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Abstract

Gene interactions play a fundamental role in the proneness to cancer. However, detect-
ing and ranking these interactions is a complex problem due to the high dimensionality of
genomic data. Hence, we aim to find patterns composed of multiple features to molecu-
larly characterize breast cancer subtypes from the integration of different omics datasets
using a data mining approach. To retrieve biological understanding from these compu-
tational results, we developed IBIF-RF (Importance Between Interactive Features using
Random Forest), a new metric capable of assessing and holistically ranking the importance
of genomic interactions without any prior knowledge of key feature combinations. A set
of 247 top-performing features from transcriptomic, proteomic, methylation, and clinical
data were used to investigate interactive patterns to classify breast cancer subtypes us-
ing over 1150 samples. IBIF-RF metric allowed the extraction of 154312, 190481, and
463917 combinations of variables for TCGA, GSE20685, and GSE21653 datasets. Single
genes, MLPH and FOXA1, were the most frequently identified variables across all datasets
followed by some two-gene interactions such as CEP55-FOXA1 and FOXC1-THSD4. More-
over, IBIF-RF metric allowed the definition of two sets of genes frequently found together
(1: FOXA1, MLPH, and SIDT1, and 2: CEP55, ASPM, CENPL, AURKA, ESPL1, TTK,
UBE2T, NCAPG, GMPS, NDC80, MYBL2, KIF18B, and EXO1).

1 Introduction

Breast cancer (BC) is a heterogeneous disease and detecting interaction patterns that could lead
to new understandings of biological mechanisms is necessary. Detecting pattern interactions
is a problem due to the dimensionality of genomic data and the extensive number of possible
predictive rules that can be extracted. Nonetheless, there are some techniques used to detect
interactions proven to perform well in detecting gene interactions, such as Neural Networks
(NNs) [1], Support Vector Machine (SVM) [12], and Random Forests (RF) [6]. Many of these
methods have the ability to classify complex classification problems. For example, the NNs
method is focused on mimicking the brain’s ability to solve problems by connecting a large
number of neurons. Though NNs have done well in certain applications, its black-box nature
and computational load could make it unattractive for applications with biological data. SVM
is another extensively studied classification model that achieves high-performance metrics using
hyperplanes and non-probabilistic binary linear classification methodology. This approach has
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a proven record of working very well in classification problems using complex biological data,
however, their outputs can be affected when working with genetic heterogeneity resulting in a
lack of interpretability. Moreover, tuning its large amounts of parameters can lead to extensive
computational efforts in terms of time and hardware. Among other methods commonly used in
the field are the ensemble methods such as RFs. RF models are attractive to study gene inter-
actions since it has several characteristics that fit very well with the requirements of molecular
datasets [3]. This type of ensemble can model diverse types of variables with no restrictions on
distributional assumptions using a nonlinear approach. Though RF is often categorized as a
black-box approach due to its inherent bagging methodology, RF can be interpretable because
it can rank the features through the estimation of variable importance measures (VIM) and can
evaluate the average marginal effect of a feature in a given class through partial dependency
plots (PDPs). Due to these advantages and the capacity of modeling an ensemble of the tree
with different random subsets in each, it becomes a solid candidate for discovering interactions.

Therefore, this work uses the ensemble methodology of RF to model breast cancer subtypes
(BCs) across thousands of gene expression profiles to focus on measuring those detected inter-
actions and their importance by using a new metric. The assessment of those interactions is
critical to interpreting its biological meaning, expand current knowledge, and design further
experiments to validate the effects of those significant patterns. It is computationally demand-
ing to calculate all possible rules with its integrative contributions in the model when rules are
composed of multiple features each with many possibilities.

In 2014, Deng [4] introduce a framework to extract rules from each tree in the RF ensemble
and listing their frequency and associated error which is very useful for interpretation. Nonethe-
less, this list of rules is often quite extensive and its summarized composition can yield diverse
rules requiring long hours of manual inspection to extract biological meaning from them. More-
over, Jones and Linder [7] extended the implementation of PDPs from the average marginal
contribution of a feature to estimate the marginal combination of a pair of features including
a visualization aid. Visual methods for biological interpretation are of great interest and their
method provides an alternative to visualize complex patterns from combinations of features, in
their case, a pair of variables. Nonetheless, to be able to implement their algorithm the user
must know in advance which pairs of features to analyze. Also, it is hard to interpret partial
dependence for high-order interactions. Hence, a new metric called Importance Between Inter-
active Features using RF (IBIF-RF) capable to assess the most important interactions extracted
by RFs was designed and implemented in the context of BCs classification.

2 Methods

The multi-step procedure can be summarized in Figure 1. This approach consists of the fol-
lowing steps: (1) data selection, (2) extraction and integration of important variables, and (3)
development and implementation of the IBIF-RF metric.

2.1 Datasets and sources

We studied gene expression, protein, methylation and subtype information from The Cancer
Genome Atlas (TCGA) public repository (http://cancergenome.nih.gov/)[9]. The response
variable of interest in this study was BCs classification (basal, HER2, luminal A, luminal B,
normal) which was provided via PAM50 genomic analysis [10]. For validation purposes, we
evaluated the classification performance of extracted variables in the integrative model using

12



Ranking Variable Combinations to Characterize Breast Cancer Subtypes Narvaez-Bandera and Torres-Garćıa

Figure 1: Methodology Framework. The methodology consists of the following steps: extract
and integrate important variables, validate important variables, implement the IBIF-RF metric,
and interpret the possible biological meaning of results.

two BC microarray datasets from Gene Expression Omnibus repository (GEO), GSE20685, and
GSE21653, with 327 and 266 BC samples, respectively.

2.2 Feature Selection

To extract relevant variables that could distinguish between different subtypes, we previously
applied five different feature selection (FS) methods: Information Gain (IG), ReliefF, Support
Vector Machine based on Recursive Feature Elimination (SVM-RFE), Correlation-based Fea-
ture Selection (CFS), and FAST clustering-based using FSelector and OmicsMarkeR R packages
and Weka software, and assessed through the following classifiers: k-Nearest Neighbor (KNN),
SVM and RF. These proposed methods were selected based on their ability to work with
high-dimensional data and their previous use in this field. In this previous work, 247 features
from protein, methylation and gene expression were extracted using the TCGA dataset and
when integrated using RF, it reached Area Under the Curve (AUC) of 0.86 and an error rate
of 0.09 while AUC/error rates values for GSE20685 and GSE21653 were 94.69%/12.23% and
84.92%/15.79%, respectively using only 211 features since not all 247 features were found in
these transcriptomics-only platforms [9].

There are many sets of important features that could be evaluated further but due to the
computational complexity of extracting rules from RF models, the previously 211 features were
considered to extract relevant interactions and evaluate their significant effect predict subtypes.
Lastly, we used the reduced list of important features to infer its biological meaning.

2.3 Importance Between Interactive Features using Random Forest
(IBIF-RF)

We proposed an IBIF-RF metric that measures the prevalence of a set of features through their
recurrence in the ensemble model constructed using RF methodology. The interaction impor-
tance will be assessed based on the recurrence of a branch or rule through all the decision trees
in the forest towards a particular class x (see Figure 2). To achieve this, an algorithm extracts
the rules constructed within the RF classifier, calculates the frequency of the combination of
features found across all rules and ranks them as described in Algorithm 1.
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Figure 2: Overview of Importance between Interactive Features using Random Forest (IBIF-
RF). The input is the set of important variables extracted from the integration of different types
of omics databases. This plot shows an example of the recurrence of a branch (set of features)
through all the trees in the forest toward class x. In this example, variables i, j, k are present
in three different trees (order does not matter). The metric counts and ranks the prevalence of
a variable combination in a rule through their recurrence in the RF model.

The algorithm starts with the construction of an RF model that internally creates subsets of
randomized data samples to construct an ensemble of trees. The BootstrapSampling function
is an RF internal function that returns a sample that has been taken from N variables with
replacement from the full set. The returned samples will be used to build a set of decision
trees. The function called BuildsRandomForest runs an RF classifier consisting of a given set of
trees, each constructed on a bootstrapped sample set internally using the BootstrapSampling
function. These trees are grown and each predictive value is averaged across all trees to provide
a final prediction. These trees are translated into classification rules for specific classes. These
rules are extracted using the getTree function available in the randomForest R package [8].

Finally, the frequency of these rules composed of features and combinations of features are
tallied across all trees to measure its prevalence in the forest. Once all rules were extracted,
each rule was split into their individual components (i.e. features and classes) and stored for
later use. Duplicated rules within a tree were removed to eliminate redundancies. Finally, this
set of ordered variables are stored in a new table, which also indicates the number of the tree
and the prediction of the rule. Then, the prevalence of combined variables in a rule is calculated
from this table and ordered from highest to lowest frequency to identify interaction patterns
(i.e. combination of features) with the highest recurrence. This methodology was implemented
using multiple omics datasets available from TCGA and validated using two external gene
expression datasets from the GEO data repository (GSE20685 and GSE21653). RF parameters
for all models constructed were optimally tuned.

3 Results and Discussion

3.1 Extracted variable combinations

IBIF-RF metric allowed the extraction of 154312, 190481, and 463917 combinations of variables
for TCGA, GSE20685, and GSE21653 datasets, respectively using the 211 previously extracted
genes. All these combinations of variables were ranked by their frequency in the extracted rules
from the entire ensemble. In at least two out of the three datasets in the study, the variable
combinations with the highest frequency were those of second and third-order (i.e. 2 and 3
genes in a combination). Although, we obtained rules of higher-order (up to 12 genes) these

14



Ranking Variable Combinations to Characterize Breast Cancer Subtypes Narvaez-Bandera and Torres-Garćıa

Input :
Set D ← (X,Y );

X ← m selected variables |m = 1, 2, . . . ,M ;
Y ← response variable levels;
T ← Number of trees |t = 1, 2, . . . , T ;

STEP : Build a Random Forest model from dataset D and tuned-up parameters T and M ;
Require: RFt ← BuildsRandomForest(Dt, T,M);
for t← 1 to T do

R(t)← getTree(RFt)
end
Output : R(t)← for all decision tree t |r(rules) = 1, 2, . . . , Rt;

Rt all possible rules in tree t;
STEP : Extract all unique variable combinations in each tree t for all T trees;
for i← 1 to T do

for r ← 1 to Rt for a given tree t do
CF (r)(i)← concatenate features in (Rt(r))

end
for x in CF(t) do

if x is not in CF(t) then
V C(t).append(x)

end

end

end
Output : V C(t) set of unique variable combinations for each tree t |r = 1, 2, . . . , Rt;
STEP : Extract all unique variable combinations in the forest;
Define : V CF ← set of unique variable combinations in the forest;
for i← 1 to T do

for y in V C(i) do
if y is not in V CF then

V CF .append(y)
end

end

end
Output : V CF ;
STEP : Determine the frequency of unique variable combinations in the forest across all trees;
Define : F (V CF )← frequency of unique variable combinations in the forest;
for z in V CF do

for i← 1 to T do
if z is in V C(i) then

F (V CF )[z] = F (V CF )[z] + 1
end

end

end
Output : F (V CF );
STEP : Rank unique variable combinations in the forest;
Define : Rank ← importance ranking of unique variable combinations;
Rank = V CF .order(by=F (V CF ),descending);
Output : Rank;

Algorithm 1: Pseudocode IBIF-RF

were less frequent, but still important to enable the prediction of BCs.

We claim that a significant combination of variables extracted from gene expression to
discriminate BCs must be found in all three gene expression databases (TCGA, GSE20685,
and GSE21653). Consequently, we found 156 variable combinations in common between these
datasets. MLPH and FOXA1 rules were found at the top list focusing on discriminating basals
from other subtypes as shown in Table 1. These single genes were the most frequently identified
variables across all datasets followed by some two-gene interactions. Many of these two-gene
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combinations included MLPH or FOXA1 with other genes as an interacting pattern with specific
expression behaviors characterizing many subtypes (See Table 2).

Table 1: Top common rules extracted by IBIF-RF with their frequency across all datasets.

# Rules TCGA
GSE
21653

GSE
20685

Total
freq.

1 MLPH 237 8 56 301
2 FOXA1 109 22 8 139
3 CEP55-FOXA1 3 54 55 112
4 FOXC1-THSD4 11 2 95 108
5 FOXA1-TTK 11 45 46 102
6 MLPH-NOSTRIN 1 2 87 90
7 ASPM-FOXA1 2 47 39 88
8 CENPL-FOXA1 5 11 71 87
9 AURKA-FOXA1 6 43 24 73
10 MLPH-TTK 3 25 45 73
11 ESPL1-FOXA1 12 33 18 63
12 ASPM-FOXC1 3 10 46 59
13 FOXA1-GMPS 10 9 38 57
14 CEP55-MLPH 5 24 25 54
15 FOXC1-KIF18B 10 4 38 52

Table 2: Top genes biological insights using GeneCard (GC) and PubMed (P).

Gene
GC

P
Related pathways Diseases associated

Assoc.
w/ BC

MLPH
Deregulation of Rab and Rab Effector
Genes in Bladder Cancer

Griscelli Syndrome, Type 3 and
Osteogenesis Imperfecta, Type Xv

No 3

FOXA1

Embryonic and Induced Pluripotent
Stem Cell Differentiation Pathways
and Lineage-specific Markers and
FOXA1 transcription factor network

Estrogen-Receptor Positive BC
and Luminal Breast Carcinoma.

Yes 221

SIDT1 No data available No data available No 1
CEP55 Cytoskeletal signaling&DNA damage No data available No 7

ASPM No data available

Microcephaly, Primary, Autosomal
Recessive and Autosomal Recessive
Primary Microcephaly. Upregulated
in several types of cancer:
in particular, brain tumors

No, w/
cancer

8

CENPL Metaphase, Anaphase and Cell Cycle Seckel Syndrome 1 No 0

AURKA
Integrated BC Pathway
and Regulation of PLK1 Activity at
G2/M Transition

Colorectal Cancer and Colorectal
Adenocarcinoma

No, w/
cancer

177

ESPL1 Metaphase, Anaphase and Cell Cycle Fallopian Tube Disease&Salpingitis No 9

TTK RB in Cancer and DNA Damage Chronic Polyneuropathy
No, w/
cancer

70

UBE2T
Fanconi anemia pathway and
Metabolism of proteins

Complementation Group T and
Ube2t-Related Fanconi Anemia.

No 4
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3.2 Analysis and discussion of extracted rules

These 156 variable combinations generated in all three datasets are composed of 73 genes.
Relevant information about related pathways, associated diseases and supporting literature
articles on these 73 common genes were searched (10 of those are listed in Table 2). Ac-
cording to the PubMed engine search on May 16, 2017, we found that 42 out of the 73 genes
(57.53%) have more than six published articles related to BC. For instance, the androgen recep-
tor (AR) gene, has over 2000 published papers associated with BC. Also, eight genes (FOXA1,
MUCL1, GREB1, TFF1, ESR1, AR, BCL2, GRB7) are directly associated with BC according
to GeneCards Human Gene Database (Rebhan et al, 1998). This result supports the sensitivity
of our methodology to detect genes that are known to play a key role in BCs identification
and understanding. Furthermore, we found genes with little or no publishable track based on
this 2017 PubMed search. Nine of those genes (CENPL, RERGL, TBX19, KCMF1, ADCY4,
NOSTRIN, CMTM7, SCCPDH, and DSCC1) did not show associated literature in the initial
search, whereas 22 of them have between 1 and 5 published studies linked to BC. But since
that search in 2017 until now in late 2019, there are some original discoveries linking some
of these genes to breast cancer. For example, ADCY4 was detected as a biomarker for breast
cancer through epigenetic studies [5] and homolog genes for CENPL such as CENPI have shown
correlations with poor prognosis for ER+ cases [11]. Still, to this date, the function of those
extracted genes is not well understood. Therefore, these genes are clearly strong candidates for
more in-depth explorations of their implications in the BCs.

The expression behavior of the 73 common genes across samples the different five sub-types
is shown in Figure 3(a,b). The predictive importance of the 156 common variable combinations
from those 73 genes can be observed based on the expression similarity across the two validation
datasets shown in Figure 3(a). For example, MLPH and FOXA1 are relevant to differentiate
basal subtypes because of their distinct expression levels, which are always less expressed (bright
red) for the basals than for any other subtype. Additionally, the third rule, CEP55-FOXA1,
characterizes three subtypes: basal, normal and HER2 with distinguishable combinations of
expression. From the common variable combinations, we observe two sets of genes with similar
behavior (i.e. blocks), and that the combinations of the variables are formed by genes between
blocks and not within the same block. The two blocks of genes are formed by FOXA1, MLPH
and SIDT1 genes as block 1, and the second by CEP55, ASPM, CENPL, AURKA, ESPL1,
TTK, UBE2T, NCAPG, GMPS, NDC80, MYBL2, KIF18B, and EXO1. These genes show
evident normalized expression differences across subtypes. The first block is less expressed
across all basal samples with a significant change in values when compared with other subtypes
while the second group shows less expression in luminal A samples.

Furthermore, to estimate the high expression correlation, within these blocks we calculated
Pearson and Spearman correlation metrics for genes within the same blocks. For genes in the
first block, MLPH and FOXA1 showed a Pearson correlation value of 0.860, 0.892 and 0.6715 for
GSE20685, GSE21653, and TCGA, respectively. Also, the SIDT1 gene with MLPH or FOXA1
shows a strong positive correlation among the GSE datasets (0.74) but lower values for the
TCGA (average 0.35). Similarly, for block 2, the correlation between these genes was highest
for the GSE datasets (average 0.80) than for TCGA (0.65). These results highlight the high
correlation between some genes (i.e. genes blocks) and allow us to suggest that the number of
important variables found in the integrative model can be reduced considerably since, between
blocks, the genes exhibit similar behavior and may provide the same degree of information
regarding the response variable. However, their biological impact must be evaluated as well in
terms of the biological relationships among them.
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Figure 3: (a) Heatmap for Z-scores of gene expression for GSE20685, GSE21653 and TCGA
datasets. Rows of each heatmap correspond to the 73 important genes shown in the same order
for all datasets. (b) List of the 73 genes extracted from recurrent rules. (c) Recurrent interaction
FOXA1 and CEP55 expression levels depiction across subtypes. (d) Marginal interaction plots
for FOXA1-CEP55 for Basal and Luminal A subtypes where the ligher the blue shade in the
interaction plot the higher the membership probability to belong to that subtype class.

3.3 Validation

For validation purposes, we used two different tools, one offered by Leo Breiman and Adele
Cluter [2], and the other by Jones and Linder [7]. First, Breiman and Cutler used an RF
method to detect variables interactions. They defined the interaction between two variables as
the correlation between them, in the sense that highly correlated variables will have interacting
scores. This concept differs from our definition of the interaction of variables, which is the
ability of a set of variables to describe a class in a joined manner where we cannot describe a
class without one or the other. We applied the code available on the RF web page, for all three
databases in the study (TCGA, GSE20685, and GSE21653). The interactions resulting from
the Breiman code were, indeed, genes also found within our defined gene blocks, corroborating
the strong correlation between them. This is an interesting finding of this work, where highly
correlated variables (i.e. genes) can be extracted as important and the RF ensemble model
can randomly select any gene and generate predictive rules with different genes, but with the
same patterns. The rules extracted through the IBIF-RF metric are a result of a combinatorial
process performed by RF to generate the best splits at every node. Due to the highly correlated
nature of some genes (grouped by blocks) and the random sampling process of selecting and
evaluating variables at each split, we have observed that any gene within the same block (i.e.
CEP55 or TTK) can be selected as important with respect to another specific gene (i.e. FOXA1)
and still be considered as two different rules.

To further compare the impact of our metric, we used a second tool to validate our results.
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Table 3: Prevalence of variable combinations in the RF models.
TCGA GSE20685 GSE21653

# IR Var 1 Var 2 # IR Var 1 Var 2 # IR Var 1 Var 2
1 107 MLPH FOXA1 1 112 GATA3 ESR1 1 83 GATA3 ESR1
2 99 FOXC1 FOXA1 2 105 THSD4 GATA3 2 79 GATA3 CA12
3 94 ER.alpha ESR1 3 104 CA12 GATA3 3 76 MYBL2 AURKA
4 90 KRT5 KRT14 4 103 GREB1 ESR1 4 67 MLPH FOXA1
5 84 CEP55 UBE2T 5 97 ASPM KIF18B 5 60 MYBL2 ESPL1
6 81 GPR77 ESR1 6 94 ASPM AURKA 6 55 KIF18B AURKA
7 79 CDKN3 NDC80 7 91 THSD4 ESR1 7 51 NAT1 GATA3
8 79 KRT17 KRT14 8 89 FOXA1 CAV2 8 50 MYBL2 CENPN
9 78 C6orf97 ESR1 9 82 ASPM CEP55 9 48 AGR3 GATA3
10 74 DEPDC1B CEP55 10 78 CA12 ESR1 10 47 ESPL1 AURKA
11 72 EXO1 UBE2T 11 78 GREB1 GATA3 11 46 MYBL2 DSCC1
12 69 MIA KRT14 12 77 ASPM ESPL1 12 45 AGR3 ESR1
13 68 EXO1 CEP55 13 77 ASPM MYBL2 13 45 TBC1D9 GATA3
14 68 AURKA CEP55 14 74 IGF1R ESR1 14 45 NCAPG MYBL2
15 67 AGR3 ESR1 15 71 KIF18B AURKA 15 44 AR MLPH
16 66 ASPM CEP55 16 70 IGF1R THSD4 16 43 NCAPG AURKA
17 64 AURKA UBE2T 17 69 CA12 THSD4 17 43 NAT1 ESR1
18 63 KRT5 MIA 18 67 MLPH FOXA1 18 41 CA12 ESR1
19 63 MLPH FOXC1 19 63 NCAPG ASPM 19 41 TBC1D9 ESR1
20 63 XBP1 FOXA1 20 63 PTX3 CAV2 20 40 TIMELESS MYBL2

This tool was proposed by Jones and Linder [7] to generate modified PDPs from RF to visualize
interactions between pairs of variables. To extract the marginal effect of specific rules we used
PDPs and evaluated the behavior of three relevant variable combinations extracted by the
IBIF-RF metric: FOXA1-CEP55 (See Figure 3(c)), FOXC1-THSD4, and MLPH-NOSTRIN.
We wanted to validate whether the interaction results of these combinations for each subtype
were similar to those shown in Table 3. The visualization of FOXA1-CEP55 across all datasets
in the study: (a) GSE20685, (b) GSE21653 and (c) TCGA was performed using the plot-pd
functions of Edarf R package [7] as shown in Figure 3(d). These plots indicated that: 1) basal
occurs when FOXA1 is lowly expressed and CEP55 is highly expressed, 2) luminal A occurs
when FOXA1 is highly expressed and CEP55 is lowly expressed and 3) luminal B occurs when
both FOXA1 and CEP55 are highly expressed.

These results corroborated the interaction conclusions in this work and lead us to validate
that the IBIF-RF metric can rank important interactive patterns, considering all possible rules
granting the opportunity to further explore the biological mechanism of these interactions at
the experimental level. One big difference between these methods is that the IBIF-RF metric
generates common rules for exploration without specifying the specific pair of genes in advance.

4 Concluding Remarks

This work presents the development of the IBIF-RF metric which provides a tool capable to
assess interaction importance in a holistic manner without any prior knowledge onto which fea-
ture combinations are most important. IBIF-RF metric can rank rules considering all possible
ones, this grants the opportunity to pinpoint important interactions and explore the biological
meaning of these at the experimental level.

Furthermore, thanks to the evaluation of the IBIF-RF results in a BC case study, two sets
of genes that have similar behavior were defined. Also, we were able to infer that several
distinct rules are formed by the combination of genes in these sets. The genes forming these
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two important blocks are FOXA1, MLPH, and SIDT1 genes for the first block, and CEP55,
ASPM, CENPL, AURKA, ESPL1, TTK, UBE2T, NCAPG, GMPS, NDC80, MYBL2, KIF18B,
and EXO1 for the second one. These results suggest that the number of relevant genes can
be reduced noticeably by investigating them by blocks of genes exhibiting similar behavior for
a particular response of interest. This reduction could be useful to create clinical panels that
are cost-effective. Nonetheless, to improve the current understanding of breast cancer and its
subtypes, more in-depth studies of these gene blocks are needed to grasp if the genes as a set
have a biological network communication system (i.e. pathway) that can further explain BCs.

On the other hand, seven genes (RERGL, TBX19, KCMF1, NOSTRIN, CMTM7, SCCPDH
and DSCC1) extracted still lack reported literature evidence that relates them to BC based on
our search in the PubMed database on October 2019. Therefore, it is imperative to further
study their biological impact in BC. Lastly, we did not obtain high-frequency values for gene
patterns RF rules in comparison with the number of trees in use which can be explained by the
random strategy of RF construction. Therefore, the presented metric can be further improved
by incorporating normalization step-based on the number of trees used and other important
parameters such as the depth of the branches in each tree.
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