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Abstract

Timed networks are parametrised systems of timed automata. Solving reachability
problems for this class of systems allows one to prove safety properties regardless of the
number of processes in the network. Usually, these problems are attacked in the following
way: the number n of processes in the network is fixed and a tool for timed automata (like
Uppaal) is used to check the desired property for increasing values of n. In this paper,
we explain how to deal with fully parametric reachability problems for timed networks by
translation into the declarative input language of mcmt, a model checker for infinite state
systems based on Satisfiability Modulo Theories techniques. We show the success of our
approach on a number of standard algorithms, such as the Fischer protocol. Preliminary
experiments show that fully parametric problems can be more easily solved by mcmt than
their instances for a fixed (and large) number of processes by other systems.

1 Introduction

The land of timed networks is populated by families of networks with many identical timed
processes parametrised by their set of identifiers. In addition, each network may have a cen-
tral controller (i.e. a finite state automaton), capable of monitoring and affecting the timed
processes.

Solving reachability problems (e.g., whether a set of unsafe states can ever be reached from
the set of initial states) for this class of systems allows one to prove safety properties regardless
of the number of processes in the network. The difficulty in solving this kind of verification
problems is two-fold. First, each process has (at least one) clock variable ranging over an infinite
set, such as the reals or the integers. Second, every system is parametrised with respect to the
number of processes and the topology of the network. Hence, there are two dimensions along
which these systems are infinite state.

Surprisingly, it is possible to show that the reachability problem for restricted classes of
parametrised timed networks is decidable under suitable assumptions (e.g., on the number
of clock variables or on the granularity of time) [4, 5] by a backward reachability proce-
dure. Despite these theoretical results, there are few systems capable of automatically solving
parametrised and timed reachability problems. Instead, the number n of processes in the net-
work is fixed (for increasing values), a single timed automaton is built by parallel composition,
and then a tool like Uppaal for timed automata is used to check the desired property for the
given n.

In this paper, we explain how to solve fully parametric and timed reachability problems
by translation to the declarative input language of mcmt, the Model Checker Modulo Theo-
ries which we currently develop and which is based on Satisfiability Modulo Theories (SMT)
techniques. SMT solvers have already proved to be quite effective for solving problems result-
ing from the encoding of large verification problems as witnessed by the SMT-LIB initiative
(http://www.SMT-LIB.org); mcmt uses Yices (http://yices.csl.sri.com) as the back-end
SMT solver.
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We show the practical viability of our techniques on a number of standard algorithms,
such as the Fischer protocol which we use as the running example to illustrate our ideas.
Our preliminary experiments show that fully parametric problems can be more easily solved
by mcmt than instances for a fixed (and large) number of processes by Uppaal or similar
systems. We believe that this is due to the capability of mcmt of discovering and exploiting
the symmetries in the network by quantifiers instantiation techniques.

2 Timed Networks

Informally, a ‘timed network with k > 0 clocks’ is a system formed by a controller and finitely
many identical timed processes, each one equipped with k clocks. The controller is a finite state
automaton and timed processes are also finite state automata extended with k clock variables.
There are two kinds of transitions: one modelling the passing of time (specified by incrementing
all the clocks of the same amount of time) and another one in which the controller and a given
number of timed processes (usually 1 or 2) synchronize and change their states simultaneously.
Transitions of the second kind are guarded by conditions on the states of the controller, on the
timed processes that are involved, and on the values of their clocks. If the guard is satisfied,
the states of the controller and the involved processes are updated and the value of some clocks
is reset, if the case. Initially, the controller and all the timed processes are in a distinguished
initial state and their clocks have value 0. The value of the clocks is always positive and ranges
over either R (in the continuous case) or N (in the discrete case).

This notion of parametrised timed network is first formalized in [4]. In the rest of this
section, we recast such a notion into the formal framework of [13] underlying the infinite state
model checker mcmt, which will be used to solve parametrised reachability problems of timed
networks. Such networks can be modelled as a subclass of guarded assignment transition
systems whereby state variables are functions mapping a subset of the natural numbers (used
as identifiers of the processes in the network) to either a finite set of locations—the finitely
many states of an automaton—or an infinite set of time points—the values of clocks. (Readers
familiar with [13] will recognize an instance of the notion of array-based systems.)

Background notions. Formally, we work in many sorted first-order logic. We consider a
signature Σ containing a sort INDEX for process identifiers, a sort LOC for control locations, and
a sort T for time points. Furthermore, Σ contains two sort symbols ARRAY LOC and ARRAY T

for arrays mapping indexes to locations and to time points, respectively. The function symbols
[ ]LOC : ARRAY LOC, INDEX → LOC and [ ]T : ARRAY T, INDEX → T are also in Σ and denote the

usual array dereferencing operations. (By abuse of notation, we will simply write [ ] instead
of [ ]LOC or [ ]T.) Finally, Σ also contains a finite set L = {l1, . . . , lm} of constants of sort LOC

(m ≥ 1),1 the set of numerals 0, 1, ... of sort T, and the function symbols +,− of sort T, T→ T,
and the predicate symbols <,≤, >,≥ of sort T, T. Variables of sort INDEX will be written as
z, z1, z2, z3, . . . .

Semantically, we shall restrict our considerations to Σ-structures such that (i) T is interpreted
as either R or N and +,−, <,≤, >,≥ (as well as the numerals) have their natural meaning;
(ii) LOC is interpreted as the finite set L = {l1, . . . , lm} and each li is interpreted as itself
(for i = 1, ...,m); (iii) INDEX is interpreted as a finite subset of the natural numbers; (iv)
ARRAY T and ARRAY LOC are interpreted as the set of functions from the interpretation of INDEX

1To simplify notation, we use a unique sort comprising both controller’s and processes’ locations; this is
w.l.o.g. since transitions can be written so that different kinds of locations are not mixed up.
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to the interpretation of T and LOC, respectively, and [ ] is interpreted as function application.
According to the SMT-LIB standard (http://www.smt-lib.org), a pair comprising a signature
Σ and a class of Σ-structures (also called models) identifies a theory : the theory described above
will be called TPN in the rest of the paper. When referring to assignments, satisfiability and
truth we always mean assignments, satisfiability and truth in one of the models of TPN.

Formal specification of timed networks. A timed network with k clocks is a tuple

〈I(σ,C, s), {Ti(σ, σ′, C, C ′, s, s′)}i, D(σ, σ′, C, C ′, s, s′)〉,

where σ is a state variable of sort LOC for the controller, s is a state variable of sort ARRAY LOC

for the states of the timed processes, and C = (C1, . . . , Ck) is a tuple of state variables, each
one of sort ARRAY T, for the k clocks of the timed processes. As usual, the primed versions of
the variables denote the values of the state variables after the execution of a transition. The
initial formula I(σ,C, s) is of the form

σ = m0 ∧ ∀z(s[z] = l0 ∧
k∧

j=1

Cj [z] = 0)

where l0,m0 are location constants, i.e. they are of sort LOC.
Before describing the other two components of the tuple, we need to introduce the following

notion. A constraint is a conjunction of literals of the following forms: t >> c, d >> u, and
v = l, where >>∈ {>,≥}, c, d are numerals, l is a constants of type LOC, t, u are terms of the
form Ci[zj ], and v is σ or a term of the form s[zj ]. A difference logic constraint is a constraint
comprising also literals of the form t− u >> c and d >> t− u, for t, u, c, d as above.

The step transition formula Ti(σ, σ
′, C, C ′, s, s′) is of the form

∃z1 · · · zn.
∧
i<j

zi 6= zj ∧
(
φG(σ, s[z1], . . . , s[zn], C[z1], . . . , C[zn])∧
∧s′ = λz.FS(z) ∧ σ′ = m ∧

∧
j C
′
j = λz.Fj(z)

)
,

for i ≥ 1, where φG is a constraint, the update functions FS , Fj are specified by nested ‘if-then-
else’ expressions as follows:2

FS(z) := if z = z1 then l1 else if z = z2 · · · then ln else s[z]

Fj(z) := if z = z1 then t1j else if z = z2 · · · then tnj else Cj [z],

and tij is either 0 or Cj [zi]. Formula Ti above means that (i) z1, . . . , zn are the processes
that are going to synchronize (in the actual implementation of mcmt, it must be 1 ≤ n ≤ 2;
this does not seem too restrictive as all timed networks considered in the examples satisfy this
limitation), (ii) the constraint φG must hold for the transition to fire (φG involves the locations
of the controller and of the timed processes together with the values of their clocks), (iii) during
the transition the controller moves its location to m and the synchronizing processes to l1, . . . , ln
(respectively), (iv) some of the clocks of the synchronization processes are reset, and finally (v)
non synchronizing processes do not change location and clocks values.

Finally, the delay transition formula D(σ, σ′, C, C ′, s, s′) is of the form

∃ε > 0 (σ′ = σ ∧
∧
j

C ′j = λz.(Cj [z] + ε) ∧ s′ = s)

2Along the lines of the SMT-LIB format, we extend many-sorted first-order logic with conditional expressions.
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where ε is a variable of sort T, expressing that clocks are incremented by ε > 0 time units and
that locations do not change in the meantime. A remark is in order. Both step and delay
transition formulae can be written entirely in first-order logic by using universal quantifiers.
We use here λ-abstractions because formulae are more compact and it is easier to grasp their
intuitive reading.

Let TN := 〈I(σ,C, s), {Ti(σ, σ′, C, C ′, s, s′)}i, D(σ, σ′, C, C ′, s, s′)〉; the states of TN are the
assignments to the variables σ, s, and C.

Extensions. In the literature, there exist several variations and generalizations of the no-
tion of parametrised timed networks introduced in [4] and formalized above in our framework.
For example, delay transitions can be extended with location invariants, that can be used to
force a process ‘to react,’ i.e. to leave a certain location before a fixed amount of time has
passed. Fortunately, this extension—as well as many others—can be accommodated in the
formal framework of mcmt. In fact, the formula D(σ, σ′, C, C ′, s, s′) for delay transitions with
location invariants have the following form:

∀z.Inv(σ, s[z], C[z], C ′[z]) ∧ ∃ε > 0(σ′ = σ ∧
∧
j

C ′ = λz.(Cj [z] + ε) ∧ s′ = s),

where Inv is a constraint involving both locations and clocks. While the declarative framework
underling mcmt is capable of easily supporting delay transition with location invariants, some
care must be taken to handle the universally quantified condition ∀z.Inv, also called global
condition. In fact, it is well-known (see, e.g., [3]) that systems containing transitions with
global conditions are difficult to analyze automatically and some form of approximation is
needed. In mcmt, global conditions are handled by adopting the stopping failures model [15]
(similar to the ‘approximate model’ in [3, 2]). The stopping failures model of the system satisfies
a subset of the class of safety properties satisfied by the original system (since the latter has
fewer runs), hence establishing a safety property for the stopping failures model implies that
the same property is enjoyed by the original system. mcmt displays an explicit warning when
it adopts the stopping failures model. (For a detailed treatment of the stopping failures model
in mcmt, the reader is pointed to [11].)

Another extension which is crucial for modelling benchmarks concerns step transitions. In
fact, it is often the case that broadcasts must be modelled so that also an unknown number of
the timed processes not involved in the synchronization of a step transition can change their
locations or even reset some of their clocks. This kind of transitions (as well as more general
ones with non-deterministic updates) can be specified in the framework of mcmt by a careful
definition of the update functions FS and Fj using nested ‘if-then-else’ expressions. Finally,
we mention that the framework underlying mcmt can also support the specification of timed
networks where the controller has its own clocks or data variables (even ranging over unbounded
sets, such as process identifiers).

We hope that this discussion suggests the flexibility of the framework underlying mcmt,
which makes it capable of handling verification problems independently of any fixed formal
model (such as the extended automata used in [5]). A complete account of the formal framework
can be found in [13].

3 Reachability Problems for Timed Networks

The controller reachability problem is one of the most relevant verification problems for timed
networks and can be stated as follows: is there a run (i.e. a sequence of transitions) of the
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network leading the controller to a certain control location q? Let

TN := 〈I(σ,C, s), {Ti(σ, σ′, C, C ′, s, s′)}i, D(σ, σ′, C, C ′, s, s′)〉

be a timed network with k clocks. A run of length n of TN is an assignment satisfying the
following formula (we use T for the disjunction D ∨

∨
i Ti):

I(σ0, C0, s0) ∧ T (σ0, σ1, C0, C1, s0, s1) ∧ · · · ∧ T (σn−1, σn, Cn−1, Cn, sn−1, sn),

where σ0, C0, s0, . . . , σn, Cn, sn are n + 1 renamed copies of σ,C, s. The controller reachabil-
ity problem for TN amounts to checking the satisfiability (modulo the theory TPN, see the
‘Background notions’ of Section 2 for a definition) of the following formula:

I(σ0, C0, s0) ∧
n−1∧
r=0

T (σr, σr+1, Cr, Cr+1, sr, sr+1) ∧ σn = q,

for some n ≥ 0. In general, the problem is undecidable (already for k = 2, i.e. for two clocks per
process [5]), but it turns out to have many decidable instances; e.g., it is decidable when k = 1
(i.e. when timed processes have just one clock) [5] or the sort T is interpreted as N, regardless
of the number k of clocks per process [16].

The decidability results mentioned above are obtained by using a backward reachability pro-
cedure to explore the (infinite) state space of a timed network and proving that the procedure
terminates. Potentially infinite sets of states are finitely represented by so-called ‘configura-
tions’: if these and the transitions of a class of systems enjoy certain properties (namely, being
well-quasi-ordered), then backward reachability always terminate [1, 9, 7]. Backward reach-
ability is also the starting point of the implementation of automated verification systems for
classes of infinite state systems (see, e.g., [2, 3]) where configurations are encoded by ad hoc
data structures, one for each class of systems (like broadcast protocols, lossy channels, or timed
networks). Instead, mcmt uses particular classes of first-order formulae to represent config-
urations parametrised with respect to two theories, one for data and one for the topology so
that backward reachability can be implemented by a fixed set of logical manipulations and
the capability of solving SMT problems in the combination of the theories of indexes and of
the topology. Below, we give a high-level description of the backward reachability procedure
implemented in mcmt when the background theory is TPN.

Deductive backward reachability. Backward reachability repeatedly computes the pre-
image of the set of states from which it is possible to reach the set of unsafe states, i.e. the
states violating the desired safety property. The algorithm halts in two cases, either when
the current set of (backward) reachable states has a non-empty intersection with the set of
initial states and the system is unsafe, or when such a set has reached a fix-point (i.e. further
application of the transition does not enlarge the set of reachable states) and the system is safe.
To mechanize this procedure in the framework of mcmt, we need to ensure that (a) the class of
formulae representing sets of states is closed under pre-image computation and (b) the checks
for safety and fixed-point can be reduced to decidable SMT problems.

Sets of states are represented by ∃I -formulae. An ∃I-formula is a formula of the form
∃z1 · · · znφ, where φ is obtained from a quantifier free formula ψ(z1, . . . , zn, t, v) by replacing
the free variables t of type T with the terms Ci[z1], . . . , Ci[zn] (for i = 1, . . . , k) and the free
variables v of type LOC with the terms σ, s[z1], . . . , s[zn]. Notice that n can be 0, like in the
formula σ = q, specifying that the controller state is equal to the control location q.
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The pre-image of a formula φ(σ,C, s) where at most the variables σ,C, s occur, is defined
to be the formula

∃σ′ ∃ C ′ ∃s′ (T (σ, σ′, C, C ′, s, s′) ∧ φ(σ′, C ′, s′)).

Concerning requirement (a) above, the following result is crucial.

Proposition 3.1. The pre-image of an ∃I-formula is equivalent to an ∃I-formula modulo TPN
(i.e. in the class of models being considered).

Proposition 3.1 is a special case of a general result proved in [10]. Computing a pre-image
w.r.t. a delay transition requires a quantifier elimination step in N or R, depending on the
interpretation of T, of the time variable ε. It is possible to refine Proposition 3.1 and show
closure under pre-image computation when the ∃I -formula is of the form ∃z1 · · · zn.(

∧
i<j zi 6=

zj ∧ ξ), where ξ is a difference logic constraint. Among the many advantages of this restricted
format for ∃I -formulae, actually supported by mcmt, one of the most important is the dramatic
simplification of the pre-image computation w.r.t. a delay transition. In fact, there is no need
to handle the Boolean structure while eliminating the existentially quantified variable ε and
the standard Fourier-Motzkin algorithm can be used both in the real and the integer case, as
observed for instance in [18, 6].

Notice that one can employ (disjunctions of) ∃I -formulae (in the restricted format) as an
unsafety formula, instead of the controller reachability formula σ = q, without affecting the
above considerations. As a consequence, we will consider below unsafety problems in this more
liberal format.

For n ≥ 0, the formulae BRn(σ,C, s) are defined as follows: BR0 is σ = q and BRn+1 is
the disjunction between BRn and its pre-image. The sequence BR0, BR1, ...., BRn of formulae
is computed until either (i) I ∧ BRn is satisfiable modulo TPN (safety check) or (ii) I ∧ BRn

and ¬(BRn+1 → BRn) are both unsatisfiable modulo TPN (fix-point check). In the former
case, the controller location q is reachable whereas in the second case a fixed point has been
obtained and q is unreachable. In case (i), the backward reachability procedure returns ‘unsafe,’
whereas in case (ii) it returns ‘safe’ (of course, there is a third possibility, namely that the
algorithm diverges, which might happen if the problem is not in a class for which termination
is guaranteed).

Concerning issue (b) above, we observe that fix-point and safety checks are discharged in
mcmt by using the SMT solver Yices on formulae which contain universal quantifiers. Un-
fortunately, the performances of Yices and most of the other state-of-the-art SMT solvers on
formulae involving quantifiers are somewhat unsatisfactory. Hence, we have implemented a ded-
icated quantifier instantiation procedure in mcmt for the class of quantified formulae arising
in safety and fix-point checks. It is not difficult to see that such formulae can be transformed
into the following form: ∃z1 · · · zn∀y1 · · · ymφ, where φ is quantifier-free. We call this class of
formulae ∃∀-formulae.

Proposition 3.2. Checking the satisfiability of ∃∀-formulae modulo TPN is decidable.

Proposition 3.2 is an instance of a more general result in [10] and looks very similar to the
decidability of the well-known ∃∗∀∗-fragment of first-order logic. The main difference is that
satisfiability here is restricted to the class of models of the theory TPN (i.e. we consider only
those models that make sense for our model-checking problems). Proposition 3.2 is the basis of
a three-step decision procedure for the satisfiability of ∃∀-formulae (modulo TPN). First, the
zi’s are Skolemized away. Second, the yj ’s are instantiated in all possible ways with the zi’s
(considered as free constants). Third, the resulting formula is quantifier-free and can be sent to
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Legend : t is the local clock value and v is

the shared variable

Figure 1: Extended automaton for one process of the Fischer’s protocol

the SMT solver (in the case of mcmt, Yices). Notice that the second step is computationally
very expensive; hence, powerful heuristics to avoid useless instantiations are needed [12].

4 A worked-out Example

To illustrate our approach, we present the verification of the mutual exclusion property of
the parametric and real-time protocol proposed by Fischer in the variant described in [5].
This protocol is considered a standard benchmark to measure the performance of verification
tools for timed automata by considering an increasing number of processes. Here we prove
that the mutual exclusion property is satisfied regardless of the number of processes in the
network. Other versions of this protocol have been specified and verified by our tool: one
extracted from the SAL distribution (http://sal.csl.sri.com), one from the Uppaal dis-
tribution (http://www.uppaal.com), and a third one taken from Chapter 13 of [17]. The
alternative formulations exploits the flexibility of mcmt input language as they require transi-
tions with location invariants and unbounded global (i.e. controller’s) variables (see paragraph
‘Extensions’ in Section 2). The results of our tool on the problem described in this section and
its variants (as well as more problems) are listed in Table 3 of Section 5.1 with a comparison
with Uppaal for some (increasing) number of processes.

Informal description. The goal of Fischer protocol is to ensure mutual exclusion in a net-
work of processes whose number is arbitrary, using a clock and a shared variable. Each process
has a local clock and a control state variable ranging over values in the set {A,B,C,CS}. Each
process is identified by a natural number strictly bigger than 0 and can read/update a shared
variable whose values is either 0 or the index of one of the processes. A process wishing to enter
the critical section CS starts in the initial state A. If the value of the shared variable is 0, the
process goes to state B and resets its local clock. From B, the process can go to state C if the
clock value is still less than 1 time unit and it sets the value of the shared variable to its own
index and again resets its clock. From C, the process can go to CS if the clock is strictly more
than 1 time unit and the value of the shared variable is still equal to the index of the process
performing the transition. When exiting CS, the process sets the value of the shared value to
0. The set of unsafe states, i.e. those states violating the mutual exclusion property, can be
characterized by the presence of at least two processes which enter CS at the same time. This
specification is depicted in Figure 1.

Formalization in mcmt. We follow the formal specification of the Fischer’s protocol done
in [5] to illustrate that our declarative framework can precisely describe the notion of timed
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network as given in [5]. However, as already mentioned above, we emphasize that our specifi-
cation language is more flexible and it is also able to formalize the original specification of the
protocol as well as other extensions.

We assume T to be R and LOC := LOCC ∪ LOCP where LOCC := {udf , df } and LOCP :=
{A,B,C,CS,A+, B+, C+, CS+}. The controller state is either udf , indicating that the value
of the shared variable is 0 (undefined), or df , indicating that the value of the shared variable
is not 0 (defined). The locations marked with + correspond to configurations where the value
of the shared variable is equal to the index of that particular process. We need three state
variables: one shared variable c for the controller state ranging over LOCC , one local variable
q : ARRAY LOCP for the state variables of the processes, and one local variable t : ARRAY T for
the processes clocks (notice that k = 1, i.e. we have just one clock per process).

The set of initial states can be characterized as follows:

c = udf ∧ ∀z.(q[z] = A ∧ t[z] = 0), (1)

i.e., at the beginning, the control state variable c is undefined, the control state variable of each
process is A, and the clock value of each process is 0.

The set of unsafe states is the disjunction of the following three ∃I -formulae:

∃z1, z2. (z1 6= z2∧ q[z1] = CS ∧ q[z2] = CS) (2)

∃z1, z2. (z1 6= z2∧ q[z1] = CS+ ∧ q[z2] = CS+) (3)

∃z1, z2. (z1 6= z2∧ q[z1] = CS+ ∧ q[z2] = CS), (4)

i.e., the set of unsafe states consists of all those states where at least two processes are either
both in CS, formula (2), or both in CS+, formula (3), or one in in CS and one in CS+,
formula (4).

The step transition formulae are listed in Figure 2 and the delay transition has the following
form:

∃ε > 0.(t′ = λj.t[j] + ε). (5)

Symbolic computation of pre-images. To understand how it is possible to obtain an
∃I -formula as the result of a pre-image computation, let us consider pre(enter, (3)),3 i.e.

∃z.
(
c = df ∧ q[z] = C+ ∧ t[z] > 1∧
q′ = λj.(if j = z then CS+ else q[j])

)
∧ ∃z1, z2.

(
z1 6= z2 ∧ q′[z1] = CS+∧
q′[z2] = CS+

)
,

where q′ is also existentially quantified. In the following, it will be our goal to eliminate
this variable. Without loss of generality, it is possible to instantiate z with z1 so that after
some simple manipulations (i.e., substitute the λ-expression for the update of q, eliminate the
existentially quantified variable q′ by substitution, and finally perform β-conversion) we derive:

∃z1, z2.
(
z1 6= z2 ∧ c = df ∧ q[z1] = C+ ∧ t[z1] > 1 ∧ q[z2] = CS+

)
.

Remark In mcmt, state formulae are maintained as existentially quantified conjunctions of
literals closed under the following rule: if zi and zj are distinct index variables occurring in the
existentially quantified prefix, then the formula contains the literal zi 6= zj . To maintain this
invariant, when computing pre(enter, (3)), we must produce three disjuncts corresponding to

3By pre(enter, (3)), we mean pre(enter, φ), where φ is the formula labelled with (3).
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τ

initiate ∃z.
(
c = udf ∧ q[z] = A ∧ t[z] ≥ 0 ∧ q′ = λj.(if j = z then B else q[j])

)
choose1 ∃z.

 c = udf ∧ q[z] = A ∧ t[z] < 1∧
c′ = df ∧ q′ = λj.(if j = z then C+ else q[j])∧
t′ = λj.(if j = z then 0 else t[j])


choose2 ∃z1, z2.

 z1 6= z2 ∧ c = df ∧ q[z1] = A ∧ t[z1] < 1 ∧ q[z2] = `+∧
c′ = df ∧ t′ = λj.(if j = z1 then 0 else t[j])∧
q′ = λj.(if j = z1 then C+ else (if j = z2 then ` else q[j]))


choose3 ∃z.

(
c = df ∧ q[z] = B+ ∧ t[z] < 1∧
q′ = λj.(if j = z then C+ else q[j]) ∧ t′ = λj.(if j = z then 0 else t[j])

)
enter ∃z.

(
c = df ∧ q[z] = C+ ∧ t[z] > 1 ∧ q′ = λj.(if j = z then CS+ else q[j])

)
fail ∃z.

(
q[z] = C ∧ 0 ≤ t[z] ∧ q′ = λj.(if j = z then A else q[j])

)
exit1 ∃z.

(
c = df ∧ q[z] = CS+ ∧ 0 ≤ t[z]∧
c′ = udf ∧ q′ = λj.(if j = z then A else q[j])

)
exit2 ∃z1, z2.

(
z1 6= z2 ∧ c = df ∧ q[z1] = CS ∧ 0 ≤ t[z1] ∧ q[z2] = `+∧
c′ = udf ∧ q′ = λj.(if j = z1 then A else (if j = z2 then ` else q[j]))

)
exit3 ∃z.

(
c = udf ∧ q[z] = CS ∧ 0 ≤ t[z] ∧ q′ = λj.(if j = z then A else q[j])

)
Legend : ` ∈ {A,B,C,CS} and if a state variable α is not mentioned in τ , then it is assumed

to be unchanged and the conjunct α′ = λj.α[j] (if α is either q or t) or the conjunct α′ = α (if

α is c) must be added to τ .

Figure 2: The step transition formulae of Fischer’s protocol

the cases when the existentially quantified variable z in enter is equal (or distinct) to one (all)
of the existentially quantified variables z1, z2 in (3): one disjunct is obtained by instantiating
z to z1, one by instantiating z to z2, and the the last by requiring that z is different from
both z1 and z2. After the fixed-point check, just one of the three disjunct is kept while the the
other two are subsumed. In this way, mcmt lazily introduce existentially quantified variables
of sort INDEX so as to keep as compact as possible the representation of the set of backward
reachable sets. This feature, together with the heuristics for handling quantifier instantiation
while performing the safety and fix-point checks, are the key to the competitive performances
of mcmt (see Section 5.1 for more details).

By computing the pre-image of the last formula again w.r.t. enter by instantiating—w.l.o.g.—z
with z2, we are able to derive:

∃z1, z2.
(
z1 6= z2 ∧ c = df ∧ q[z1] = C+ ∧ q[z2] = C+ ∧ t[z1] > 1 ∧ t[z2] > 1

)
.

Now, we show how to compute the pre-image w.r.t. the delay transition (5) involving the
existentially quantified variable ε; such a variable can always be eliminated as the constraints
involving the clocks belong to Linear Arithmetic over the reals that is well-known to admit
elimination of quantifiers. To illustrate, consider the computation of the pre-image of the last
formula above w.r.t. (5), i.e.

∃ε > 0.(t′ = λj.t[j] + ε) ∧
∃z1, z2.

(
z1 6= z2 ∧ c′ = df ∧ q′[z1] = C+ ∧ q′[z2] = C+ ∧ t′[z1] > 1 ∧ t′[z2] > 1

)
.

By simple substitutions, we are able to derive

∃z1, z2.
(
z1 6= z2 ∧ c = df ∧ q[z1] = C+ ∧ q[z2] = C+∧
∃ε > 0.(t[z1] + ε > 1 ∧ t[z2] + ε > 1)

)
,
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that, by using standard quantifier elimination on the real variable ε, is easily seen to be equiv-
alent to the following ∃I -formula:

∃z1, z2.
(
z1 6= z2 ∧ c = df ∧ q[z1] = C+ ∧ q[z2] = C+

)
.

Safety and fix-point checks. In our framework, the safety check—i.e. the test that the
intersection between the set of initial states and the current set of backward reachable states is
empty—reduces to the check the unsatisfiability of the conjunction of the formula representing
the set of initial states and the formula of the current pre-image. To illustrate, let us consider
the first pre-image computed above (i.e. pre(enter, (3))) and formula (1), i.e.

∃z1, z2.
(
z1 6= z2 ∧ c = df ∧ q[z1] = C+ ∧ t[z1] > 1 ∧ q[z2] = CS+

)
∧

c = udf ∧ ∀z.(q[z] = A ∧ t[z] = 0).

It is immediate to see that the formula is unsatisfiable by considering the two equalities involving
the state variable c of the controller. In fact, by simple equational reasoning, one immediately
derives the unsatisfiable equality df = udf .

The fix-point checks reduce to testing the unsatisfiability of the negation of the implication
between the formula representing the new set of backward reachable states (i.e., at the i + 1-
iteration of the backward reachability procedure) and the old set of backward reachable states
(i.e., at the i-iteration of the backward reachability procedure). To give a concrete example,
consider again the first pre-image computed above; negating its implication with the disjunction
of the formulae (2), (3) and (4), we obtain the following formula:

¬
(
∃z1, z2.

(
z1 6= z2 ∧ c = df ∧ t[z1] > 1 ∧ q[z1] = C+ ∧ q[z2] = CS+

)
→ ∃z1, z2.(z1 6= z2 ∧ q[z1] = CS ∧ q[z2] = CS)∨

∃z1, z2.(z1 6= z2 ∧ q[z1] = CS+ ∧ q[z2] = CS+)∨
∃z1, z2.(z1 6= z2 ∧ q[z1] = CS ∧ q[z2] = CS+)

 ,

which, by standard manipulations, is equivalent to(
z1 6= z2 ∧ c = df ∧ t[z1] > 1 ∧ q[z1] = C+ ∧ q[z2] = CS+

)
∧

∀w1, w2.¬(w1 6= w2 ∧ q[w1] = CS ∧ q[w2] = CS) ∧
∀w1, w2.¬(w1 6= w2 ∧ q[w1] = CS+ ∧ q[w2] = CS+) ∧
∀w1, w2.¬(w1 6= w2 ∧ q[w1] = CS ∧ q[w2] = CS+),

where z1 and z2 are considered as Skolem constants. It is tedious but straightforward to check
that by instantiating the universally quantified variables w1 and w2 with z1 and z2 in all possible
ways, the resulting quantifier-free formula is satisfiable;4 thereby implying that more pre-images
must be considered.

Running mcmt. It is possible to feed mcmt with a slightly massaged version of the spec-
ification of safety problem for the Fischer’s protocol considered above. The specification in
the concrete syntax of the tool is omitted for lack of space (it is available from the website
mentioned below). The protocol is certified to be safe in around 10 seconds (regardless of the
number of processes in the network) on an Intel Centrino 1.729 GHz with 1 Gbyte of RAM. The
number of pre-images computed by mcmt during the backward search is 105 and the number
of calls to the SMT solver (to discharge instances of the formulae encoding safety and fix-point
checks) is 5922. An excerpt of the output of mcmt is the following:

4That such instantiations suffice follows from Proposition 3.2.
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MCMT - version 1.0.1

--------------------------

node 3= [t5_1][1]

node 4= [t5_2][2]

node 5= [t2_3][t5_1][1]

node 6= [t5_2][t5_1][1]

node 7= [t10_1][t5_1][1]

[...OMITTED TEXT...]

node 88 is deleted!

node 104= [t10_1][t3_2_4][t10_1][t5_2][t7_2][t6_1][t1_2][t1_1][t2_2]

[t3_1_3][t10_1][t5_2][t5_1][1]

node 105= [t10_1][t3_2_4][t10_1][t5_2][t7_2][t2_1][t10_1][t5_1][t7_1]

[t1_2][t1_1][t2_2][t3_1_3][t10_1][t5_2][t5_1][1]

========================================================================

Global fixpoint reached!

System is SAFE!

Max depth:17 #nodes:105 #deleted nodes:9 #SMT-solver calls:5922

#invariants found:0

========================================================================

The numbering of nodes starts from 3 because the first three nodes (numbered 0, 1, and 2)
corresponds to the unsafe formulae (2), (3) and (4). The transitions in Figure 2 are re-named
as t1, ..., t9 from the top to the bottom of the figure, i.e. t1 is initiate, t2 is choose1, and so
on. For example, Node 3 corresponds to the formula pre(enter, (3)) computed above. Since
mcmt implements backward reachability by visiting on-the-fly a forest of trees (whose roots
corresponds to the unsafe formulae) [13], the tool reports its depth (17), the number of nodes
it contains (105), and those that have been deleted by a subsumption check [12]. It also reports
the number of calls to Yices (5922) and the number of invariants that it was able to synthesize
(when the option is turned off, it always indicates 0).

5 Experiments

We describe here some more safety problems (beside the one considered in Section 4) taken
from various sources. For the sake of completeness, we include the descriptions of the systems
as extended automata (in the style of Uppaal) in Appendix A.

Lynch-Shavit Mutual Exclusion. In the original Fischer’s algorithm (see Fig. 4), two
numeral parameters A,B guarantee its correctness provided that B > A.5 On the contrary,
Lynch-Shavit’s algorithm [14] does not depend on constraints on the parameters A and B in
order to guarantee the mutual exclusion property. Yet it does rely on them in order to ensure
some sort of deadlock freedom. The key point is to add a Boolean variable v2 in order to check
whether the value of another process wishing to enter the critical region was overwritten.

The formulation considered in Figure 5 and formalized in the benchmark lynch mahata

from the table of Figure 3 below is taken from [16]. This is a simplified version of the original

5These timing constraints are explicit in standard formulations like [17] and are reflected in the formulation
of Figure 2 by the different guards t[z] < 1 and t[z] > 1 used in the choose and enter transitions.
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algorithm from [14]: in the original formulation, minimum and maximum values for a process to
perform an action are introduced and timing constraint (à la Fischer) are needed, as explained
above, to guarantee deadlock freedom. We submitted to mcmt the original formulation too
(the input language of our tool is expressive enough to accept it); mcmt was able to check not
only mutual exclusion but also the safety lemmas relevant to infer deadlock freedom (all these
problems are formalized in the benchmark lynch full from the table of Figure 3 below).

The CSMA Protocol. The CSMA/CD protocol is designed to enable network communica-
tion among clients sharing a single bus. The goal of the protocol is to avoid as much as possible
that two clients transmit simultaneously (an event called ‘collision’); when a collision occurs,
the protocol must be able to undertake proper actions. In order to accomplish these tasks, the
clients rely on their ability to “listen to” the bus: when the electrical signals carried by the bus
are jammed, it means that a collision has occurred.

The protocol roughly behaves as follows. When a client wants to send data, it listens to
the connecting medium: if there is no noise deriving from ongoing transmission, the bus is
free and the data can be sent; otherwise the client waits for a random amount of time before
trying again. Because of the delay in the propagation of electrical signals, the bus may look
free for a client, while another one is nevertheless transmitting. In that case, when the collision
is detected, the clients interrupt the transmissions and retry after a random time.

Our formalization considers a simplified version of the protocol taken from [20], which models
a 10 Mbps Ethernet having a worst case propagation delay σ of 26µs and a transmission time
λ of 808µs. The system comprises two kinds of processes: the clients and the bus. All the
processes are modeled by timed automata synchronizing by the following events: begin, when
a client starts a transmission; end, when the current transmission is over; busy, when the bus
notifies to clients that someone is transmitting; cd, when a collision is detected by a client. The
clients act according the description in Figure 6. In the initial location wait, a client can either
send a message or do nothing. In the first case, if the bus is free, the client can send event
begin to the bus, signaling the transmission begins, and go to location transm. But if the bus
is busy, because some other client is transmitting, the client goes to the location retry after it
receives event busy. Similarly when a collision is detected, it goes to location retry after it gets
collision event cd. In the second case (the client has no data to transmit), it simply stays in
location wait. Notice that we have two transitions with label cd in order to differentiate the
scenario when the client detects a collision and wants to transmit, and the scenario when the
client detects a collision but has nothing to do. In the location transm, the client can either
return to location wait when the data has been transmitted (after λ time units have elapsed)
sending event end to the bus; or it can go to location retry due to a collision. In location retry,
the client waits a random time (smaller than 2 ∗σ), and then begins a retransmission (going to
location transm) or still waits if another collision occurs. The bus in Figure 7 starts in location
idle. If it receives event begin, it goes to location active. There, if the transmission has just
begun (a time smaller than σ has elapsed), a collision can occur. In that case, the bus goes to
location collision. Otherwise, the bus stays in location active and signals that a transmission is
ongoing by event busy (this means that all clients are able to detect a transmission because the
electrical noise have achieved both the ends of the connecting medium). In location collision,
the bus broadcasts event cd to all clients in order for them to recover.

The TTA Protocol. The Time Triggered Architecture (TTA) enables distributed compo-
nents to communicate in a fault-tolerant safety-critical way; it is employed in control units of
cars and aircrafts. A TTA system is composed of host computers (the nodes) connected over
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a shared bus. Because many nodes share the bus, a time slot of equal duration is assigned
to them, so that each node has to await for its turn in order to transmit - this is called a
’time-division multiple-access strategy’ (TDMA). Moreover, since no global clock signal exists
in the system, each node relies only on its local clock in order to know when its turn starts.
The goal of the start-up protocol is to synchronize local clocks so that each clock agrees with the
others on the owner of the current slot.

We consider here one of its component, called the start-up protocol. Our model is a simplified
version of [8] (in [8] bus collisions are added as well, whereas the paper [19] is a further refinement
of the protocol, introducing faulty conditions too) and it is depicted in Figure 8. The basic
idea of the protocol is that, when a node receives a packet (carrying the sender’s identity
in the global variable origin), it knows the position of the TDMA schedule for the current
time and consequently can appropriately set its clock (the local variable c). From this event,
a new transmission is going to start every interval with duration equal to the slot time. A
node (with identifier i) starts in location init, where it performs some initialization. After at
most max init time time units, it enters in location listen. At this point two scenarios may
occur: either some nodes are already synchronized or none is synchronized. In the former case,
when the node will eventually receive an i frame (that is, a message carrying data) from a
synchronized node, it knows the current slot scheduled and so it resets its clock, writes the
identifier of the current sender in the local variable slot, and goes to location active. In the
latter case, after tau listen(i) time units, it broadcasts a “wake up” signal (that is, a cs frame)
to the other nodes, which are not synchronized, and goes to location coldstart. A node goes in
this location as well, whenever it gets a cs frame (but not an i frame) from another node. In
location coldstart, a node goes in location active as soon as it receives either an i frame or a
cs frame. If nothing happens after tau coldstart(i) time units, the node repeats the broadcast
of another cs frame. When eventually a node is in location active, it is synchronized and it
can send data whenever its slot turn comes, that is whenever the variable slot is equal to its
identifier i.

5.1 Results

We consider a benchmark set made of safety problems derived from the protocols considered
above. For each protocol, we tried some variants found in the literature and also some buggy
versions (identified with the suffix ‘ buggy’ in the name of the benchmark). The files containing
all the safety problems in the input format of mcmt6 considered in this paper are available at
http://www.dti.unimi.it/~carioni/mcmt_ta.html. The table on the left of Figure 3 shows
the running times of mcmt v. 1.0.1. For each problem, we check that a safety property is
satisfied (or not, for problems with suffix ‘ buggy’) for an arbitrary number of processes. These
results clearly show that the approach for the automated verification of parametrized timed
networks described in this paper is viable in practice and promises to scale up to large systems.
Since, to the best of our knowledge, there is no available model checker capable of solving fully
parametric safety problems for timed networks, we compare our results with those of Uppaal
v. 4 (http://www.uppaal.com) for three (increasing) values of the number N of processes for
a sub-set of the problems considered for mcmt, see right of Figure 3. The better performances
of mcmt are clear for N = 10, not to mention the fact that mcmt certifies safety regardless of
the number of processes. The key of the success of mcmt on these benchmarks is its compact
representation of the number of process in the configurations, obtained by the lazy introduction
of existentially quantified variables of sort INDEX while computing pre-images (c.f. Remark 4).

6The web page of mcmt is http://homes.dsi.unimi.it/~ghilardi/mcmt.
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MCMT Time

fischer abdulla 10.571
fischer sal 0.626

fischer sal buggy 0.130
fischer rust 0.187

fischer uppaal 0.114
lynch mahata 0.190

lynch full 95.830
csma 0.908

csma buggy 1.353
tta 2.098
tta2 14.077

UPPAAL N=2 N=5 N=10

fischer sal 0.013 0.082 37.392
lynch mahata 0.008 0.053 44.345

csma 0.009 0.189 >10min
tta2 0.011 0.062 >10min

Legend : all experiments were conducted on an Intel Centrino 1.729 GHz with 1 Gbyte of RAM, running Ubuntu

v9.0 (Linux kernel v.2.6); the version of Yices used was 1.0.27. Timings are in seconds. Both mcmt and Uppaal

were run with their default settings.

Figure 3: MCMT and UPPAAL running times

Another reason of success lies in the (optimized) full quantifier instantiation, which is able to
detect subsumptions due to internal symmetries in the formulae representing nodes.

6 Conclusions and future work

We have shown the viability of the SMT-based model checking approach introduced in [10] for
the verification of safety properties of timed networks by using our tool mcmt. There are two
advantages in our techniques. First, our tool performs parametrised verification (i.e. it is to
verify properties regardless of the number of processes in the network) while other tools (like
Uppaal or Kronos) can only deal with bounded instances or (like Sal) require substantial user
interaction. Second, our approach seems to be superior also compared to dedicated algorithms
like those in [5, 16] as it fully declarative and support variants to the models in a flexible,
expressive, and modular way. Experimental evidence on a set of well-known benchmarks show
promising performances of mcmt.

Concerning future work, we plan to perform a more exhaustive experimental analysis with
mcmt and to enlarge the scope of applicability of the tool (e.g., to consider the verification of
hybrid systems). We will also study how to exploit the constraint solving capabilities offered
by SMT solvers so as to synthesize constraints on (numeric) parameters that allows one to
guarantee the safety of a system. Constraining such parameters is crucial for many of the
timed systems considered in this paper such some of variants of the Fischer’s protocol (e.g., the
one in Figure 4) and the CSMA protocol.
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A Extended automata for the Benchmarks

We collect here the extended automata (in Uppaal style) of the systems considered in our
benchmarks. In the graphical format of Uppaal, locations are depicted as circles; each location
has a name and optionally an invariant condition placed just near the circle. The initial location
is marked with a double circle. Edges between locations are the transitions of the system.
Each transition has a guard (green conditions), a list of updates (violet statements) and a
synchronization information (cyan expressions), which comprises a channel name followed by
either the symbol ? or the symbol !. Guards, updates and synchronizations are optional.

Synchronization is needed to build product automata: the arguments of the product can be
copies of the same automaton (like in the TTA case below) or two different automata (like in
the CSMA case below).

Figure 4: Fischer’s algorithm, taken from [8]

Figure 5: Lynch-Shavit’s algorithm, taken from [16]
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Figure 6: CSMA Client’s automaton

Figure 7: CSMA Bus’ automaton
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Figure 8: TTA Node’s automaton
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