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Axiomatizability, the finite model property (FMP), and decidability are some of the most
frequently studied properties of non-classical logics. One of the first general methods of axiom-
atizing large classes of superintuitionistic logics (si-logics for short) was developed by Jankov
[8]. For each finite subdirectly irreducible Heyting algebra A, Jankov designed a formula that
encodes the structure of A. The main property of the Jankov formula y(A) is that a Heyting
algebra B refutes x(A) iff A is isomorphic to a subalgebra of a homomorphic image of B. In [9)
Jankov utilized this method to show that there are continuum many si-logics; in fact, continuum
many si-logics axiomatized by Jankov formulas. However, not every si-logic is axiomatizable
by Jankov formulas.

Model-theoretic analogues of Jankov formulas were developed by de Jongh [10] for si-logics
and by Fine [6] for modal logics. In [7] Fine introduced the concept of a subframe logic, ax-
iomatized all transitive subframe logics by means of subframe formulas, and proved that each
transitive subframe logic has the FMP. Zakharyaschev generalized Fine’s approach, developed
the model-theoretic theory of canonical formulas (in [I2] for si-logics and in [11I, [13] for modal
logics), and showed that each si-logic and each transitive modal logic is axiomatizable by canon-
ical formulas. See [5, Ch. 9] for an overview of these results.

In this talk, which is based on joint work with G. Bezhanishvili [T}, 2 [3, 4], T will discuss
an algebraic approach to the method of canonical formulas. I will mostly concentrate on the
case of si-logics. But I will also review the case of modal logics and possible generalizations to
substructural logics.

For si-logics the method boils down to identifying appropriate locally finite reducts of Heyt-
ing algebras. The variety of Heyting algebras has two well-behaved locally finite reducts, the
variety of bounded distributive lattices and the variety of implicative semilattices. The variety
of bounded distributive lattices is generated by the —-free reducts of Heyting algebras, while
the variety of implicative semilattices by the V-free reducts. Each of these reducts gives rise
to canonical formulas that generalize Jankov formulas and provide an axiomatization of all
si-logics.

For a finite subdirectly irreducible Heyting algebra A and D C A2, we design the (A, —)-
canonical formula of A that encodes fully the structure of the V-free reduct of A, and only
partially the behavior of V. We also design the (A, V)-canonical formula of A that encodes
fully the structure of the —-free reduct of A, and only partially the behavior of —. We prove
that every si-logic is axiomatizable by (A, —)-canonical formulas as well as by (A, V)-canonical
formulas. We discuss the similarities and differences between these two kinds of formulas. Via
the generalized Esakia duality of Heyting algebras and (A, —)-homomorphisms, we show that
(A, —)-canonical formulas are algebraic analogues of Zakharyaschev’s canonical formulas.

One of the main ingredients of our formulas is a designated subset D of pairs of elements
of a finite subdirectly irreducible Heyting algebra A. The obvious two extreme cases are when
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D =0or D= A% When D = A? we show that the (A,—) and (A, V)-canonical formulas of
A are equivalent to the Jankov formula of A. On the other hand, when D = (), the (A, —)-
canonical formulas produce the algebraic counterpart of subframe formulas, which axiomatize
all subframe si-logics. In the (A, V)-case, D = () produces a new class of si-logics, which we
term stable si-logics. As in the case of subframe logics, we prove that all stable si-logics have
the FMP. We show that there are continuum many stable si-logics, and give examples showing
that the classes of stable, subframe, and join-splitting si-logics are incomparable.
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