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Abstract

In consistency-based diagnosis (CBD), abnormal behavior is sorted out based on de-
viation from a normal behavior specification. Probabilities have been added to CBD for
quantifying uncertainty on, e.g., the behavior of faulty components. While resulting in
more complete models, the requirement of such uncertainty parameters goes in opposition
to the original CBD motivation. The conflict measure stands closer to CBD by comput-
ing solutions without the need of priors on candidates, however, its results might not be
suitable when only partial observations are available. In this paper, we propose a method
called the diagnostic coefficient, which better solves the partial observability case, while
needing the same parameters as the conflict measure. The diagnostic coefficient is based
on the idea that observations are conflicting if the observed outputs are discrepant with
respect to alternative outputs that could have been observed. We report experiments with
logical circuits where the diagnostic coefficient shows promising results compared to the
conflict measure under various settings with missing observations.

1 Introduction

In consistency-based diagnosis (CBD), faults are typically sorted out by contrasting observa-
tions with specifications of normal behavior [4], [12]. This means that abnormal behavior is
deduced based on deviation from the nominal specification. Probabilities have been added to
CBD allowing for uncertainty quantification, e.g. when specifying the behavior of a component
when it is failing [2] [1], and for assigning probabilities when components are unobserved [10].
Uncertainty is also quantified when computing distributions over diagnosis candidates, e.g. as
in the general diagnostic engine (GDE) [4], [3]. The disadvantage of these approaches is that
they go against the primary idea in CBD of not depending on abnormal behavior specification.
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In order to reduce the dependency on parameters of probabilistic CBD, the conflict measure
has been proposed [7]. The conflict measure is based on translating the system description into
a Bayesian network [6], then assessing diagnoses based on the correlation between observations.
The advantage of the conflict measure is that it does not require the specification of priors on
diagnoses. This contrasts to, e.g., the GDE approach, which relies on abnormality priors for
rendering a more abductive-like diagnostic method. While considering priors provides a more
thorough approach, they are often unknown in many human-made systems, which creates the
need for a more lightweight parameterization in CBD.

Research has shown a direct relationship between the standard, logic-based CBD and the
conflict measure [10]. This relationship occurs when the system is fully observable, and it
further aids diagnosis selection when the conflict measure is used. However, it has also showed
that the interpretation of the conflict measure becomes non-trivial or inaccurate when only
partial observations are available. In order to solve these issues, in this paper we propose a new
diagnostic notion called diagnostic coefficient. The diagnostic coefficient uses the likelihood of
the observations as the basis of discrepancy indicator, while not requiring specifying priors on
abnormal component behavior. Furthermore, the diagnostic coefficient also takes into account
the distribution of alternative outputs that could have been obtained under the observed inputs.
This provides stronger evidence in favor or against diagnosis candidates, because it becomes
possible to distinguish rare diagnoses (in the sense of poorly explanatory) from unlikely ones.
This distinction becomes relevant, e.g., when observing multiple outputs.

The contributions of this paper are as follows. We first show cases where the conflict mea-
sure is not straightforward to be interpreted. Then, we introduce the diagnostic coefficient
and the role of relevant alternative outputs in it. Examples are provided to illustrate the di-
agnostic coefficient. Finally, experiments are reported comparing the conflict measure and the
diagnostic coefficient based on a real logical circuit. The experiments considered several diag-
nostic problems by varying the fault location, number and selection of observed and unobserved
components, among other experimental parameters.

2 Preliminaries

We briefly review the necessary preliminaries on conventional and probabilistic consistency-
based diagnosis.

2.1 Logic-based Consistency-based Diagnosis

In consistency-based diagnosis [4], [13], [8], normal behavior of a component c is described by
logical implications of the following form:

¬Ab(c)→ Behavior(c)

In this formalization, the literal ¬Ab(c) expresses that the behavior associated with the com-
ponent c only holds when the assumption that the component is not abnormal, i.e. ¬Ab(c), is
true for component c. For example, if component O is an OR-node in a logical circuit with two
inputs (In1 and In2), we may write:

¬Ab(O)→ (In1(O, true)→ Out(O, true))

to partially specify its behavior. Logical behavior descriptions of the form discussed above are
part of a system description SD. Classes of components can be described by quantification. In
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Figure 1: Bayesian diagnostic system example [7].

addition to the generic descriptions of the expected behavior of components, a system descrip-
tion also includes logical specifications of how the components are connected to each other (the
structure of the system), and the names of the components constituting the system. Problem
solving basically amounts to adopting particular assumptions about every component c, either
whether Ab(c) is true or false.

A diagnostic problem is then defined as a system description SD, together with a set of
observations OBS, i.e., a finite set of logical formulas. Let ∆ be an assignment of either a
normal (¬Ab(c)) or an abnormal (Ab(c)) behavioral assumption to each component c. Denote
∆¬a for all the normal and ∆a for all the abnormal behavioral assumptions, i.e., ∆ = ∆¬a∪∆a.
We say that ∆ is a consistency-based diagnosis iff [3]:

SD ∪∆ ∪OBS 6|= ⊥ (1)

Typically, in this logical approach we aim to find a subset-minimal diagnosis, i.e., a diagnosis
∆ such that there is no ∆′ which is also a diagnosis and ∆′

a ⊂ ∆a.

2.2 Probabilistic diagnostic problems

Already from the start, uncertainty reasoning was widely recognized as an essential ingredient
of a diagnostic problem solving [4]. For example, given a probabilistic model of the system,
one could compute the maximum a posterior (MAP) assignment of a set of potential diagnoses
given a set of observations. Lucas [12] has proposed to combine consistency-based diagnosis
and a Bayesian network approach by computing likelihoods of candidate diagnoses ∆. This can
lead to a significant reduction of the number of diagnoses that have to be considered in a direct
MAP approach.

In this paper, we follow the approach by Flesch and Lucas [7], which generalized consistency-
based diagnosis by defining a Bayesian diagnostic system. A Bayesian diagnostic system is a
Bayesian network (BN) with nodes I ∪ O ∪ A, where A denotes the abnormality literals. The
edges of the graph are derived from a mapping from connections in SD. For more details on the
mapping of SD to a Bayesian network, we refer to [6]. An example of such a Bayesian network
is shown in Figure 1. Given the structure of the network, we assume that each component
behaves in one of the following ways:

• Deterministic behavior: if a component is functioning normally, then its output is
determined by a deterministic function of its inputs.
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• Random behavior: if a component is faulted, its inputs are conditionally independent
of its output. In particular, if π(V ) denotes the parents of node V in the graph, then
it is assumed that for each Oi ∈ O, it holds that P (Oi | π(Oi) \ {Ai}, ai) = P (Oi | ai).
Moreover, we assume that P (Oi | ai) is fixed for every component, and we define γ =
P (oi | ai).
This assumption allows us to model intermittent faults, because a component can still
output a correct value when it is faulty.

In this approach, the set of observations OBS is split into a set of input variables I and
output variables O. By the notation of [7], we will denote observed inputs and outputs by IS
and OS respectively, whereas the non-observed inputs and outputs will be denoted by IR and
OR respectively. Thus, I = IS ∪ IR and O = OS ∪ OR. Moreover, define Ω = IS ∪ OS the full
set of observations.

Interestingly, the relationship between the joint probability distribution in a Bayesian diag-
nostic problem and logical inconsistency is captured by the following property:

P (Ω | ∆) 6= 0 iff SD ∪∆ ∪OBS 6|= ⊥

If P (Ω | ∆) 6= 0, the hypothesis ∆ is called P -consistent. Thus, the existence of a consistency-
based diagnosis coincides with the existence of a P -consistent diagnosis.

For P -consistent diagnoses, the situation is more subtle when using probability theories. To
measure the amount of consistency, Flesch and Lucas deviate from logical consistency given by
Equation 1, and instead used a probabilistic conflict measure that had been proposed to detect
potential conflicts between observations and a given Bayesian network. A natural choice is
then to measure the conflict between inputs and outputs in the observations, given a particular
hypothesis ∆, as follows:

conf∆(Ω) = log
P (IS | ∆)P (OS | ∆)

P (IS , OS | ∆)

if P (IS , OS | ∆) 6= 0. We will omit Ω when it is obvious in the context. In case conf∆(Ω) ≤ 0,
then the inputs and outputs are positively correlated (or uncorrelated), i.e., there is no conflict
between the inputs and output. It is then said that ∆ is a conflict-based diagnosis. A minimal
conflict-based diagnosis is the one with the minimal conflict measure.

Although in principle abnormality priors (i.e. the distribution of the variables A in the
Bayesian diagnostic system) are needed, they are not effectively used in the computation of the
conflict measure. This brings the conflict measure closer to the original ideas of CBD, where
typically little is known about faulty behavior.

3 Observability

3.1 Full observations

Under full observability, Ω = I ∪ O. For this case, properties can be identified about the
relationship between logic-based CBD and the conflict measure. Proposition 3.1. shows the
core computations of the conflict measure.

Proposition 3.1. Under full observability, for any ∆ consistent, it holds that:

conf∆ = log
∑

{I : SD∪∆∪I∪O 6|=⊥}

P (I)
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where the summation is restricted to the inputs that are logically consistent with the remaining
variables in the expression. For brevity sake, we denote by V 6|= ⊥ when a set V of variables is
marginalized out restricted to its values that are consistent with the rest of the expression.

Proof. Using the chain rule, the conflict measure for ∆ is:

conf∆ = log
P (O | ∆)

P (O | I,∆)

Using marginalization and the factorization given by the BN structure, we compute:

P (O | ∆) =
∑
I

P (I,O | ∆)

=
∑

{I : SD∪∆∪I∪O 6|=⊥}

P (I)P (O | I,∆)

=
∑
I 6|=⊥

P (I)
∏

Oi∈O

P (Oi | π(Oi))

Similarly:

P (O | I,∆) =
∏

Oi∈O

P (Oi | π(Oi))

The Oi terms can be moved outside of the summation, because they are not affected by any
particular instantiation of the inputs (as long as the instantiation is consistent). This allows us
to obtain the desired result.

The intuition for this property is that every consistent candidate is, in principle, a reasonable
solution for the diagnostic instance, as the joint P (I,O | ∆) is at least as great as P (I | ∆)·P (O |
∆) for any such diagnosis ∆. The role of the conflict measure is in further refining the selection
of which diagnosis best supports the observations. Moreover, for any consistent ∆ it holds
that conf∆ ≤ 0. Proposition 3.1 also shows that, under full observability, the only probabilistic
parameters that play a role in the conflict measure are the input priors.

Although assuming abnormalities will be often needed in order to obtain consistent diagnoses
given the observed behavior, the diagnosis without abnormalities is the natural choice otherwise.
This is shown in Proposition 3.2.

Proposition 3.2. Under full observability, if the diagnosis ∆ with ∆a = ∅ is consistent, then:

conf∆ ≤ conf∆′ (2)

for every ∆′ 6= ∆.

Proof. Suppose a diagnosis ∆′ with ∆
′

a 6= ∅. By Proposition 3.1, its conflict measure will be
given by the summation over consistent instantiations of all the inputs. Note that any such ∆′

allows at least the same input instantiations as ∆, because adding abnormalities to components
can only relax the relationship between inputs and outputs in each of them. Hence, the sum of
the probabilities of joint assignments for ∆′ is at least that for ∆, resulting in:

conf∆ ≤ conf∆′

This result matches the intuition that whenever the observed outputs match the predicted
outputs no component should be faulty.
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3.2 Partial observations

Under partial observability, the relationship between the conflict measure and CBD becomes
less straightforward. In this case, the previous properties no longer hold. The interpretation of
the conflict measure is illustrated by the following examples.

Example 3.1. Consider an OR gate with two inputs and one output as shown in Figure 2.
Furthermore, assume the prior P (i1) = 0.1 (the same for I2). Our assumptions tell us that
P (Oi | π(Oi)) = 1 if ¬ai and inputs and output are consistent, and that P (Oi | π(Oi)) is
either γ or 1− γ if ai (depending on the actual value observed in Oi). Thus, for the diagnosis
∆ = {¬a∨} we compute:

conf∆ = log
P (IS | ∆)P (OS | ∆)

P (IS , OS | ∆)

= log
P (o∨ | ∆)

P (o∨ | ¬i1,∆)

= log

∑
I1,I2 6|=⊥ P (I1, I2)P (o∨ | I1, I2,∆)∑

I2 6|=⊥ P (I2)P (o∨ | ¬i1, I2,∆)

= log
0.19

0.1
' 0.28

On the other hand, for the diagnosis ∆′ = {a∨}, we obtain conf∆′ = 0. Hence, although
∆ assumes no abnormalities and is logically consistent, the diagnosis ∆′ has a lower conflict
than ∆. By the conflict measure, ∆′ is supposed to provide a better explanation for the
observed inputs and outputs. Indeed, it seems reasonable to prefer ∆′ over ∆, because under
∆, consistency is achieved only when assuming I2 to be true, which is unlikely to be the case.

¬i1
I2

o∨

Figure 2: OR gate with partial inputs.

As Example 3.1 shows, when one has only partial observations of the system, it might be
necessary to consider additional diagnoses in problem solving. Next we consider additional
examples for illustrating further points in the partial observability case.

Example 3.2. Reconsider Example 3.1, however now with prior P (i1) = 0.9. For the same
diagnoses ∆ and ∆′, we now compute conf∆ ' 0.04 and conf∆′ = 0. These results suggest that
assuming the gate to be faulty should better support the observations, because ∆′ lowers the
conflict.

It is, however, not reasonable to make such assumption, as it is very likely that I2 is evaluated
to true, which favors the hypothesis that the gate is not faulty. This example illustrates that
the diagnosis with the lowest conflict measure might not be the most intuitive one.

Example 3.3. Consider an AND gate with inputs and output as shown in Figure 3. Consider
the prior P (i1) = 0.01 (the same for I2). As IS = ∅, consistent diagnoses become indistinguish-
able by the conflict measure. Nevertheless, the gate is likely faulty, as the combination of inputs
need to obtain the observed output is very unlikely.
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I1

I2
o∧

Figure 3: AND gate with missing inputs. The priors are P (i1) = P (i2) = 0.01.

3.3 Conflict measure computations

For the following analysis, we consider that OS cannot be empty, as contrasting predicted and
observed behaviors would not be possible in such situation. The denominator of the conflict
measure can be written as P (OS | IS ,∆), and it expresses the likelihood of the observed outputs
(under a diagnosis ∆ and fixed inputs IS). This term plays an important role in identifying
conflicts between inputs and outputs, because the outputs are assumed to be a function of
the inputs (except when the component is abnormal). Another appealing characteristic of the
likelihood term is that unobserved components (e.g. unobserved inputs) can be marginalized
out, so that the resultant expression will be proportional to the chances of the values of the
unobserved variables that maintain consistency. Hence, input priors can be properly added into
the likelihood.

The second term of the conflict measure is the marginal probability of OS under ∆. We can
see this term as a normalizing term for the likelihood of outputs. Note that both the likelihood
and the normalizing term can vary under different diagnoses. Counter-intuitive behavior might
arise as the sign of the conflict of different diagnoses might be shifted due to the normalizing
factor, which is a term that does not distinguish seen from unseen inputs.

4 The diagnostic coefficient

4.1 Likelihood and alternative outputs

Let us denote the observed outputs by ob ∈ dom(OS) and the observed inputs by ib ∈ dom(IS).
Then, the likelihood of ob is given by:

p0 = P (OS = ob | IS = ib,∆) (3)

A low p0 could indicate that inputs and outputs are conflicting given the corresponding
∆, and the opposite if p0 is high. However, relying solely on the likelihood for identifying
discrepancies can be uninformative: if multiple outputs are observed, it might be difficult to
distinguish discrepant probabilities, because the probability mass must be distributed across
many possible outputs.

In order to make the identification of discrepant outputs more robust, we consider the dis-
tribution of alternative outputs that could have been observed. This means that we investigate
P (OS | ib,∆) for values that OS can take on other than ob. By analyzing the location of p0 in
such distribution we are able to gather more solid evidence for deciding on the discrepancy of
the observations. To this end, let us define the following quantity:

palt =
∑

oalt∈dom(OS)
oalt 6=ob

{
P (oalt | ib,∆): P (oalt | ib,∆) ≤ p0

}
(4)

which considers the probability mass of the alternative outputs that are consistent with ib, and
that are equally or less likely than ob.
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By inducing a partitioning of the probability mass of OS , palt can help one determine
whether ob is rare (in the sense of out of ordinary, discrepant) when it is unlikely. Given a set
of observations Ω, we combine p0 and palt in order to define the diagnostic coefficient as:

dc∆(Ω) = max
{
p0, palt

}
(5)

where dc takes values on [0, 1]. A related notion to palt is the surprise index [9], [14], which has
been used for example in model revision [11].

In order to select a diagnosis from a set of candidates, we first select those that are likely
not out-of-ordinary diagnoses. We implement this notion by defining a diagnosis ∆ as rejected
if dc∆ ≤ α, where α is a real number in [0, 1]; otherwise, we say that ∆ is accepted (in this
work, α = 0.05). The rejected diagnoses are only discarded if there is an accepted diagnosis
among all the candidates. The final step ranks the remaining diagnoses according to their p0

and takes the one with the highest p0; in case of ties, the smaller one (in terms of number of
abnormalities) is preferred.

4.2 Examples

Example 4.1. Reconsider Example 3.2. Suppose γ = 0.5. For the diagnosis ∆ = {¬a∨}, we
compute:

p0 = P (o∨ | ¬i1,¬a∨) =
∑
I2 6|=⊥

P (I2) = 0.9

palt = P (¬o∨ | ¬i1,¬a∨) = 0.1

Hence, dc∆ = 0.9. On the other hand, for ∆′ = {a∨} we compute:

p0 = P (o∨ | ¬i1, a∨) = P (o∨ | a∨) = γ = 0.5

palt = 0.5

Thus, dc∆′ = 0.5. Based on the diagnosis selection criteria previously stated, none of the
diagnoses are rejected, and we choose ∆. The results provided by the diagnostic coefficient
match the intuition that O∨ is likely not faulty.

Example 4.2. Reconsider Example 3.3 and the same diagnoses as before. With ∆, we obtain
p0 ' 0 and palt = 0, as the alternative output ¬o∧ has a higher likelihood than o∧. Thus,
dc∆ ' 0. For the diagnosis ∆′, it holds that p0 = palt = 0.5, thus dc∆′ = 0.5.

Based on the selection criteria, ∆ is rejected and ∆′ is accepted, hence ∆′ is the selected
diagnosis. Selecting ∆′ is indeed reasonable, as previously discussed in Example 3.3.

4.3 Full and partial observations

We investigate next a few properties of the diagnostic coefficient. We start off with the diagnosis
that assumes abnormalities on every component (also known as the trivial diagnosis).

Proposition 4.1. Let ∆ be a diagnosis such that ∆ = ∆a. Then, it holds that:

p0 = γu(1− γ)v

palt =
∑

oalt∈dom(OS)
oalt 6=ob

{
γualt(1− γ)valt : γualt(1− γ)valt ≤ p0

}
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where u and v denote the number of true and false values in ob respectively. Similarly, ualt and
valt count such occurrences in each alternative oalt.

Proof. As all components are assumed to be faulty, the outputs are independent of the inputs:

p0 = P (ob | ib,∆) = P (ob | ∆) = γu(1− γ)v

For palt, each alternative oalt will assign values to the outputs different than ob. Thus, the
counts will differ from those in p0, and we obtain:

P (oalt | ib,∆) = γualt(1− γ)valt

which allows us to obtain the desired result.

With the conflict measure, conf∆ = 0 for the trivial diagnosis regardless of the observations,
as shown in [10]. By opposition, the diagnostic coefficient for the trivial diagnosis depends on
the value of the parameter γ. Although the trivial diagnosis might not be often suitable, it
seems reasonable that the diagnostic coefficient be sensitive to γ, which allows the method to
assess whether the observations are likely to be seen under such diagnosis.

Proposition 4.2. For any consistent diagnosis ∆, it holds that:

p0 =
∑

IR,OR 6|=⊥

P (IR)γu(1− γ)v

palt =
∑

oalt∈dom(OS)
oalt 6=ob

{
P (oalt | ib,∆): P (oalt | ib,∆) ≤ p0

}
where

P (oalt | ib,∆) =
∑

IR,OR 6|=⊥

P (IR)γualt(1− γ)valt

Here, u and v denote the number of true and false values in the faulty components of O =
OS ∪OR, respectively. In other words, this considers ob as well as the consistent instantiations
for OR.

Proposition 4.2 shows how the computations in the diagnostic coefficient are spit into un-
observed inputs (if there is any) and random outputs from the faulty components.

Proposition 4.3. Under full observations, for any consistent diagnosis ∆ it holds that:

p0 = γu(1− γ)v

palt = m · γu(1− γ)v

where m denotes the number of consistent alternative outputs (given ib and ∆).
Proposition 4.3 is relevant because it shows that the probabilistic parameters of component

failure are effectively used in the diagnostic coefficient. While it seems natural to include such
parameters both in the full and in the partial observability cases, in the conflict measure they
appear only in the latter case. Secondly, as opposed to the conflict measure, the diagnostic
coefficient form in Proposition 4.3 does not depend on priors of inputs, which seems intuitive
here because all the components are observable.

As a corollary of Proposition 4.3, note that if ∆ is the diagnosis with no abnormality
assumptions and it is consistent under full observations, then dc∆ = 1. This implies that such
∆ becomes the natural choice in that case, because for any other diagnosis ∆′ it holds that
dc∆′ ≤ dc∆.
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5 Experimental results

In this section we report experiments involving the conflict measure and the diagnostic coeffi-
cient. The implementation is based on ProbLog (for logical and probabilistic reasoning) [5] and
Python1.

5.1 Diagnostic instances

In order to evaluate the diagnostic methods, we consider the full adder circuit. It is composed
by 3 inputs and 5 outputs, as shown in Figure 4. Each diagnostic instance is created by first
assigning inputs (fixed for all instances) to the circuit and deducing the outputs by logical
reasoning (given no abnormalities). Next, a fault is injected into one output by switching its
value. Then, we select which input and output variables will be observed for composing the
observation set, where we require that at least one output is observed.

A broad range of diagnostic problems is covered in the experiments: all the possible single
fault placings, as well as all choices of inputs and outputs are considered. The number of
observations range from 3 to 8 components, where the latter means full observability. In this
setting, therefore, the true diagnosis of each instance is known beforehand.

Figure 4: Full adder with observations.

5.2 Evaluation criteria

For the conflict measure, diagnoses are ranked based on their conflict measure value; the diag-
nosis (or diagnoses, in case of ties) with the lowest conflict and minimal number of abnormalities
is selected. For the diagnostic coefficient, the ranking is obtained as dictated in Section 4.1. In
order to assess the output provided by the diagnostic methods, we define two criteria as follows:

• Hit rate. Let us consider the best-ranked diagnoses that are tied in a given diagnostic
instance. We register whether the true diagnosis belongs to such collection of diagnoses.
The hit rate indicates the average of such indicator over a set of diagnostic instances.

• Weighted hit rate. Suppose the true diagnosis is included in the top (tied) ones in a
given diagnostic instance. What is the chance that we pick the true diagnosis in such col-
lection? This is provided by the weighted hit rate, considering a set of diagnostic instances.
The weighted hit rate corresponds to the hit rate weighted by the mean probability that
the true diagnosis is selected.

1Available at http://www.cs.ru.nl/~mbueno/

74

http://www.cs.ru.nl/~mbueno/


An improved diagnostic method for probabilistic consistency-based diagnosis Bueno, Hommersom, Lucas

5.3 Results

The results for the full and partial observability cases based on the full adder are shown in
Figure 5. Under full observability, the results suggest that both the conflict measure and the
new diagnostic coefficient detected the faulty components on all the cases. The conclusions are,
however, different when only partial observations are available (i.e. when Nobs ≤ 7): in general,
reducing the number of observations tends to decrease the accuracy of both diagnostic methods.
The effect of that on each method is, however, not the same.

The hit rate values suggest that the diagnostic coefficient identifies the true diagnosis much
more often than the conflict measure. In other words, the true diagnosis has indeed the best
value in dc very often, which is certainly not the case with conf. On the other hand, the ties
in dc are on average larger than those in conf, leading to greater reduction in the weighted hit
rate compared to the reduction experienced in this indicator by conf. On average, the results
suggest that the diagnostic ability of dc is more accurate than that of conf.

Hit rate(%) W. Hit rate(%)
Inst. conf dc conf dc

D1 100 100 100 100
D2 100 100 100 100
D3 100 100 100 100
D4 100 100 100 100
D5 100 100 100 100

(a) Nobs = 8.
Diagnostic instances = 1.

Hit rate(%) W. Hit rate(%)
Inst. conf dc conf dc

D1 75 87.5* 75 81.2*
D2 75 87.5* 75 81.2*
D3 87.5 100* 75 87.5*
D4 75 87.5* 68.8 81.2*
D5 75 87.5* 68.8 81.2*

(b) Nobs = 7.
Diagnostic instances = 8.

Hit rate(%) W. Hit rate(%)
Inst. conf dc conf dc

D1 46.4 75* 46.4 61.9*
D2 57.1 75* 55.4 66.1*
D3 75 89.3* 58.3 67.3*
D4 60.7 75* 53 61.9*
D5 60.7 75* 51.2 63.7*

(c) Nobs = 6.
Diagnostic instances = 28.

Hit rate(%) W. Hit rate(%)
Inst. conf dc conf dc

D1 26.8 64.3* 24.1 47.3*
D2 44.6 62.5* 40.2 52.7*
D3 62.5 67.9* 46.4* 44.6
D4 50 57.1* 42.1* 40.8
D5 48.2 58.9* 38.4 45.8*

(d) Nobs = 5.
Diagnostic instances = 56.

Hit rate(%) W. Hit rate(%)
Inst. conf dc conf dc

D1 17.1 52.9* 11.7 38.3*
D2 35.7 45.7* 28.1 40*
D3 45.7* 41.4 33.6* 23.6
D4 32.9* 28.6 25.1* 18.6
D5 31.4 37.1* 25 27*

(e) Nobs = 4.
Diagnostic instances = 70.

Hit rate(%) W. Hit rate(%)
Inst. conf dc conf dc

D1 9.1 38.2* 4.8 29.1*
D2 30.9 36.4* 21.8 34.5*
D3 25.5* 16.4 19.7* 8.5
D4 18.2* 10.9 9.8* 6.4
D5 20* 16.4 16.1* 12.1

(f) Nobs = 3.
Diagnostic instances = 55.

Figure 5: Results on the full adder circuit. Diagnostic instances refer to the number of ways
inputs and outputs can be chosen for composing the observations. Hence, each row averages
over such instances, given a fixed faulty component. The best results are shown in bold face
followed by an asterisk.
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5.4 Discussion

The difficulty faced by both the diagnostic methods seems reasonable: the fewer the obser-
vations, the weaker the diagnostic capability of the method. The essential components for
accurately identifying the faulty component might not belong to the observation set. This hap-
pens, e.g., if components affected by the injected fault (beyond the faulty component itself)
are not observed. A limitation of the experiments here reported is that we did not distinguish
diagnosable from non-diagnosable instances, hence, the reported performance of the methods
is likely underestimated. By selecting a proper subset of diagnostic instances, a more insightful
and optimistic assessment of diagnostic methods (and still realistic) could be obtained.

6 Conclusions

In this paper we investigated model-based diagnosis, in particular consistency-based diagnosis,
in the context of full and partial observability. We discussed difficult cases that might arise
with existing approaches to the probabilistic formulation of CBD, specially when diagnosing
under partial observations. Motivated by that we proposed a new diagnostic notion called di-
agnostic coefficient. The empirical results comparing these methods showed that the diagnostic
coefficient was more accurate on the average and is more intuitive to be interpreted.

As future work, we plan investigating other possible ways to combine the likelihood of
observations with the likelihood of alternatives, which are the central ideas of the diagnostic
coefficient. Furthermore, in order to use the proposed method on larger problems, a deeper
analysis of the computational cost of the diagnostic coefficient is needed. This might lead to
approximations that should still be able to capture the most relevant alternative observations
that help identify faults. Finally, we would like to evaluate multiple fault cases, which we believe
could be suitably solved by the proposed method as well.
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