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Abstract

Collision detection algorithms are used in aerospace, swarm robotics, automotive, video
gaming, dynamics simulation and other domains. As many applications of collision detec-
tion run online, timing requirements are imposed on the algorithm runtime: algorithms
must, at a minimum, keep up with the passage of time. Even offline reachability com-
putation can be slowed down by the process of safety checking when n is large and the
specification is n-to-n collision avoidance. In practice, this places a limit on the number
of objects, n, that can be concurrently tracked or verified. In this paper, we present an
improved method for efficient object tracking and collision detection, based on a modified
version of the axis-aligned bounding-box (AABB) tree data structure. We consider 4D
AABB Trees, where a time dimension is added to the usual three space dimensions, in
order to enable per-object time steps when checking for collisions in space-time. We eval-
uate the approach on a space debris collision benchmark, demonstrating efficient checking
beyond the full catalog of n = 16848 space objects made public by the U.S. Strategic
Command on www.space-track.org.

1 Introduction

The prediction of collisions between large numbers of objects in 3D space is important in many
domains such as interactive video games or the verification of cyber-physical systems. In set-
based verification methods for dynamical systems, most effort and runtime typically consists
of the reachability computation step. However, the process of safety checking can become a
bottleneck when the specification is that no objects collide with any other objects (the n-to-n
collision detection problem), and the number of objects, n, is large.

∗DISTRIBUTION A. Approved for public release; Distribution unlimited. Approval AFRL PA case number
88ABW-2018-4991, 05 OCT 2018.

G. Frehse and M. Althoff (eds.), ARCH19 (EPiC Series in Computing, vol. 61), pp. 170–182

www.space-track.org


Efficient n-to-n Collision Detection for Space Debris using 4D AABB Trees Bak, Hobbs

This was the focus of a recently-proposed benchmark on space debris collision detection [10].
In that work, a method based on axis-aligned bounding box (AABB) trees was proposed and
could verify the absence of collisions faster than real-time for around 4000 objects. The key
insight there was to perform checking using global variable time steps, versus performing a
check at each multiple of a fixed time step. In this work, we modify the approach to also permit
variable time steps on a per-object basis. This requires adding a time dimension to the AABB
tree data structure, resulting in a method that works on 4D AABB trees. The new result is
evaluated on real space debris data made public by the U.S. Strategic Command. In particular,
we demonstrate faster-than-real-time tracking is possible with up to about 65000 objects.

Note that in this paper we focus on the discrete-time version of the problem, with a fixed
minimum time step, although extensions to continuous time are possible. Further, although
applications use collision detection online, we measure the offline performance of the algorithm,
and compare the simulated time versus the computation time. Our algorithm is geared towards
finding the earliest collision, as this is sufficient for the verification problem and applications may
want to react to this event as it may impact future object trajectories. An extended technical
report with additional details and a proof of algorithm correctness is available online [1].

2 AABB Trees

Axis-Aligned Bounding Box (AABB) trees [2] are a type of bounding volume hierarchy used
in collision detection methods. Bounded volume hierarchies are trees where the leaf nodes
represent volumes of individual objects, and inner nodes of the tree correspond to sets that
contain every object and set below them in the tree. An AABB tree is a binary tree, where
each object and set is represented by an axis-aligned (non-rotated) bounding box. Thus, the
root of the tree will be a bounding box that contains every object, and the parent of two
leaf nodes will simply be the bounding box containing the two objects. AABB trees can also
maintain balance as new objects are inserted and updated using surface area heuristics, so that
query operations remain efficient. We do not plan to review all the details of AABB trees here,
although detailed introductions are available elsewhere1.

The three operations on AABB trees we will use are:

• insert - AABB trees store a world object and an associated box, usually the object’s
occupancy region. Insert operations take such pairs and add them to the AABB tree,
possibly performing tree rotations to maintain balance for efficient queries.

• query - Tree queries check if a given box intersects with any previously-inserted box in
the tree, returning a list of colliding objects. Queries are performed by starting at the
tree root and recursively checking if the query box intersects the left or right child. In the
ideal case, half the objects can be discarded at each layer, leading to an efficient O(log(n))
lookup time. This may not be possible if the query box is large or the tree balance is
poor.

• update - Objects in an AABB tree can have their bounds updated within an existing
tree. This can prevent the need to construct a new tree at every time step.

Tree balancing operations are used to ensureO(log(n)) complexity for each of the operations.
Checking all n objects at a fixed time step therefore takes O(n log(n)) time. With a time bound

1An accessible introduction to AABB trees is available online at www.azurefromthetrenches.com/

introductory-guide-to-aabb-tree-collision-detection.
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of T and a time step of δ, the total runtime for constructing a tree at each step and checking
for collisions is O(Tδ n log(n)). In earlier work [10], we improved upon this by considering larger

time steps, essentially reducing the T
δ term.

An AABB tree is used for collision detection, and so each object should have an associated
3D bounding box in space, at each point in time. We call this box an occupancy region. The
occupancy region is all points within a cube with faces at a fixed distance r from a center point
of pos(t), as defined by the the occupancy region function.

Definition 1 (Occupancy Region). An object’s occupancy region at a fixed time is the set
of 3D space the object takes up at that time. This set is defined by occ(w, t) = {x ∈ R3 :
‖w.pos(t)− x‖∞ ≤ w.r}, where w.pos(t) is the object’s position over time, and w.r is the
object’s radius.

3 Collision Detection with 4D AABB Trees

We propose the use of 4D AABB trees for efficiently solving the collision detection problem.
Like traditional AABB trees, 4D AABB trees include the usual three space dimensions, but
they also have an additional time dimension. Collisions are detected when two objects overlap
in both space and time. The 4D nature of the tree allows time to be tracked per-object, so that
variable time steps, computed on a per-object basis, can be performed.

3.1 Interval Occupancy Regions

A modified version of occupancy regions is needed that accepts intervals of time as an input,
and returns a box which bounds the states at all times within the time interval. The function
computing this region should be exact when the time interval is a single instant, but can
otherwise provide an overapproximation.

Definition 2 (Interval Occupancy Region). An object’s interval occupancy region at some
interval of time t = [tmin, tmax] (with tmin ≤ tmax) is a superset of the 3D space the object
occupies at all times within the interval. This set is defined by the function occ-int(w, t) ⊇ {x ∈
R3 : x ∈ occ(w, t) ∧ t ∈ t}.

Interval occupancy functions have two additional properties which must hold:

• Property 1: occ-int should return the exact occupancy region when t is a single instant
in time (when tmin = tmax). Formally, occ-int(w, [t, t]) = occ(w, t).

• Property 2: If a smaller time interval is used as an input, the output should also be
smaller or equal. Formally, If t1 ⊆ t2 then occ-int(w, t1) ⊆ occ-int(w, t2).

The proposed algorithm requires tracking time separately for each world object, and so we
augment the state with this information. For each world object w, we add a time interval t
which we refer to as a whole using w.t, or by directly naming to the individual time values
w.tmin or w.tmax. This allows us to define a 4D occupancy region function.

Definition 3 (4D Occupancy Region). An object w has a 4D occupancy region, which is a
4D box constructed using the 3D space provided by its interval occupancy region function at
its current time interval w.t, along with the 1D interval defined by the time dimension w.t.
This box is defined by the function occ-4d(w) = occ-int(w,w.t)×w.t, where × is the Cartesian
product of two sets.
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The user must provide the occ-int from Definition 2, which takes in an interval of time and
provides a box containing the occupancy regions for all times within the interval. This requires
computing how objects move in a given time interval.

The simplest way to compute interval occupancy regions in the discrete time setting would
be to loop over all time instants and compute the smallest box that contains the occupancy
region at every point in time. Unfortunately, this strategy would make the runtime of a call to
occ-int depend on the length of the interval of time passed in, and would reduce the performance
of the approach.

If a closed-form solution of the pos(t) function is available, interval analysis methods [11]
can be used to compute interval occupancy regions. Interval arithmetic methods can be used
to provide bounds on functions where the arguments are each intervals. For example, a func-
tion f(x, y) = 2x + y can be used with an interval arithmetic library to compute that when
x ∈ [1, 2] and y ∈ [2, 4], f(x, y) ∈ [4, 8]. In our case, if we have a formula for pos(t), we could
provide it to an interval arithmetic library along with any time interval to produce a bound on
pos([tmin, tmax]). Note that this approach may provide an overapproximation of the function’s
true minimum and maximum, due to the well known dependency problem with interval arith-
metic. For example, directly evaluating f(x) = x ∗ x in interval arithmetic, with x ∈ [−1, 1],
gives the overapproximation [−1, 1], whereas the true bounds are [0, 1]. Accuracy is improved
when smaller input intervals are provided and, in most cases, in the limit the output will ap-
proach the true minimum and maximum. Interval arithmetic evaluation scales independently
of the sizes of the input intervals, and so the computation time is O(1).

Many times, however, for physics simulations closed-form solutions may not be available.
Instead the dynamics of the system may be expressed with ordinary differential equations
(ODEs). These can be numerically simulated using a method such as Runge Kutta to provide
the value of pos(t).

If the ODE describing the movement of the object is a function of a single variable, interval
methods can still be used to compute the interval occupancy region. This is done by simulating
the system for the amount of time at the beginning and start of the desired time interval to
compute the minimum and maximum values of the single variable. Note that in this case,
although the movement ODE involves a single variable, a conversion from the single variable to
3D space can be an arbitrary closed-form function using other constant variables or properties
associated with each object. For example, in our evaluation, the single variable of an orbiting
object will be the true anomaly (the angular position in orbit), which gets converted to 3D
space using other, fixed, orbital elements that are unique to each object. Interval arithmetic is
used to convert from the bounds on the single variable to bounds in 3D space.

Formally, if we have ẋ = f(x) (where f : R → R) for some continuous Lipschitz function
f (in order to guarantee existence and uniqueness of solutions) with solution g(t) (that can
be obtained through numerical simulation), and pos(t) = h(g(x)) (where h : R → R3), then
we can compute bounds on pos([tmin, tmax]) by (i) using a numerical simulation to simulate
ẋ = f(x) to get the values of g(tmin) and g(tmax), (ii) performing an interval evaluation of
h([g(xmin), g(xmax)]).

Although more complex than the closed-form solution method, if the numerical simulation
time is fast, and xmin and xmax can be looked up efficiently, the interval evaluation part of
the computation remains O(1). Note that if the ODE is a function of multiple variables, this
approach is not applicable, and more general, reachability methods [4] may be necessary to
provide the bounds computed by occ-int. The reason numerical simulation is permitted for
single-variable systems is that g(tmin) and g(tmax) bound g(t) at all intermediate times.
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Algorithm 1 4D AABB Tree Collision Detection

Input: w1 . . .wn, T , δ
Output: First collision (w,v, t) or None

1: tree← AABBTree() . Creates empty AABB tree
2: `← initializeTree(tree, w1 . . .wn)

3: if ` is not None then
4: return (`[0], `[1], 0)

5: while true do
6: v← getSmallestMaxTimeObject(tree)

7: if v.tmax ≥ T then
8: break
9: advanceTime(v, T, δ)

10: tree.update(v, occ-4d(v))
11: u = resolveCollisions(v, tree, δ)
12: if u is not None then
13: return (v,u,v.tmin)

14: return None

3.2 Main Algorithm

The 4D AABB tree collision detection procedure is described in Algorithm 1. The algorithm
takes in n objects, a time bound T , minimum time step δ, and returns the earliest collision
(a pair of objects and a time), or None if collisions are impossible. The algorithm first inserts
all objects at the minimum time step into the ABBB tree using procedure initializeTree,
and then the main loop on line 5 advances time for a single object at a time. As objects
are advanced, their object-specific time-step grows exponentially, and then collision checking is
done using the 4D AABB Tree. The time step may then be reduced to increase accuracy, if a
potential collision is detected. For space reasons, a proof that the loop terminates as well as
algorithm correctness is provided in the technical report [1].

First, however, we detail each of the procedures used by the high-level algorithm. The algo-
rithm uses the auxiliary procedures initializeTree, getSmallestTimeObject, advanceTime,
and resolveCollisions, which are described in Sections 3.3 to 3.6.

3.3 Procedure initializeTree

The initializeTree procedure is used to initially insert all world objects into the AABB tree.
If every object has been inserted into the tree with minimum time tmin = 0, such that no two
boxes in the tree overlap, then None is returned. If this is impossible, because there are objects
that initially collide, then a pair of colliding objects should be returned instead.

The simplest implementation, shown in Algorithm 2 sets each object’s time interval to
be exactly 0, and inserts the object into the tree. It is possible to improve the efficiency of
the algorithm by instead inserting objects with a larger interval of time, even up to the full
time range [0, T ]. However, increasing the initial time interval could result in the detection
of overlapping 4D regions due to overapproximation (false positives), and then have a need to
reduce time bounds of some of the objects to eliminate the overlap. In addition to this extra
complexity, the initial performance is a one-time cost, so efficiency improvements are not critical
to the overall performance.
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Algorithm 2 Procedure initializeTree

Input: tree,w1 . . .wn

Output: Pair of colliding objects at time 0 (w,v) or None
1: for i in 1 to n do
2: wi.t← [0, 0]
3: box = occ-4d(wi)
4: ` = tree.query(box) . query returns a list
5: if ` is not empty then
6: return (wi, `[0])

7: tree.insert(wi, box)

8: return None

Algorithm 3 Procedure advanceTime

Input: w, T, δ
1: prev steps← (w.tmax −w.tmin)/δ
2: next steps← 1
3: if prev steps > 0 then
4: next steps← 2 ∗ prev steps

5: w.tmin ← w.tmax + δ
6: w.tmax ← w.tmin + next steps ∗ δ
7: if w.tmax > T then
8: w.tmax ← T

3.4 Procedure getSmallestMaxTimeObject

The getSmallestTimeObject procedure returns the object with the smallest tmax of all the
objects in the AABB tree, with ties broken arbitrarily. For efficiency, rather than iterating
over all the objects in the tree, the implementation should use a priority queue implemented
with something like a binary heap. This priority queue will need to be updated every time
tmax is changed for any object, and whenever an object is removed from the AABB tree. In
the implementation, this can be done elegantly by overriding the AABB tree methods insert,
update, and remove to both update the 4D AABB tree and as well as update the object’s
tmax in the priority queue. The entire getSmallestMaxTimeObject procedure, then, consists
of simply returning the object at the front of the priority queue. For this reason, we do not
include its pseudocode here.

3.5 Procedure advanceTime

The advanceTime procedure updates the minimum time for a single object v to be one time
step δ beyond its previous maximum time. This is the only place where tmin is changed.

There is a choice of what to use for tmax. In our implementation, we double the length of
the object’s time interval when advanceTime is called, up to the time bound. The result is that
if the time interval is never decreased in resolveCollisions, which happens when the current
object’s 4D box does not intersect with any other objects, then the object will only be iterated
over a logarithmic number of times with respect to the number of time steps T

δ , in the while

loop on line 5 in the high-level algorithm. This is in contrast to the brute force method or basic
AABB tree approach, where every time step requires some processing for every object, which
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Algorithm 4 Procedure resolveCollisions

Input: Object with potential collisions v, tree, δ
Output: Object colliding with v at time v.tmin or None

1: `← tree.queryObject(v)
2: while ` is not empty do
3: for y in ` do
4: if occ-4d(y) ∩ occ-4d(v) then
5: steps y← (y.tmax − y.tmin)/δ
6: steps v← (v.tmax − v.tmin)/δ
7: if steps y = 0 and steps v = 0 then
8: return y
9: else if y.tmin < v.tmin then

10: y.tmin ← v.tmin

11: tree.update(y, occ-4d(y))
12: else if steps v ≤ steps y then
13: new steps← floor(steps y / 2)
14: y.tmax ← y.tmin + new steps ∗ δ
15: tree.update(y, occ-4d(y))
16: else
17: new steps← floor(steps v / 2)
18: v.tmax ← v.tmin + new steps ∗ δ
19: tree.update(v, occ-4d(v))

20: `← tree.queryObject(v)

21: return None

results in a linear scaling with respect to the number of time steps T
δ . In practice, the 4D boxes

may overlap when large time intervals are used, and so the actual scalability will be somewhere
between linear and logarithmic, depending on (i) the distances between world objects, (ii) how
fast their position changes, and (iii) the accuracy of occ-int. Generally speaking, objects that
are far from others will use larger time intervals, and therefore require less processing. The
proposed procedure is shown in Algorithm 3.

3.6 Procedure resolveCollisions

The resolveCollisions procedure takes in a single world object w whose occupancy region
may intersect with other objects in the AABB tree, and reduces the tmax of the passed-in object
and/or the intersecting objects, in order to eliminate the intersection. When this function is
called, only w may intersect with other objects; other pairs of objects in the tree do not intersect.
If reducing tmax is impossible for both objects, because their time intervals are both a single
instant in time, then a collision is detected and the colliding object is returned. If no collision
is detected, then None is returned and we are certain no 4D boxes in the tree intersect.

The procedure uses a queryObject method on the AABB tree, which is shorthand for
calling query on the tree using the object’s interval occupancy region box, and returning a
list of objects with an intersection, excluding the object passed as input to queryObject. The
detailed procedure is shown in Algorithm 4.

The procedure first queries to AABB tree to see if any objects overlap with v. If this is the
case, the loop of the function essentially decreases the time intervals of either v or the colliding
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object y and updates the tree with the 4D boxes corresponding to the new time bounds. At
the end of each iteration of the loop, on line 20, the tree is queried again to see if all collisions
with v have been resolved. Since the time bounds keep decreasing every time through the loop,
either at some point collisions will no longer exist and the loop will exit, or the time intervals
will be reduced to a single point and a collision still exists. In the latter case, a collision actually
exists, and the colliding object is returned (line 8).

The time interval of one of the potentially colliding objects is always decreased when the
4D boxes intersect. There are three ways this can happen controlled by the three branches on
lines 9, 12, and 16. These are, correspondingly, increasing y’s minimum time, decreasing y’s
maximum time, and decreasing v’s maximum time.

4 Space Debris Benchmark

We evaluate the proposed collision detection approach on a space debris collision detection
application. The U.S. Space Surveillance Network tracks around 23000 objects larger than
10 cm in orbit around Earth, although it is estimated there are hundreds of thousands of
objects between 1 cm and 10 cm, and possibly millions smaller than 1cm [9]. Due to the high
velocities involved (an object in low-earth orbit moves at 7800 m/s or about 28000 km/hr),
even collisions with small objects can cause catastrophic damage, and further magnify the
problem by creating additional space debris. In February 2009, the Iridium 33 communications
satellite collided with the defunct Russian military satellite Cosmos-2251, creating roughly
2100 new pieces of debris larger than 10 cm [13]. Although small amounts of atmospheric drag
may eventually deorbit objects so they burn up in the Earth’s atmosphere, this process can
take dozens to hundreds of years, depending on the orbit. A further concern, popularized as
“Kesler Syndrome” [14], is that debris-creating spacecraft collisions could cascade, resulting in
an exponential increase in the amount of space debris, and threatening space access. In response
to increased launches and interest in space based services, the White House released Space
Policy Directive-3, National Space Traffic Management Policy [16], which discusses collision
detection and avoidance extensively saying: “Timely warning of potential collisions is essential
to preserving the safety of space activities for all.”

Space debris collision detection is an on-going problem with real-time requirements. The
prediction speed must exceed the time needed to run the computation, in order to be able to
predict collisions and warn satellite operators to make orbital adjustments.

A description of Kepler orbital dynamics is available in previous work [10] and will only be
briefly reviewed here. An orbiting object’s position and velocity can be uniquely determined
from a set of six orbital elements: the semi-major axis a, eccentricity e, true anomaly ν,
inclination i, right ascension of the ascending node Ω, and argument of perigee ω. When
objects are only under the influence of the gravity of Earth (Kepler dynamics) only one of these
parameters changes, the true anomaly ν, which is like the angular position of the object in its
elliptical orbit. The value of ν evolves according to the differential equation

ν̇ =

√
µ

(a(1− e2))3
(1 + e cos ν)2 (1)

where µ is the geocentric gravitational parameter, and the other orbital parameters in the ODE
are constant. A nonlinear transformation consisting of three rotations involving i, Ω and ω then
convert ν to a point in 3D space in the ECI reference frame, where collisions can be checked.

This setup meets the requirements for computing occ-int described in Section 3.1. The value
of differential equation of ν is a function of a single variable, and a nonlinear transformation of
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ν provides the position. In the formalism of Section 3.1, Equation 1 is f , the solution to the
ODE ν(t) is g, and the transformation to the ECI frame is h.

We also consider decomposition and parallelization of the orbital collision detection problem.
We use the minimum altitude (perigee) and maximum altitude (apogee) as a way to statically
check if collisions are possible. If the apogee of one object is less than the perigee of another,
with small adjustments to take into account the radii of the objects, then no collision is possible.
With this approach, we can partition the original problem with a large n into p smaller problems
that can be analyzed in parallel. There is some replication in this approach, as certain satellites
may be in multiple partitions. For space reasons, we omit the details of this approach here, and
instead refer interested readers to the technical report [1].

We evaluate our approach using orbital elements taken from real objects, using two-line
element (TLE) sets made public by the U.S. Strategic Command on www.space-track.org.
We used the full catalog of objects larger than 10 cm taken from 3 April 2018, which initially
had n = 16840 objects. In order to be able to scale up or down n for evaluation, when less
objects were desired we simply dropped the remaining objects in the database. When we need to
evaluate with more objects, we randomly combined the orbital elements from existing objects.
Both of these approaches maintain the expected distributions of the full data set, which is
clustered around low-earth orbit and not uniform across space.

Upon checking for collisions, we detected three objects in the database that seemed to be
initially colliding, caused by identical TLE values. These were two Soyuz and one resupply
spacecraft docked at the International Space Station, and thus in an identical orbit. We manu-
ally removed two of these from the database, in order to permit performance evaluation of the
algorithms in the case of no collisions, making the full catalog for our evaluation n = 16838
objects.

We evaluate the overall performance of the 4D AABB method on three platforms: an
embedded system with 1GB RAM and an Intel Atom CPU (1.33 GHz), a laptop computer with
16 GB RAM and an Intel i5-5300U CPU (2.30 GHz), and a more powerful workstation with 32
GB RAM and an Intel Xeon 8124M CPU (3.00 GHz). All measurements were performed on
Ubuntu Linux 16.04. We also measured performance with and without partitioning. For the
partitioned versions, we set the number of partitions p to be equal to the number of physical
cores on the laptop and workstation platforms, and used p = 2 for the embedded processor,
since memory was a limiting resource there.

Although applications would need to predict for hours to days of orbit time, the crucial
factor is the ratio of the computed orbit time to the collision detection algorithm runtime. For
ease of experimentation, we fixed the orbit time to a smaller 600 seconds (10 minutes). Since we
were evaluating performance, during measurement we ensured no collisions occurred by using
a sufficiently small object radius. However, because objects in LEO move at 7800 m/s, a small
time step is necessary to prevent the tunneling problem with discrete time collision checking.
We evaluated with a time step of δ = 10−4, so that LEO objects move about 0.78 m per step.
This is reasonable, as we envision collision boxes would be at least 10m to account for sensor
errors.

A log-log plot of the results is shown in Figure 1, with the full table of results given in Table 1.
Both the laptop and workstation platforms are able to propagate the full catalog of objects and
perform collision detection faster than real-time. The partitioned workstation version is about
6x faster than real-time, and can scale to about 65000 objects while remaining faster than real-
time. Even the embedded platform works well with smaller numbers of objects, with n < 1000
being tens of times faster than real-time. This is encouraging since embedded platforms like
swarm robotics could use the approach for on-board collision maneuver prediction.
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Figure 1: Runtimes for the partitioned versions on each platform from Table 1.

Due to the large number of steps (104 steps for each second of orbit time), using the brute
force method and even the basic AABB tree method is completely infeasible for real-time
collision detection for this problem. On the laptop platform with n = 100, the basic AABB
approach would need about 12 hours to finish checking all 10 minutes of orbit time.

5 Related Work

Extensive surveys are available of collision detection methods for graphics and physics applica-
tions [12]. This work falls in the category of space-time intersection methods, but rather than
extruding volumes in 4D, we compute 4D bounding boxes of the space-time paths of objects.
Splitting time to improve accuracy has been used before in swept volume collision detection [5].

We compare our work with static interference detection methods, such as the original AABB
approach [2]. Modifications of the basic AABB method attempt to reuse boxes across time steps,
usually by fattening the boxes by some percentage. The amount of bloating is a problem-specific
parameter, and such methods would be unlikely to work well for the orbit debris scenario, where
velocities are high relative to the object radius. We are similar in a sense to adaptive time-step
methods [6], except that we have per-object time steps. Other than AABB trees, other data
structures are available for collision detection, such as oriented bounding-box (OBB) trees [8].
In this case, boxes can be arbitrarily rotated, and fast collision checking is done using the
separating axis theorem [7]. This can be advantageous since rotated boxes may have less
overapproximation than axis-aligned boxes, so that tree query operations will become more
efficient. Since we use interval arithmetic [11] to reason between time steps, AABB trees seem
better suited for storing the regions of space occupied by objects in intervals of time. Interval
arithmetic methods have also been used in combination with OBB trees to provide continuous-
time collision detection [15]. Sphere hierarchies have also been considered [3].

In this work, we used Kepler dynamics to propagate orbits. Although the focus of this
application was to evaluate the collision detection methods presented, more accurate methods
such as SGP4 [17] also exist for orbits which take into account J2 perturbation due to the Earth
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Table 1: Runtime (seconds) to check 600 seconds of orbit time.

Objs n Embedded Laptop Workstation Embedded Laptop Workstation

(p = 1) (p = 1) (p = 1) (p = 2) (p = 2) (p = 8)

100 3.0 0.7 0.5 2.8 0.7 0.5

150 4.7 1.2 0.7 3.7 1.0 0.6

225 7.4 1.8 1.1 5.8 1.4 0.7

350 12.6 3.1 1.9 10.1 2.5 1.1

500 19.0 4.5 2.9 14.6 3.6 1.4

750 30.8 7.3 4.6 23.8 5.8 2.1

1250 61.7 14.6 9.4 47.3 10.9 3.8

1750 91.4 21.9 14.0 65.4 16.0 4.8

2500 143.2 33.8 21.8 98.4 23.7 7.5

4000 250.2 64.4 38.1 175.0 42.2 12.8

6000 425.4 98.9 64.8 295.6 69.9 20.6

9000 739.3 171.7 113.8 545.7 127.7 36.7

12000 1185.6 268.2 178.7 - 204.2 64.3

16838 - 422.9 281.1 - 323.4 102.2

30000 - 967.7 622.2 - 710.5 209.8

50000 - - - - - 401.9

70000 - - - - - 654.7

not being a perfect sphere, atmospheric drag, the gravity of the Moon and Sun, solar radiation,
and other effects. Since these will modify more than one orbital element, other methods would
be needed to compute occ-int, such as those based on reachability [4]. Still, even our Kepler
approach could be considered as a broad-phase pass to detect potentially-colliding objects for
further analysis with the more accurate propagation methods.

In the original benchmark proposal [10], satellites were initialized using uniform random
values for their orbital elements rather than TLE sets, and only a regular 3D AABB tree
approach was evaluated, although global variable time steps were considered. The 4D AABB
approach is more efficient because it permits each object to have an individual time step.

6 Conclusion

In this work we presented a 4D AABB tree and search space decomposition approach to improve
the efficiency of the collision detection, which can be used directly or as part of the safety
checking step in a verification engine. Using 4D AABB trees is more efficient because it can
attempt to take large time steps on an individual object basis, and only reduce to smaller ones
when potential collisions are detected. We evaluated the approach on a space debris collision
detection benchmark from ARCH 2018, and demonstrated the possibility of online performance
for up to about 65000 orbiting objects, about an order of magnitude improvement from the
method suggested in the benchmark proposal.
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