
CheAPS: a Checker of Asynchronous

Parameterized Systems

Igor V. Konnov
konnov@cs.msu.su

Lomonosov Moscow State University

We present CheAPS, the checker of asynchronous parameterized communicating systems.
It is a set of tools for verification of parameterized families F = {Mn} of finite-state models
against LTL specification ϕ. Each model Mn from a family F is composed of a fixed number
of control processes and n processes from a fixed set of prototypes. Given a description of a
family F CheAPS generates finite-state models Mn and checks if one of such models can be
used as an invariant of the family. As soon as an invariant is detected it is model checked by
Spin to verify it against a specification ϕ. If Spin completes the verification successfully, then
all the models of F satisfy ϕ.

CheAPS is designed to use existing non-parameterized models as a source of parameterized
family description. When one has a debugged model with a fixed number of processes it should
be rather easy to create a parameterized variant. Therefore, we chose the following way. The
process prototypes are described in a subset of Promela. The communication structure of
the models from F is described by means of a network grammar G. The terminals of G stand
for process prototypes whereas non-terminals of G are used to generate subnets. The rules of
this grammar are annotated with channel bindings to provide a correct connection of prototype
processes to the network. A parameterized family F as a set of finite-state models can be
viewed as a language of the network grammar G. CheAPS includes the gen-net-model tool
to automatically generate Promela descriptions of models Mn from a network grammar G
and prototype descriptions.

The core component of CheAPS is the simba tool intended for checking block simulation
between finite-state models. For each non-terminal N of the grammar G models induced by N
are successively generated. For two models induced by N simba constructs a block simulation
relation. In the simple case if a larger model is proved to be simulated by a smaller one, then the
smaller one is declared to be an invariant IN of N . In a general case several models induced by
N should be simulated by an invariant model IN . The models vary by application of different
grammar rules to N in the last steps. The goal is to find such a model which simulates all the
models derived from N .

As state-spaces in model checking grow rapidly with increase of the number of communi-
cating processes simba has several state storage implementations and search strategies. State
storage implementations are as follows: std, dfa, dfafile. The first one is a standard C++

implementation of a set, which works well only on relatively small state spaces. The second
one uses the representation of state set by a minimized DFA, which is implemented in Spin.
The last one is a mixed representation by a minimized DFA and a sequential file. While DFA
is utilized to check set membership, a file keeps “unstable” states, which should be explored on
the next iteration. Thus, dfafile keeps the balance between memory consumption and perfor-
mance. Along with forward search strategy simba provides forward-then-back search strategy,
which propagates negative results.

If simba cannot find an invariant for “reasonably” large models induced from N one may
apply the failpath tool. This tool selects the paths in the models to give an insight on the

128 A. Voronkov, L. Kovacs, N. Bjorner (eds.), WING 2010 (EPiC Series, vol. 1), pp. 128–129



CheAPS Igor V. Konnov

difference in the behaviour of the models. This tool may be helpful in understanding why such
an invariant can not be found easily.

We are going to demonstrate an application of CheAPS to several examples: Chandy-
Lamport snapshot algorithm, Awerbuch distributed depth-first search algorithm, Milner’s sched-
uler, and the model of RSVP protocol, where invariants were detected successfully on that
models by our tools. The project homepage is http://lvk.cs.msu.su/~konnov/cheaps/. It
is available under BSD-like license.

129


