
EPiC Series in Computing
Volume 64, 2019, Pages 119–128

Proceedings of 28th International Conference
on Software Engineering and Data Engineering

Adaptation of Orthogonal Defect Classification for Mobile
Applications

Osama Barack1 and LiGuo Huang2

1 Southern Methodist University, Dallas, Texas, USA
obarack@smu.edu

2 Southern Methodist University, Dallas, Texas, USA
lghuang@smu.edu

Abstract
As mobile applications have become popular among end-users, developers have intro-

duced a wide range of features that increase the complexity of application code. Orthogonal
Defect Classification (ODC) is a model that enables developers to classify defects and track
the process of inspection and testing. However, ODC was introduced to classify defects
of traditional software. Mobile applications differ from traditional applications in many
ways; they are susceptible to external factors, such as screen and network changes, notifi-
cations, and phone interruptions, which affect the applications’ functioning. Therefore, in
this paper, the ODC model will be adapted to accommodate defects of mobile applications.
This allows us to address newly introduced application defects found in the mobile domain,
such as energy, notification, and Graphical User Interface (GUI). In addition, based on the
new model, we classify found defects of two well-known mobile applications. Moreover,
we discuss one-way and two-way analyses. This work provides developers with a suitable
defect analysis technique for mobile applications.

1 Introduction
Due to the importance and popularity of services that mobile applications provide, mobile ap-
plications require a short and accurate cycle of defect classification that is adapted to the nature
of mobile environments. Ram Chillarege [5] introduced the concept of Orthogonal Defect Clas-
sification (ODC) for traditional software and defined it as “a concept that enables in-process
feedback to developers by extracting signatures on the development process from defects”. ODC
was originally introduced to classify defects of traditional software, whereas the nature of mo-
bile applications differs somewhat. In mobile environments, new functionalities and features
were developed, which introduced additional factors such as energy, network, incompatibility,
Graphical User Interface (GUI), interruption, and notification. Defects originating from these
factors need to be classified for better defect resolution. Therefore, to benefit from the ODC
concept, ODC needs to be adapted to attend to these new factors.

In this paper, we adapt ODC to mobile applications by considering the characteristics of the
mobile environment. This includes adding the new factors to the ODC framework to classify
defects in order to improve the reliability of mobile applications after release. In addition, we

F. Harris, S. Dascalu, S. Sharma and R. Wu (eds.), SEDE 2019 (EPiC Series in Computing, vol. 64),
pp. 119–128

Adaptation of ODC for Mobile Applications Barack and Huang

provide one-way and two-way analyses to accommodate the results of the classification process.
The provided classification process and analyses are based on defect reports of two mobile
applications, Tomdroid and Telegram. Tomdroid [2] is a note-taking application that has a
unique wiki-style display in the Android platform, and Telegram [7] is a cloud-based instant
messaging and voice over IP service.

The remainder of this paper is structured as follows: Section 2 provides related work. Section
3 explains our proposed method to adapt ODC to mobile environments. Section 4 presents a
case study. Section 5 provides an analysis of the results and a discussion. Section 6 presents
the conclusions and future work that can be achieved in this field.

2 Related Work

With the widespread presence of traditional software, Chillarege et al. [5] [4] introduced the
ODC concept to classify defects and find their root causes. This allows for reaching a short
cycle of defect analysis during the software development process.

With the internet and web applications have become worldwide providers of online services,
Ma and Tian [13] presented an adaptation of ODC for web errors based on defects found in web
logs, and they provided analyses of their results to improve the reliability of web applications.

Cloud computing is the new revolution of web services by providing Software as a Service
(SaaS). Alannsary and Tian [1] proposed a defect analysis framework by adapting ODC to SaaS.
The new framework considered new characteristics introduced in SaaS, such as multi-tenancy
and isolation.

With the lack of defect classifications during black-box testing, Li et al .[11] presented a
new defect classification framework called Orthogonal Defect Classification for Black-box Defect
(ODC-BD). The proposed framework aims to help black-box defect analyzers and black-box
testers, while enhancing the efficiency of the analysis and testing processes.

Wasserman [14] provided an overview of research issues in software engineering for mo-
bile software development. The overview included development processes, tools, user interface
design, application portability, quality, and security.

Different approaches inspired by the new types of faults and failures that arise in mobile ap-
plications during and after the development process have been discussed. Holl and Elberzhager
[9] classified mobile application failures and defined the relationships between their failures and
various aspects of their faults. Lelli et al. [10] proposed a model that identifies and classi-
fies GUIs’ faults. In their work, they presented an empirical analysis and assessment for their
model. However, a classification framework that does not cover all types of mobile application
defects hinders in-process feedback from being fast and accurate.

Existing studies provided helpful frameworks to classify traditional software defects in gen-
eral. However, due to the popularity and high demand of mobile applications, classifying mobile
application defects is crucial to software development. Therefore, we propose adapting the ODC
concept to mobile environments to classify the new types of defects, improve in-process feed-
back, and present the results and analyses of applying our framework to bug reports of mobile
applications.

3 New Methodology

When mobile software development started, mobile applications were small with only a few
thousand lines of code compared to traditional software. Since then, mobile software devel-

120

Adaptation of ODC for Mobile Applications Barack and Huang

Type Description Process As-
sociations

Function Capability, product interface, interface with
hardware or global data structures (requires a
formal design change)

Design

Interface Errors from interactions with other compo-
nents, modules or device drivers via macros,
call statements, control blocks, or parameter
lists.

LLD

Checking Program logic that failed to validate data and
values before they are used

LLD or Code

Assignment A few lines of code errors, such as initialization
of control blocks or data structure

Code

Timing/Serialization Real-time resources LLD
Build/Package/Merge Library systems, management of changes, or

version control
Library
Tools

Documentation Publication and maintenance Publications
Algorithm Errors include efficiency or correctness prob-

lems of tasks or data structures
LLD

Energy Exhausting battery energy through ex-
cessive usage of mobile device compo-
nents such as CPU, memory, sensors,
etc.

LLD

Network Improper handling of network connec-
tions

Code or
LLD

Incompatibility Mobile application is not customized for
the mobile device, operating system, in-
teractions with other applications, or
supporting mobile features

LLD

GUI Errors generated from end-user inter-
face or screen changes

Design,
LLD, or
Code

Interruption Improper handling of receiving calls or
messages, activating screen saver state,
or switching between applications

Components
or Code

Notification Errors from application alerts, including
sound, vibration, visual, and text

LLD or
Code

Table 1: Adapted ODC for Mobile Environments

121

Adaptation of ODC for Mobile Applications Barack and Huang

Figure 1: Mapping of Mobile Application Defect Report components to ODC components

opment has grown exponentially and has become more complex. Software engineering and
software quality were applied to mobile software development to ensure its accuracy. This in-
troduced new requirements that need to be considered during the development process, such as
power consumption, interacting with other mobile applications and environments, screen and
sensor handling, and limitations of mobile devices.

The characteristics of mobile application environments were examined and studied to iden-
tify the differences between defects of traditional software and those of mobile applications. In
the original ODC, defect types were characterized as function, interface, assignment, checking,
timing/serialization, build/package/merge, and algorithm. However, there are new defects that
cannot be classified using the original ODC. Therefore, the proposed framework caters for mo-
bile application defects. As shown in bold in Table 1, we added the following defect types to
the original ODC. A brief description for each defect type is provided below:

1. Energy : Mobile devices consume energy from batteries to run, whereas PCs use power.
Due to excessive runs of application code, defects start arising by consuming more energy.

2. Network : In mobile environments, networks change rapidly. Due to improper handling
of these changes, mobile applications produce defects and cause crashing or freezing.

3. Incompatibility : Due to the variety of mobile devices and their operating systems,
mobile environments do not support some mobile applications or their features; therefore,
defects are produced from lacking to consider mobile environment limitations.

4. GUI : There is a strong relationship between user interface and mobile screen properties
such as size, touch, landscape, color, brightness, etc. Since the user interface is essential
when working with mobile applications, in our proposed framework, we extracted the
user-interface subcategory from the function defect type and created a new defect type
called GUI.

5. Interruption : Mobile devices get interrupted by calls, messages, alerts, etc. Improper
handling of these interruption may cause defects that make mobile applications stop

122

Adaptation of ODC for Mobile Applications Barack and Huang

Severity Tomdroid Telegram
of Defects # of Defects

Critical 5 5
High 52 21
Medium 36 33
Low 38 9

Table 2: One-Way Analysis Based On Defect Severity

responding.

6. Notification : Many different types of mobile notifications may produce defects by giving
false notifications (time, place, or content).

To properly classify defects using bug reports, components of these reports (title, description,
reproduce, and importance) are mapped to the components of the ODC model (type, impact
area, trigger, source, and severity) as illustrated in Figure 1. This enables performing one-way,
two-way, and multi-way analyses.

4 Case Study

Canonical has developed a website and a web application called Launchpad [12] to allow open-
source software to be developed and maintained by end-user developers. Launchpad has 42,947
projects and 1,779,680 bug reports. We chose two popular mobile applications from Launchpad.
First, the Tomdroid [2] is a note-taking application that has a unique wiki-style display in the
Android platform. In addition, Tomdroid has a format that enables syncing notes with the
Tomboy application [6]. Second, the Telegram [7] is a cloud-based instant messaging and voice-
over IP service. The reporting bug site categorizes bugs by severity (critical, high, medium, low,
wishlist, and undecided). Tomdroid had 220 bug reports [3], and Telegram had 246 bug reports
[8]. In our study, we only considered bugs that had severity levels from critical to low. Wishlist
bugs were discarded since they were not considered defects. Undecided bugs were ignored due
to they were not categorized. Therefore, 131 defects for Tomdroid and 68 defects for Telegram
were applicable for our case study. Furthermore, each bug was manually studied and classified
based on one of the defect types available in the proposed ODC framework. This classification
process was preformed by three individuals with computer science backgrounds specifically in
software engineering.

5 Analyses of the Results and a Discussion

Classifying defects of mobile applications provides one-way, two-way, and multi-way analyses.
We analyzed the descriptions and importance of the bug reports for the selected mobile applica-
tions to identify the severity level and type for each defect. In addition, we performed one-way
analysis by examining one of the proposed ODC attributes, such as type and/or severity, in
order to focus on areas where defects were highly dense. Moreover, we performed two-way
analysis by examining the intersection between type and severity to explore areas that were not
covered in the one-way analysis.

123

Adaptation of ODC for Mobile Applications Barack and Huang

Type Tomdroid Telegram
of Defects # of Defects

Function 6 14
Interface 3 1
Checking - -
Assignment 47 17
Timing/Serialization 11 -
Build/Package/Release 1 1
Documentation - -
Algorithm 3 2
Energy - 2
Network - 5
Incompatibility 29 5
GUI 26 10
Interruption 2 1
Notification 3 10

Table 3: One-Way Analysis Based On Defect Type

Severity Type # of Defects

Critical
Assignment 1
Timing/Serialization 1
Incompatibility 3

High

Assignment 20
Timing/Serialization 7
Incompatibility 17
GUI 6
Notification 2

Medium

Function 2
Assignment 15
Timing/Serialization 2
Build/Package/Release 1
Algorithm 2
Incompatibility 5
GUI 7
Interruption 2

Low

Function 4
Interface 3
Assignment 11
Timing/Serialization 1
Algorithm 1
Incompatibility 4
GUI 13
Notification 1

Table 4: Tomdroid: Two-Way Analysis Based On Defect Severity and Type

124

Adaptation of ODC for Mobile Applications Barack and Huang

Figure 2: Tomdroid: Two-Way Analysis Based On Defect Severity and Type

Figure 3: Telegram: Two-Way Analysis Based On Defect Severity and Type

125

Adaptation of ODC for Mobile Applications Barack and Huang

Severity Type # of Defects

Critical
Network 2
Incompatibility 2
Notification 1

High

Function 1
Assignment 4
Algorithm 1
Energy 1
Network 2
Incompatibility 3
GUI 5
Interruption 1
Notification 3

Medium

Function 11
Interface 1
Assignment 9
Algorithm 1
Energy 1
Network 1
GUI 3
Notification 6

Low

Function 2
Assignment 4
Build/Package/Release 1
GUI 2

Table 5: Telegram: Two-Way Analysis Based On Defect Severity and Type

5.1 One-Way Analysis

One-way analysis can be done by analyzing one attribute of the ODC framework at a time.
The severity and type defect attributes are used to find those areas with high defect rates that
need attention to reduce the number of defects and eliminate their root causes.

Table 2 illustrates the classification of defects by severity level for both mobile applications.
Most defects in the Tomdroid application were produced with high severity, indicating that
developers should focus on these defects and find their root causes. However, no red flags were
raised for the Telegram application since most defects were classified as medium severity.

Table 3 illustrates the classification of defects by the type attribute. For both applications,
most defects were produced for the assignment type, raising a red flag about the level of the
programmers’ skills and experience. For Tomdroid, the second most found defects were pro-
duced for the incompatibility and GUI defect types, indicating that developers need to be aware
of the application’s interactions with different systems, and improve the handling of the user
interface and device screen. For Telegram, The function defect type showed that the software
development stages-analysis and design-were producing the second highest number of defects
in the application. In addition, the GUI and notification defect types also had high numbers of
defects, indicating that the handling of the application notifications need to be improved, and
the user interface and screen states need to be properly designed and adjusted to the nature of
the mobile environment.

126

Adaptation of ODC for Mobile Applications Barack and Huang

5.2 Two-Way Analysis
Two-way analysis can be done by analyzing the intersection between two of the ODC attributes,
allowing the information that is related to the defects to be displayed, identify their root causes,
and find the best solutions. In this case study, we analyzed the intersection between the type
and severity defect attributes.

Table 4 and Figure 2 illustrate that the high rate of defects was concentrated in the in-
tersection between the attribute severity: high and the types: assignment and incompatibility.
This confirms that programmers are injecting the code with faults as shown in the one-way
analysis, which may indicate their lack of programming experience or skills. This might also
suggest improving the code testing stage before the mobile application release.

Table 5 and Figure 3 illustrate that the high rate of defects was concentrated in the in-
tersection between the attribute severity: medium and the types: function, assignment, and
notification. Since the severity was medium, this does not raise much concern. However, the
types function and notification indicate that the analysis and design stages need to be performed
with more consideration of the mobile environment’s characteristics and nature.

5.3 Discussion
This paper demonstrated adapting the ODC concept to mobile environments to confirm its
feasibility. Defects generated from mobile environments and related to new types, such as energy
and notification, can be classified by the original ODC. However, it will provide misleading
information related to the defect’s origin and may lead to not exposing the root cause, which
can prevent finding the best solution. Exposing mobile application defects by implementing
the proposed ODC framework will benefit developers in acquiring short and accurate in-process
feedback. In addition, classifying the two mobile application defects proved that the proposed
ODC adaptation is significantly effective for defect classification and resolution, specifically
when implementing one-way and two-way analyses.

6 Conclusions and Future Work
In this paper, we proposed adapting the ODC model to mobile environments to classify de-
fects during software development and after release. New characteristics and factors of mobile
environments and applications were studied and considered, which led to adding new defect
types to the original ODC framework. In addition, a case study was presented where defects
from bug reports were extracted and classified based on the proposed framework. Moreover,
we provided one-way and two-way analyses and discussed their results. Our work will make
in-process feedback more accurate during mobile software development and improve software
reliability. In future work, we will classify defects of mobile applications from different mobile
environments in order to generalize our findings.

References
[1] M Alannsary and J Tian. Cloud-odc: Defect classification and analysis for the cloud. In Proceedings

of the International Conference on Software Engineering Research and Practice (SERP), page 71.
The Steering Committee of The World Congress in Computer Science, 2015.

[2] Olivier Bilodeau. Tomdroid application. https://launchpad.net/tomdroid.
[3] Olivier Bilodeau. Tomdroid bug report. https://github.com/tomboy-notes/tomdroid/issues.
[4] Ram Chillarege. Odc-a 10x for root cause analysis. 2006.

127

https://launchpad.net/tomdroid
https://github.com/tomboy-notes/tomdroid/issues

Adaptation of ODC for Mobile Applications Barack and Huang

[5] Ram Chillarege, Inderpal S Bhandari, Jarir K Chaar, Michael J Halliday, Diane S Moebus, Bon-
nie K Ray, and M-YWong. Orthogonal defect classification-a concept for in-process measurements.
IEEE Transactions on software Engineering, 18(11):943–956, 1992.

[6] Alex Graveley. Tomdroid application. https://github.com/tomboy-notes/tomboy.
[7] Tiago Salem Herrmann. Telegram application. https://launchpad.net/telegram-app.
[8] Tiago Salem Herrmann. Telegram bug report. https://bugs.launchpad.net/telegram-app.
[9] Konstantin Holl and Frank Elberzhager. A mobile-specific failure classification and its usage to

focus quality assurance. In 2014 40th EUROMICRO Conference on Software Engineering and
Advanced Applications, pages 385–388. IEEE, 2014.

[10] Valéria Lelli, Arnaud Blouin, and Benoit Baudry. Classifying and qualifying gui defects. In 2015
IEEE 8th International Conference on Software Testing, Verification and Validation (ICST), pages
1–10. IEEE, 2015.

[11] Ning Li, Zhanhuai Li, and Xiling Sun. Classification of software defect detected by black-box
testing: An empirical study. In 2010 Second World Congress on Software Engineering, volume 2,
pages 234–240. IEEE, 2010.

[12] Canonical Ltd. Launchpad. https://launchpad.net.
[13] Li Ma and Jeff Tian. Web error classification and analysis for reliability improvement. Journal of

Systems and Software, 80(6):795–804, 2007.
[14] Tony Wasserman. Software engineering issues for mobile application development. FoSER 2010,

2010.

128

https://github.com/tomboy-notes/tomboy
https://launchpad.net/telegram-app
https://bugs.launchpad.net/telegram-app
https://launchpad.net

	Introduction
	Related Work
	New Methodology
	Case Study
	Analyses of the Results and a Discussion
	One-Way Analysis
	Two-Way Analysis
	Discussion

	Conclusions and Future Work

