time, thus trading some benchmarks for thorough analysis. We regard
this approach better, since the results presented by Nikolić do not suggest that the use of large
corpora eliminates the significant chance effects on number of solved formulae [Nik10]. The
new methodology is able to practically eliminate the chance effects from the comparison (up to
p value) and provide information on statistical significance and effect size in the way usual for
statistical testing which standard approach does not.
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