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Abstract

The Winograd Schema Challenge (WSC), the task of resolving pronouns in certain
carefully-structured sentences, has received considerable interest in the past few years as
an alternative to the Turing Test. In our recent work we demonstrated the plausibility of
using commonsense knowledge, automatically acquired from raw text in English Wikipedia,
towards computing a metric of hardness for a limited number of Winograd Schemas.

In this work we present WinoReg, a new system to compute hardness of Winograd
Schemas, by training a Random Forest classifier over a rich set of features identified in
relevant WSC works in the literature. Our empirical study shows that this new system
is considerably faster and more accurate compared to the system proposed in our earlier
work, making its use as part of other WSC-based systems feasible.

1 Introduction

Artificial Intelligence is concerned with the study of intelligent forms of behavior and with how
systems that acquire and manipulate commonsense knowledge can be created [14, 21]. Towards
that end, a number of challenges have been proposed that aim for the development of systems
that will replace or substitute basic human abilities. One of these challenges is the Winograd
Schema Challenge (WSC) [13], an alternative to the well-known Turing test [1, 14]. Rather
than having to show intelligence by emulating a human during a free-form conversation, as
suggested by the Turing Test, a machine should be able to show that it is thinking in a more
constructive direction, away from the possibility of deception and trickery [13, 14].

One dimension in the work of tackling the WSC is the evaluation of the hardness of a
particular Winograd Schema. In our previous work, we approached this question by reusing
the Wikisense system [7] for resolving Winograd Schemas, and, roughly, using the amount of
training data it requires to correctly answer a given Winograd Schema as an indicator of its
hardness. This Wikisense-based hardness [8] was shown to correlate well with the performance
of humans in solving the WSC across different Winograd Schemas. Notably, the system operates
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without any pre-training, and thus, in particular, it does not require access to the performance
of humans as an input. On the other hand, it does require knowledge of the correct answer to
the Winograd Schema whose hardness it is evaluating.

We have used the Wikisense-based system as part of the feedback mechanism of a crowd-
sourcing platform that we have created for the development of Winograd Schemas of high
quality [10]. Our experience with its use has revealed two key drawbacks: i) it requires large
amounts of training data from the English Wikipedia, which leads to long delays, and ii) it is
able to output the hardness only for a subset of Winograd Schemas. This work aims to develop
an alternative way of computing the hardness metric that addresses these shortcomings.

Naturally, we have chosen to consider a complementary approach to the Wikisense-based
system. WinoReg, our new proposed system, proceeds by first training a regression model
using Random Forests, and then using the learned model for faster computation during its
deployment. During the training phase, WinoReg requires access to the performance of humans
on each of the Winograd Schemas in the training set. Unlike the Wikisense-based system,
however, it does not require access to the correct answer to each of these Winograd Schemas.
Features provided as input to the system come from a number of works in the literature that
have developed WSC-related systems [4, 7, 16, 17, 18], which we have re-implemented as needed.

2 Motivation and Methodology

Winograd Schemas are pairs of Winograd Halves, each consisting of a sentence, a definite pro-
noun or a question, two possible pronoun targets, and the correct answer [13, 14], as illustrated
next: 1.) Sentence: Erica called Jennifer on the phone because she was not responding to email.
Question: Who was not responding to email? Answers: Jennifer, Erica. Correct Answer: Jen-
nifer. 2.) Sentence: Erica called Jennifer on the phone because she was not able to email.
Question: Who was not able to email? Answers: Jennifer, Erica. Correct Answer: Erica.

Having access to only one Schema Half, the objective is to resolve the definite pronoun to
one of its two co-referents. The avoid trivializing the task, the co-referents belong to the same
gender, and both are either singular or plural. What makes the task challenging is that the two
Schema Halves differ only with respect to a special word or phrase, whose change between the
two Schema Halves also changes the correct answer. Winograd Schemas are presumed to be
easy for humans and hard for machines, precisely because of the supposition that they require
the use of commonsense knowledge to understand the dependence of the correct answer on
the special word or phrase. Even so, not all Winograd Schemas are equally easy or hard for
humans, and the task of being able to predict their hardness index is an interesting question.

In our first attempt towards answering this question [8] we started by considering the
Wikisense system [7] for the WSC, and whose performance improves as its gets more training
data that are chosen based on the particular Winograd Schema it is trying to answer. We have
shown that the amount of training data needed to correctly answer a Winograd Schema corre-
lates positively with the performance of humans in correctly answering that Winograd Schema
(even though the system never gets access to the performance of humans), suggesting that the
performance of the particular automated approach could be used as a metric of hardness for
WSC instances. On the other hand, since Wikisense is not always able to correctly answer a
Winograd Schema (which is to be expected by design of the WSC), our Wikisense-based sys-
tem was able to offer a hardness index on only 57% of our tested Schema Halves. Furthermore,
because of its model-free approach and its reliance on training during query-answering, the
Wikisense-based system needs, on average, 8 hours to output the hardness index of each given
Winograd Schema.
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To the best of our knowledge, no other system exists that outputs the hardness index of
Winograd Schemas. This seems disproportional to the demand of new developed Winograd
Schemas in the literature. For instance, a recent study [9] showed that the WSC can form the
basis of a new type of CAPTCHA, which might encourage more AI researchers to work on
the problem of actually trying to tackle the WSC. WSC CAPTCHAs could use the hardness
index of Winograd Schemas to ensure that the generated instances are not overly demanding
for human users. Furthermore, WinoFlexi, a new collaborative system for the development of
new Winograd Schemas [10], already leverages the Wikisense-based hardness tool to generate
seeds that are used as a feedback to human contributors, for labeling schemas with a hardness
score which indirectly shows if a Winograd Schema is considered easy to answer or not.

Towards further addressing the need for the evaluation of the hardness of Winograd Schemas,
we introduce WinoReg, a system based on training a regression model with the use of Decision
Trees. We use, in particular, the Random Forest algorithm [6], which involves constructing an
ensemble of Decision Trees, each trained on random subsets of the data. Recent research [20]
showed that the Random Forest algorithm consistently maintains high imputation performance
over the benchmark linear regression across a range of performance metrics. In our case, when
presented with a new Winograd Schema, every Decision Tree votes on the hardness of the input,
and the average of their votes is the predicted hardness of the ensemble.

Since the aim is to estimate the hardness index of a Schema Half, which indirectly refers to
the ability to determine the correct answer, WinoReg expects features related to the sentence,
the question, and the two candidate antecedents. In contrast to the Wikisense-based system,
WinoReg does not require access to the correct answer. Given a question that indirectly shows
the target pronoun and two candidate antecedents, we aim to train a regressor that uses features
derived from the two candidates, such that the correct antecedent is assigned a higher rank.

3 Feature Engineering

To train WinoReg we engineer 50 features from 12 components (see Fig. 1). Most of the features
are based on systems previously built in an attempt to tackle the WSC [4, 8, 16, 17]. Given that
the majority of the systems are not open-source [4, 16, 17], we had to develop these components
from scratch. WinoReg utilizes the spaCy (https://spacy.io) dependency parser to turn raw
text into semantic relations. These relations act, in turn, as the basic feed for the feature
development. We use spaCy, like in previous works [7], to output various relations between the
sentence, the question and the two pronoun targets and use them in our feature engineering (see
Semantic Extraction in Fig. 1). For instance, consider the following Schema Half (referred to
later as catch example): Sentence: The cat caught the mouse because it was clever. Question:
Who is clever? Answers: The cat, The mouse. Via spaCy we built scenes like catch(cat,mouse),
was(it,clever) which means that a cat caught a mouse, and something/someone is clever.

3.1 Negation

Previous work has shown that negation plays an important role in the WSC [7]. Following that
line of research, through spaCy we analyze each Schema Half to estimate if the two candidates
(pronoun targets) and the pronoun are governed by negation. This is done through the sentence
and question triples of the Schema Half (like in the catch example). Here, we create two binary
features (STN for the two candidates, QTN for the pronoun) that contain the value of 1 if
negation exists, and the value of 0 if it does not.
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Figure 1: WinoReg ’s architecture for a faster metric of hardness for Winograd Schemas. The
various parts of the architecture are marked in orange eclipses, and are discussed in Section 3.

3.2 Narrative Chains

According to Budukh and Rahman et al. [4, 17], Narrative chains provide us with the story
containing an event-based description of the participation of a common central actor called
the protagonist. Narrative chains are a sequence of events, in a story, with the role of the
protagonist or the actor denoted as -s: subject or -o: object. We use spaCy, to output the
subject and the object and after that we use Chambers and Jurafsky’s (size 12) narrative chains
[5]; these are ordered sets of 12 events (verbs) centered around a common protagonist.

Consider the following Schema Half: Sentence: The city councilmen refused the demonstra-
tors a permit because they advocated violence. Question: Who advocated violence? Answers:
The city councilmen, The demonstrators. Aiming to encode the kind of knowledge provided
by Chambers and Jurafsky scripts we do the following: 1) via Wikisense mechanisms [7] we
determine the event(s) that the two candidates participate in (e.g., refuse-?), and the event
the target pronoun participates in with its role (advocate-s) 2) we pair each event participated
by each candidate with each event participated by the pronoun [(refuse, advocate-s)] 3) from
Chambers and Jurafsky’s, for each such pair, we extract all the chains that contain both ele-
ments. For instance, in our example, Chambers & Jurafsky narrative chain contains refuse-o
and advocate-s. In other words, the protagonist in this chain is the object of a refuse event and
the subject of an advocate event (the demonstrators). In previous works the algorithm basically
gives out no decision if there is no narrative chain matching between each event participated
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by each candidate with each event participated by the pronoun [(refuse, advocate-s)]. In this
work if WinoReg cannot find narrative chains containing both elements, it runs again the same
procedure but with a similarity mechanism enabled (sim >= −0.8). Here we create a feature,
NCH, and compute its value as follows. For our example, since the demonstrators are predicted
to be the pronoun target, the value of NCH is set to 2 (second antecedent). Otherwise, it would
be set to 1 (first antecedent). Finally, we note that NCH will be set to -1 if the pronoun and
the two candidates do not participate in events, or no narrative chains can be extracted.

3.3 Google Queries

Google queries have been used to acquire a world knowledge, to learn patterns of word usage
to tackle to WSC [16, 17, 18]. Consider the catch example: Humans resolve it to cat by
exploiting the world knowledge that clever catch/grab easily other things. To get this kind of
knowledge, we acquire patterns of word usage from the WWW through queries [17, 18]. Peng
et al. [16], for each variation of nouns (plural and singular) and verbs (different tenses), create
different queries and average the counts over all queries to create feature vectors. On the other
hand, Rahman et al. [17] create triples that are based on the clauses preceding and following
a discourse connective Conn, respectively in each sentence.

In our case, we follow a similar approach but without the need of a discourse connective
in each sentence. Let a Schema Half be denoted by the following: A1 and A2 are the two
pronoun targets (candidates), VQ be the verb that governs the pronoun (in the question), W
be the sequence of words following VQ in the question, J is the adjective following a verb-to-
be in the question. From these values, we generate six queries: QR1: A1VQ, QR2: A2VQ,
QR3: A1VQW, QR4: A2VQW, QR5: JA1, QR6: JA2. For instance, in our catch example six
queries are generated: (QR1) “cat was”; (QR2) “mouse was”; (QR3) “cat was clever”; (QR4)
“mouse was clever”; (QR5) “clever cat”; and (QR6) “clever mouse”. More specifically, using
the counts returned by Google, we create eight binary features (GL1i1, GL1i2, GL2i1, GL2i2,
GL3i1, GL3i2, GL4i1, GL4i2) whose values are determined by heuristic rules, respectively [17].
For the first two binary features (GL1i1, GL1i2), if the difference between the two queries is
bigger than the threshold of 20% in favor of the first candidate (QR1 > QR2) then GL1i1 is
set to 1 and GL1i2 to 0; otherwise, if the opposite exists then GL1i1 is set to 0 and GL1i2 to 1.
According to Rahman et al. [17] the threshold ensures that a heuristic decision is made only
if the difference between the two queries is significant. The other features can be estimated in
the same way. More details about the process can be found in the paper that introduced the
method [17].

We consider Framenet [2] for Google issues with proper names. It is unlikely that Google
will return meaningful counts for persons [4, 17]. Consider the following Schema Half: Sentence:
Paul called George, but he wasn’t successful. Question: Who wasn’t successful?, Answers: Paul,
George. To generate meaningful queries, we can replace these proper names with their roles.
Via Wikisense we generate the sentence triple the two candidates participate in (e.g., call(Paul,
George)). Next we search Framenet for NP.EXT - NP.OBJ relations, where NP.EXT shows
the subjects and NP.OBJ the objects for the FrameNet frame corresponding to the event (call).
Finally we replace the name with its FrameNet role (NP.EXT=Speaker, NP.OBJ=Addressee).
Consequently, we replace the two names with their extracted semantic roles, and generate the
search queries from the resulting sentence in the same way as before; the features that are
generated are GLF1i1, GLF1i2, GLF2i1, GLF2i2, GLF3i1, GLF3i2, GLF4i1, GLF4i2.
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3.4 Sentence Type

Recent work has shown that the structure of sentences plays an important role in the quality
of each Schema Half [10]. For this experiment, we use a tool that identifies the sentence type of
each designed schema [10]. Given as input an English sentence, it outputs its type which can
be either a simple, a compound, a complex, or a compound-complex sentence (stored in feature
ST). Additionally it outputs it’s pattern/clause (e.g., “SV because SV”, “SV and SV because
SV.”, “Cause/Effect”), which is stored in feature SP.

3.5 Rule-Based Polarity

There are Schema Halves where we can resolve the target pronoun by comparing the two
pronoun targets according to their polarity [4, 16, 17]. The basic idea is the following: 1)
Take the question and the verb that governs the two pronoun targets 2) Find the polarity of
the pronoun through the question, and the polarity of each pronoun target, and 3) assign the
answer to the pronoun target that has the same polarity as the pronoun.

Consider the following Schema Half: Sentence: The city councilmen refused the demonstra-
tors a permit because they advocated violence . Question: Who advocated violence?, Answers:
The city councilmen, The demonstrators. According to the Schema Half: councilmen = subject
of the event refuse, demonstrators = object of the event refuse, they = subject of the event ad-
vocate. We find the polarity of the refuse event from the Wilson et al. subjectivity lexicon [23].
The polarity given in subjectivity lexicon is negative. Hence the polarity of the object demon-
strators becomes positive and the polarity of the deep subject councilmen becomes negative.
The target pronoun they participates in the event advocate. The polarity of the event advocate
in the subjectivity lexicon is positive. Since target pronoun is the subject of the event advocate,
its polarity becomes positive. As we see from the above that the polarity of both the pronoun
and the demonstrators is the same. Hence we resolve target pronoun they to demonstrators.

We create six features, RP1i1, RP1i2, RP2i1, RP2i2, RP3i1 and RP3i2. If the rank value
of the pronoun or the rank value of one or both of the candidate antecedents cannot be deter-
mined, the values of all six binary features will be set to zero. For instance, RP1i1 and RP1i2
have to do with the two pronoun targets, respectively. To compute RP1i1 and RP1i1, which
are binary features, we follow a rule-based procedure that has to do with the pronoun target
(candidate) that has the same polarity with the pronoun. For example, since the second candi-
date (demonstrators) is the correct answer and not the first, RP1i1=0 and RP1i2=1. The value
of RP2i1 and RP2i2 are the concatenation of the polarity values determined for the pronoun
and the two candidates. For instance, RP2i1=negative-positive, and RP2i2=positive-positive.
To compute RP3i1 and RP3i2, we simply take the previous features of RP2i1 and RP1i2 and
append, if exists, the polarity reversing connective such as although; according to the literature
[7, 17] these are connectives that can flip the polarity. To determine if a Schema Half has
polarity reversing connectives we use a component from Wikisense [7]. If a polarity reversing
connective exists we simply take RP2i1 and RP2I2 and append the connective to it (RP3i1 =
RP2i1 + connective, RP3i2 = RP2i2 + connective). Additionally, we create another feature
RPTL that shows the best pronoun candidate, as follows: First, we estimate the score of the
first candidate by adding its binary features (Target1score = RP1i1). Next we do the same for
the other candidate (Target2score = RP1i2). If Target1score > Target2score then the value
of RPTL is 1. Otherwise, if Target2score > Target1score, the value of RPTL is set to 2. If
Target1score==Target2score then the value of RPTL is set to -1.
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3.6 OpinionFinder Polarity

It seems that the polarity values that were computed with the rule-based polarity could also be
calculated with a sentiment analyzer [16, 17]. For this reason we use OpinionFinder [22], which
is a system able to perform subjectivity analysis, like annotating phrases with their contextual
polarity values. We compute the OpinionFinder polarity features in the same way we did with
the rule-based polarity features, without the need to heuristically search for the polarity values,
and create seven features (OP1i1, OP1i2, OP2i1, OP2i2, OP3i1, OP3i2, OPTL).

3.7 TextBlob Polarity

To test the polarity results of Wilson et al. subjectivity lexicon [23] and OpinionFinder [22] we
use another, simpler, polarity mechanism. Though sentiment analysis we return the polarity
of the verb that governs the two candidates, and the polarity of the verb that governs the
pronoun. To do that we use TextBlob (https://textblob.readthedocs.io/en/dev/), which
is a python library for processing textual data. We create two features (TBSPOL, TBQPOL)
that each can contain one of the following values: neutral, positive, negative.

3.8 Semantic Relations

To fix possible query based problems of Google we compute another feature that is based on
semantic relations. It seems that using web search queries has potential precision and recall
problems. According to Rahman et al. [17]: i) the fact that a pronoun target and a verb appear
close to each other in a search query does not mean that a subject-verb relation exists between
them (precision problem) ii) these search queries fail to obtain subject-verb relations where a
pronoun target and verb are not close to each other (recall problem). To address this, we use
the Wikipedia corpus [7] to see how many times each pronoun target appears as subject or
as an object. If the pronoun is governed by a “to be” verb then we cannot determine these
values [17]. If the pronoun appears as a subject we search to find which candidate appears as
a subject most of the times; for instance, if the first candidate appears more times as a subject
then the feature SEM=1. Otherwise, if the pronoun appears as an object we search to find
which antecedent appears most of the times as an object. If we cannot determine the values
we set SEM to -1.

3.9 ConceptNet

ConceptNet is a semantic network of concepts, where nodes are concepts and the edges are the
relations between them. It is a freely available semantic network that describes general human
knowledge and how it is expressed in natural language [19]. ConceptNet provides a large set of
background knowledge about different facts connected with other facts using relations such as
relatedTo, AtLocation, PartOf, IsA, etc. According to Budukh [4] the strength of ConceptNet
is that it contains concepts about everyday basic knowledge, cultural knowledge, scientific
knowledge etc.

WinoReg uses conceptNet API to find the relatedness between the two pronoun targets and
the verb/adjective that governs the pronoun. To resolve the problem of proper nouns we are
using frameNet in the same way we used it with Google queries. For every antecedent we search
for its relatedness with the verb/adjective that governs the pronoun. This is a ConceptNet
function that returns a boolean value (value ≤ 1). At the end we create a feature (CN) that
equals 1 if the value of the first candidate is greater than the value of the second candidate. If
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the value of the second candidate is greater than the value of the first candidate then the value
of CN is set to 2, and otherwise it set to -1. Additionally, we consider Framenet [2] for issues
with proper names like we did with Google Queries, and create the CNF feature. Its values are
being computed in the same way as the CN values.

3.10 Connective-Triple Relations

Humans can exploit world knowledge via causal relations, signaled by discourse connectives,
between events [17]. Consider the following Schema Half: Sentence: Bob paid for Charlie’s
college education because he is very generous, Question: Who is generous?, Answers: Bob,
Charlie. For instance, we might easily resolve the pronoun he by exploiting the world knowledge
that there is a causal relation (by the discourse connective because) between the pay event and
the generous event.

From every Schema Half, we collect the best triple and search for their frequencies of oc-
currences in the Wikisense corpus [7]. Each triple is of the form (V, Cn, X), where Cn is a
discourse connective, V is a verb in the clause that governs the two candidate antecedents, and
X is a stemmed verb or an adjective that governs the pronoun. Basically, each triple indicates
a relation between V and X through the discourse connective. In the same way we find triples
from every sentence in the Wikisense corpus and search for the frequencies of the best triple
(also via similarity). According to Rahman et al. [17]: i) if the the number of occurrences is at
least 100 then we proceed to the next step ii) if X is a verb, then it resolves the pronoun to the
candidate that has the same role as the pronoun, otherwise, if the sentence does not involve
comparison and X is an adjective, it resolves the pronoun to the candidate that serves as the
subject of V. We create a binary feature, CNT, that encodes this heuristic decision (CNT=1 if
the pronoun is resolved to the first antecedent, otherwise CNT=2 if the pronoun is resolved to
the second antecedent). If we cannot resolve the pronoun then CNT=-1.

3.11 Sentence Length

Recent work has shown that the sentence length of each schema plays an important role in the
the resolution of the target pronoun [11]. Given that the schemas that are built on sentences
that have a big number of words are harder to resolve, we create a feature that holds the number
of words of each Schema Half sentence (SL).

3.12 Word Features

Word features are features that can be divided into two categories: i) the antecedent-
independent features, and ii) the antecedent-dependent features. According to previous works
[17], these are very important features for the tackle of the challenge. At first, we must assume
that each Schema Half sentence contains a connective (Cn). For the antecedent-independent
features we create two features (WN, WP). The WN feature, contains the number of words in
the sentence (except the candidate antecedents and the Cn). For the WP feature, we pair each
word appearing before Cn with each word appearing after Cn, excluding adjective-noun pairs,
noun-adjective pairs, and the two candidate antecedents. In the end, the WP feature contains
the number of the pairs.

Next, we compute the antecedent-dependent features (HN, VF, AF). HN contains the num-
ber of the head words of the candidate antecedents that were returned by the dependency parser
(spaCy); if we cannot determine the candidate antecedents in a sentence then the HN feature
is set to 0 (the two candidates might be written/mentioned differently). Subsequently, the VF
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feature contains the number of the verbs and JF the number of the adjectives modifying the
two candidate antecedents.

4 Empirical Evaluation

Dataset: We report results on the test set, which comprises around 30% of the Winograd
dataset which was developed by experts in the field [15]. This is the same set (100 Schema
Halves) on which the Wikisense-based hardness experiment has been tested on [8]. At the time
of writing, the Winograd dataset comprises 144 schemas (288 Schema Halves).

Evaluation Metrics: Results are expressed in terms of accuracy, and correlation coefficient.

Human Performance on the WSC: Like we did in our first work [8], here we present
evidence from one study in support of the claim that the performance of the WinoReg system
varies across WSC instances in a manner analogous to the performance of adult native speakers.
In terms of the performance of humans on the WSC, the literature [3] establishes a baseline
with adult speakers — residents of the United States — who speak English fluently. Bender
shows that native English speakers are, on average, able to correctly resolve 92.1% of the WSC
instances; 91%, if we consider only the first 100 WSC instances, which is the subset on which our
previous system was tested on. A detailed analysis of human performance on each individual
WSC instance (accuracy) is available from: https://github.com/benderdave/wsc-exp.git.

Using the data from the aforementioned study, we examine in this section whether the
performance of the WinoReg system can be predictive of the hardness of the WSC instances
for humans.

4.1 Results and Discussion

Coreference System MAE Correl Accuracy Schema Halves

Fixed Baseline 9.13 -1 90.87 100
Wikisense-based 23 0.22 77 100

WinoReg 8.36 0.33 91.64 100

Table 1: Results of the Fixed Baseline, the Wikisense-based hardness, and WinoReg

The fixed baseline: Our first baseline is a resolver that chooses the human adult bar as the
schema hardness index for each Schema Half. Given that the human adult bar is set to 91%,
if we train our Random Forest Regressor with only one feature and test it on the first 100
Schema Halves then our results would be as follows: Mean Absolute Error: 9.13 degrees and
Correlation Coefficient (with the adults results): -1 (see Table 1).

Wikisense-based Hardness: A summarizing of the results of the Wikisense-based Hardness
system [8], which is trained using different sets of training data, is shown in Table 1. The
Wikisense-based system was able to return results for only 57% of the tested Winograd Schemas
with a correlation coefficient of 38%. If we take as granted the human adult bar on the WSC,
which is 91% for the unresolved schemas, then the system achieves an accuracy of 77%, with a
correlation coefficient of 22%.
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Figure 2: Variability of our developed WinoReg hardness index and Wikisense-based hardness
index across the 100 WSC instances on which it was computed, in relation to the variability of
the human hardness index for adults.

WinoReg : Results of WinoReg, which is trained using the features described in Section 3, are
shown in Table 1. WinoReg achieves an accuracy of 91.64% which is the same with the human
adult accuracy, significantly outperforming the Wikisense-based system by 14.64% in accuracy
and by 11% in correlation coefficient. Furthermore, if we use only the 57 Schema Halves the
Wikisense-based system was able to resolve, the correlation coefficient of WinoReg and adults
rises to 47% (which is by 9 percentage points bigger than what the Wikisense-based system was
able to achieve (38%)). Our analysis ultimately shows that the performance of the WinoReg
approach varies across WSC instances in a manner that resembles the variability of the human
performance more closely than what other systems can achieve. This can be seen in Fig. 2
which depicts in more detail how the computed hardness index and the human hardness index
vary across WSC instances, suggesting that indeed, certain WSC instances that are easier or
harder for humans are accordingly labeled as such by the computed hardness index of WinoReg.

4.2 Speed Analysis

Recall that there are crowdsourcing systems that leverage the Wikisense-based hardness tool to
generate seeds that are used as a feedback to help contributors develop harder/easier schemas
(depending on the hardness index) [10]. Given that the hardness index of each developed
schema seems to play an important role on the quality of the developed schemas, and directly
relates to the amounts that is paid to crowd workers, it is crucial to have access to the hardness
index without delays.

Wikisense-based Hardness: Summarizing the results of the Wikisense-based system [8],
which is trained using different sets of training data after each Winograd Half is presented for
evaluation, it requires on average 8 hours for every Schema Half.

WinoReg-based Hardness: Summarizing the results of WinoReg, which is based on a ma-
chine learning approach that is trained on a variety of features prior to its use on a given
Winograd Half, it requires on average 1.6 minutes for every Schema Half, without a signifi-
cant training time for the construction of the model. The results ultimately show that with
WinoReg we can deliver the hardness index of a Winograd Schema 300 times faster than the
Wikisense-based approach.
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Feature Correlation Coefficient Accuracy

All 33.1% 91.64%
-Narrative Chains 28.4% 91.47%
-Google Queries 29.8% 91.56%

-Rule-Based Polarity 28% 91.47%
-OpinionFinder Polarity 31% 91.61%

-Connective-Triple Relations 22% 91.3%
-Semantic Relations 30.5% 91.53%

-Word Relations 27.57% 91.53%
-ConceptNet 32% 91.62%

-Negation 31% 91.57%
-Sentence Type 23.7% 91.4%

-TextBlob Polarity 24.2% 91.45%
-Sentence Length 12.7% 91.17%

Table 2: Results of feature decrement experiments

4.3 Feature Importance

Based on the contribution of each feature used in WinoReg we performed a feature analysis.
As shown in Table 2, where each row presents the performance of the model trained on all
types of features except for the one shown in that row, the correlation coefficient drops signifi-
cantly whichever feature type is removed. This suggests that all feature types are contributing
positively.

It seems that the Connective-Triple, the Sentence-Type, the Sentence-Length, the TextBlob-
Polarity, and the Word-Relations are the most useful features. This is in line with previous
works that showed that the sentence length and the sentence type of each schema play an
important role on the quality of the schema [10, 11]. Additionally, according to Rahman et al.,
the Word-Relations feature is one of the most important ones in their work [17].

As to the TextBlob-Polarity, it seems that it is better in capturing the polarity context of
the candidate antecedents and the pronoun than the rule-based polarity and the OpinionFinder
polarity features. Regarding the OpinionFinder-Polarity feature our analysis agrees with other
studies [17]; the reason might be attributed to the fact that the corpus on which OpinionFinder
was trained was quite different from ours.

It is somewhat surprising that, unlike in other studies [17], Google-based features are not
among the most useful features. The reason might be attributed to the fact that the corpus
on which the Google feature was used in previous studies was easier than our training set [17].
Furthermore, ConceptNet and Negation features seem to offer the least. Regarding the Negation
feature, this might have happened because we were only able to determine if negation exists in
only 41% of the Schema Halves. Although ConceptNet seems to have played an important role
in other WSC studies [4], our results indicate that it is not among the most useful features. This
might have happened because its similarity factor is based on different relations that cannot
easily capture the semantics of each sentence.
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5 Conclusion and Future Work

We have shown how a feature-based system that can be built and trained on a set of Winograd
Schemas can form the basis for deriving a data-driven metric of hardness for WSC instances.
Evidence that the system’s computed hardness index is correlated with the perceived human
hardness was offered through one study from the literature. Our experimental results suggest
that WinoReg is more useful for achieving faster and better accuracy on the hardness of the
Winograd Schemas, compared to systems previously used. On the other hand, our system still
has a lot of room for improvement. In particular, our feature analysis indicates that further
gains could be achieved via more accurate semantic analysis.

WinoReg can be used by WSC competition organizers, who wish to group sentences in terms
of their human hardness. As an example application, the designers of CAPTCHAs could utilize
our system to display schemas organized by their hardness index. Furthermore, experts who
want to design new Winograd Schemas, as pursued, for example, in [10], could use our system
to ensure that the generated schema hardness indexes are computed and displayed faster to
their workers to ensure quality and to possibly reduce their schema design costs. Future studies
will have to identify mechanisms through which we can develop systems like WinoReg that can
achieve better accuracy with higher correlation coefficient. The use of other techniques like
deep learning (e.g., [12]) might offer a viable alternative. Maybe, by calibrating the confidence
scores predicted by neural network models would yield a faster and more flexible method for
predicting the WSC hardness.
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