
1

Dynamic Meta-Information Management for

 IoT-based Applications

Madhu Kumari1, Sugyan Kumar Mishra2, Narayan C. Debnath3
and Anirban Sarkar4

1, 2, 4Department of Computer Science and Engineering,

National Institute of Technology, Durgapur, India.
3Department of Software Engineering,

Eastern International University, Binh Duong Province, Vietnam
1madhubce2255@gmail.com, 2sugyan3@gmail.com,

3narayan.debnath@eiu.edu.vn 4sarkar.anirban@gmail.com

Abstract

In recent days, the uses of Internet of Things (IoT) applications have been growing

enormously. IoT considers the integration of business process models or process

execution with resources of intelligent devices. The concept of process meta store (PMS)

[1] optimizes the interactions between IoT devices and business processes. However, the

mechanism of PMS highly depends on the meta-information of the system, associated

devices, and interactions among them. In this context, a novel semantics of meta-

information of process store (MIPS) for IoT-based applications is proposed in this paper.

The semantics of various MIPS elements and their relationships are described using a

class diagram. Further, a B+ tree-based indexing approach for the MIPS semantic is

presented for efficient searching of meta-information. The semantics of MIPS are

illustrated using the case study related to the clinical decision support system (CDSS).

Moreover, a detailed comparative analysis has been carried out to show the

expressiveness of MIPS.

Keywords: IoT, Process Store (PS), MIPS, B+ tree, Searching Algorithm, CDSS,

JSON Schema

1 Introduction

IoT has been used in different fields such as healthcare, academics, industry, etc., for providing

various customer services in real-life [2]. The existence of heterogeneous IoT devices, standards, and

communication protocols raises several challenges for IoT-based applications in terms of

interoperability, scalability, and flexibility [3, 4]. In general, business processes communicate with the

IoT devices through request-response or publish-subscribe methods for collecting information. As a

EPiC Series in Computing

Volume 82, 2022, Pages 32–41

Proceedings of 37th International Confer-
ence on Computers and Their Applications

B. Gupta, A. Bandi and M. Hossain (eds.), CATA2022 (EPiC Series in Computing, vol. 82), pp. 32–41

2

result, the messages are exchanged between the IoT devices and business processes. This interaction

leads to maximum battery consumption of IoT devices [1]. Therefore, a process meta store (PMS) [1]

is represented between the IoT device and the business process to optimize the number of interactions

between the Things-based Services and Application Process level, as shown in Figure 1. PMS consists

of device id, connected service, atomic service, region, location, and flag.

A suitable meta-information is required to effectively coordinate the devices' interactions and

business processes. The meta-information is used to preserve and secure the future accessibility of the

devices, ensuring that new devices can communicate with the existing legacy devices with specific

business goals. As a result, meta-information is critical for IoT-based applications and capable of

handling issues like integrability, interoperability, and heterogeneity. Interoperability implies that

devices can communicate with one another in an IoT-based system. Meta-information can be helpful in

the integration of the new devices with the existing dynamically in order to exchange the information

with the IoT-based applications. So, meta-information management is important to handle the diverse

number of processes associated with multiple devices. Various meta-information management

mechanisms have not addressed the crucial system features like flexibility and scalability [6]. Therefore,

devise of a dynamic meta-information management scheme is a key step for the development of an IoT-

based system. Various research problems exist for efficient management of IoT, including (i) there is a

lack of detailed information about PMS in the existing literature [1]; (ii) how to devise an efficient

method for searching meta-information in IoT [6]. There should be some efficient mechanism to handle

all the existing and upcoming challenges.

In this context, this paper proposes MIPS semantics for IoT-based systems. This approach provides

detailed records of each entity of PS. A B+ tree-based indexing approach for the MIPS semantic is also

described for efficient searching of meta-information. Further, a searching algorithm is discussed to

find the information in the B+ tree. The CDSS is considered a real-life case study to demonstrate the

MIPS. Various dynamic features are considered to compare the semantics of MIPS with the existing

approaches.
The remaining sections are organized as follows. Section 2 states existing approaches about meta-

information management for IoT-based systems. The meta-information of the PS is described along

with its detailed information in Section 3. A case study is mapped with the MIPS. Section 4 shows a

detailed comparative study of the proposed approach with the existing methodologies. The logical

representation of the proposed semantics of MIPS has been described using JavaScript Object Notations

(JSON) in Section 5. Finally, Section 6 concludes with the scope of future research.

2 Related Work

This section provides an overview of the existing works on IoT meta-information management.

Mandal et al. [6] have presented a flexible and scalable meta-information management system for

software as a service (SaaS). This approach is used to find the related business processes and services.

Figure 1: A connection between upper-level BPMN and IoT devices [5]

Dynamic Meta-Information Management for IoT-based Applications Madhu Kumari et al.

33

3

This approach has also been validated in the Hadoop environment. The experimental results are shown

by various operations such as searching, modifying, and updating efficiently. A framework [7] is

discussed to manage numerous industrial data in an IoT-based framework. This layout gives service-

oriented architecture (SOA) for the service consumers. This framework consists of different layers such

as physical, network, middleware, database, and application. The physical layer is responsible for

generating raw data and distinct events. The communication layer provides a secure connection between

each layer of the system. The middleware is responsible for data discovery and applying data processing

processes. The database layer partially stores industrial data in the local repositories. This solves the

problem of transmission delays and a huge workload on the cloud server. The application layer receives

the query from the service consumer and returns the result based on the needs of the service consumer.

An IoT data management framework [8] is discussed to solve the issues such as storing, collecting,

and processing data. The proposed distributed data service (DDS) [9] handles many data sources of IoT

environments in parallel. The set of functionalities is introduced for DDS to support various operations

such as collecting, filtering, and storing data. A metadata model [10] and methodology are discussed to

make OLAP cubes from data lakes according to the consumers' needs. A meta-data database (DB)

management approach is presented in [11] for live data. The performance of the proposed method is

evaluated in the simulated environment. On the other hand, the proposed method consumes more search

costs. A cross-domain meta-data framework [12] is discussed to present the related service-based

information. This framework makes a generalized standard for all types of data. Thus, it solves the

problem of heterogeneity. This architecture enables scalable stream processing systems (SSPS) to

provide metadata. This framework reduces the computational overhead and constraints for scalability.

Two finite state-based formalisms such as monitoring microservice automata (MMA) and container

microservice automata (CMA) [13] are used to design microservice infrastructures. These two

microservices are efficiently used for different microservice operations in a dynamic environment. A

finite state-based automata is used to find different microservice characteristics. A collection of

different architectural views at different granularity levels [14] is discussed for the real-time systems.

This paper provides a survey on different orthogonal architectural decay paradigms for predicting,

forecasting, and detecting architectural decay. An efficient meta-information management method for

IoT is presented in the next section.

3 Meta-Information of IoT

Meta-information explains the data that is mapped with the IoT-based system. This meta-data

consists of descriptions of system entities, resources, and IoT services. PMS layer of Figure 1 can be

considered as two logical sublayers, namely, Process store (PS) and Meta-Information of PS (MIPS),

for efficient usage of the IoT-based system processes, devices, and interactions thereof [Figure 2]. PS

is the abstract of PMS. The PS sublayer provides the connectivity semantics among the IoT devices and

the business processes. The MIPS sub-layer keeps records of all the information related to PS. This

provides the background information those are necessary for establishing the connectivity among the

business processes and IoT devices. The semantics of MIPS are described using a class diagram, and

the indexing of MIPS information is presented in the form of a B+ tree to minimize the memory size

Figure 2: Detail Analysis of PMS

Dynamic Meta-Information Management for IoT-based Applications Madhu Kumari et al.

34

4

and efficient searching. When there are changes in the device information at the lower layer, PS

provides the necessary updates to MIPS. IoT data is annotated with meta-information to provide

context, such as additional functioning attributes, positioning, structural relationships with other items,

and so on. Their main job is to give contextual semantics so that rich data (essentially data that has been

made usable) may be created for a range of pre-processing and post-processing services and

applications, including analytics and device management.

Figure 3: Schematic Description of PS

Figure 4: Class Diagram of Schematic Description of PS

Dynamic Meta-Information Management for IoT-based Applications Madhu Kumari et al.

35

5

PS consists of device id, connected service, atomic service, region, location, and flag. These six

components are the primary components of PS. Each IoT device has a device id, which serves as the

device's unique identifier. The device id also includes port numbers, device types, device location

identifiers, and device status. Multiple IoT devices can be connected to a port number in a sequential

way. As a result, the port number displays the total number of devices connected. The device type

specifies the data capture format, manufacturer, and accuracy of the instrument. The accuracy of event

identification is crucial for an IoT detection system. The measurements generated by IoT devices are

noisy and often marked with a degree of ambiguity, which might reduce the accuracy of detection. The

accuracy and correctness of IoT devices are two crucial variables to consider in order to improve their

correctness. Device location id indicates the location of a specific device and consists of device power,

device activation time, device deactivation time, and device deactivation location. Area captured

indicates the area captured by IoT devices, and the ability of sensing parameter is stored in sensing

capability. Device status is further categorized into the working status. Working status shows the

device's status, whether it is active or not. Connection method, connection start time, connection end

time, lookup service at up level, no of times connected are detailed information of connection status.

The composition pattern is summarized information of sequential, parallel, inclusive, and exclusive.

Flag maintains the information of flag time and flag date. Figure 3 shows the schematic description of

PS, and the associated class diagram is exhibited in Figure 4. The main focus area for using this class

diagram is the addition of one more feature i.e., cardinality. This shows the relation between the two

elements. There are four types of cardinalities that are used here i.e., one-to-one, one-to-many, many-

to-one, and many-to-many. The flexibility and dynamicity behaviors of this proposed model can easily

be illustrated by using the class diagram.

3.1 Indexing for MIPS

Let DI= {di1, di2, di3, di4, di5, …….., din} n ∈ N, be the set of device ids, SDI={sdi1, sdi2, sdi3, sdi4,

sdi5, ……….., sdim} m ∈ N, be the set of device ids to be searched act as the input, and

MDI={mdi1,mdi2,mdi3,mdi4, ……, mdiq} q ∈ N, be the meta-information set of DI act as the output of

Algorithm 1. Initially, the searching algorithm verifies whether the set DI is empty or not. If the set DI

is empty, no device is found, and the algorithm terminates its execution, as described in lines 2-3.

Otherwise, it matches each element of DI with each element of SDI, as stated in lines 4-7. If matches

are found, then the algorithm prints the DI and MDI, as discussed in lines 8-9. On the other hand, if

matches are not found, then the algorithm continues the match operation up to i==n, as illustrated in

line 11. This process continues until the SDI is empty or not (j==m), as illustrated in line 14. The device

Figure 5. Representation of MIPS through B+ Tree

Dynamic Meta-Information Management for IoT-based Applications Madhu Kumari et al.

36

6

indices are arranged according to the B+ tree structure, as displayed in Figure 5. The B+ tree is a data

storage system that can store a large amount of data. The data stored in a B+ tree can be accessed both

sequentially and directly. This is a self-balancing tree. B+ tree facilitates the faster search query as the

data is stored only on the leaf node. In Figure 5, DI represents the device id. This functions as a key that

may be used to fetch the data connected with it. In the B+ tree, there may be chances that a redundancy

key can be present. This algorithm uses two for loops for searching meta-information. So, the time

complexity of this algorithm is O(m*n).

3.2 A Case Study

This subsection explains the MIPS through CDSS as a case study. CDSS consists of two sub-parts,

patient health record (PHR) and treatment procedure. The PHR includes patient detail and pathology

test. Patient details are name, contact number, email id, address. Similarly, various pathology tests are

oxygen saturation, sugar level, body temperature, and blood pressure. The PHR consists of two sub-

layers such as process health store (PHS), meta-information of PHS (MIPHS), as shown in Figure 6.

PHS consists of sensor id, sensor value, final pathology report, region, location, ticket number. The

patient wears different sensors for the pathology test. These devices continuously record measurements

such as oxygen saturation, sugar level, body temperature, blood pressure, etc. Simultaneously they

monitor whether these measurements are in the normal range. They notify to the doctor as soon as it

observes any abnormal measurements. These data are maintained in the registry of the hospital. This

registry is called patient health store (PHS). MIPHS maintains this PHS. MIPHS is used for the purpose

of log file. If the PHS will be lost or crash, then MIPHS helps to get the information of PHS.

Algorithm 1: Searching Algorithm

 Input: Set of DI and SDI

 Output: Set of MDI

 1 function searching (DI, MDI)

2 if (DI== 𝚽)

3 Then Print “No device found” and Algorithm Terminates.

4 Else

5 for j=1 to m // j is the index for SDI.

6 for i=1 to n // i is the index for DI.

7 if (SDI[j] == DI[i])

8 Then Print the matched Device id.

9 Print the MDI [DI[i]].

10 Else

11 Continue the match operation up to i==n

12 End

13 End

14 Continue the match operation until j == m

15 End

16 End

17 End

Dynamic Meta-Information Management for IoT-based Applications Madhu Kumari et al.

37

7

The primary components of PHS are displayed in Figure 7. Sensor id consists of two types of id:

static and dynamic. The static id of the device is the unique identifier. The dynamic id can change

depending on the situation. Working status, sensor activation time, date, and location, sensor

deactivation time, date, and location are included in dynamic id. This dynamic id keeps track of a

sensor's history. Sensor value is the abstraction of sensor data. The first step in sensor data abstraction

is to collect sensor data; the second step is to simplify the collected data into meaningful information,

and the third step is to use this information for application services. There are two key data fields in this

data abstraction: static and dynamic metadata. The database describing the profile, device specification,

and device characteristics is maintained using static metadata. Dynamic metadata is used to keep track

of access information, entry names, types of sensed values, and actual sensor data values in the log file.

The date, time, name, result, standard data, and suggestion fields are all included in the final pathology

report of a patient. A ticket-generated date, time, and ticket validity period are included in the ticket

number's detail section. A detailed comparison of MIPS features is elaborated in the tabular form and

will be discussed next.

4 Logical Representation of MIPS index

The MIPS is logically represented in JSON format. Each PS element is stored in its own logical

JSON files. These files are linked to each other and will be used for efficient meta-information searching

from the logical representation. Figure 8 depicts the logical representation of device id using JSON due

to space constraints. JSON files are used to manage the device and its associated components. Similarly,

linked JSON can be used to represent other remaining components of PS. This representation allows

for the searching, testing, and validation of sensor-captured data via a web-based platform.

 Figure 6: Mapping the MIPS into CDSS in health care

 Figure 7: Detailed Analysis of PHS

Dynamic Meta-Information Management for IoT-based Applications Madhu Kumari et al.

38

8

5 Comparative Analysis of MIPS

Table. 1 compares and contrasts various existing meta-information approaches based on various

parameters. The existing model lacks some of these parameters. However, all of these characteristics

are present in the proposed model. A detailed explanation of these features is given below.

(a) Dynamicity: Due to the dynamic nature of IoT systems, it is difficult to forecast any new devices

and associated events in the system that will occur with certainty. MIPS is open to late binding with

any new devices introduced in the IoT-based system. The semantic of MIPS ensures that new devices

can communicate with the existing legacy devices with specific business goals and thus capable of

handling the dynamicity.

(b) Interoperability: Each device and port have their own configurations and specifications. The

device is connected with the port to satisfy the service consumer’s requirements. Thus, this model

handles interoperability in IoT-based applications.

(c) Flexibility: Each device has its own specification, flag, configuration, and data format. These

devices may be manufactured by different companies. So, the system is capable enough to handle

{

“$id”: http://one-part.com/schemas/device id,

"$schema":"http://jsonschema.org/draft04/schema#",

 "type": "object",

 "properties": {"Device Id": {"type": "object",

 "properties": {

 "Port No": {“$ref”: “/schemas/port_no”},

 "Device Type": {“$ref”: “/schemas/device_type”},

"Device Location Id": {"type": "object",

 "properties": {"Device Power": {"type": "object",

 "properties": {

 "Area Captured": {

 "type": "string"},

 "Sensing Capability": {

 "type": "string"},},

"required": ["Area Captured", "Sensing Capability]},

 "Device Activation Time": {

 "type": "string”},

 "Device Deactivation Time": {

 "type": "string”},

 "Device Activation-Location": {

 "type": "string"},

 “Device Deactivation Location”: {

 "type": "string"}

 },

"required": ["Device Power", “Device Activation Time”,

"Device Deactivation Time", “Device

Activation Location", "Device Deactivation Location"

] },

 "Device Status": {“ref”: “/schemas/device_status”},

"required": ["Port No", "Device Type","Device

Location Id", "Device Status"] } },

"required": ["Device Id"]

}

“defs”: {

"$schema":

"http://jsonschema.org/draft04/

schema#",

 “port_no”: {“$id”: “/

schemas/port_no”,

 type": "object",

 "properties": {

"No Of Devices Connected":

 {"type": "integer"}

 },

 "required":

["No Of Devices Connected"]

“device_type”: {

“$id”: “/schemas/device_type”,

 "type": "object",

 "properties": {

"Device Data CaptureFormat":

{"type": "string"},

 "Manufacturer": {"type": "string"},

 "Accuracy": {"type": "integer"}

 },

"required": [

"Device Data CaptureFormat",

 "Manufacturer", "Accuracy"]

“device_status”:

{“$id”: “/schemas/device_status”,

 "type": "object",

 "properties": {

"Working Status": {"type": "string"}

 },

 "required": ["Working Status"]

 }

 },

 Figure 8: A snapshot of JSON schema for Device Id

Dynamic Meta-Information Management for IoT-based Applications Madhu Kumari et al.

39

http://one-part.com/schemas/device%20id

9

heterogeneous devices to achieve consumer's goals. Here, the multiple devices are supported by a

single port. On the other hand, one device can be connected through any available ports

(d) Scalability: It indicates the system’s capability to handle load according to the service consumer

requirements. The MIPS is capable of holding any number of devices and services without affecting

the system structure [see in Figure 3].

(e) Fault-Tolerant: The log file is the final output of the MIPS are stored in a JSON-based

document. These documents can be used to handle fault-tolerant issues programmatically.

 Table 1: A Comparative study of different approaches for meta-information

 management of IoT

Approach (a) (b) (c) (d) (e)

Metadata and Z-Score based load Sh͓͓͓͓ eeding

Technique [15]
✕ ✕ ✕ ✕ ✕

Industrial Data Management System (IDMS) [7] ✓ ✕ ✓ ✓ ✕

Metadata driven approach [10] ✕ ✕ ✓ ✓ ✕

Live Data Model [11] ✕ ✕ ✕ ✕ ✕

Cross-Domain Metadata Environment [12] ✕ ✕ ✕ ✕ ✕

Meta-information management system for SAAS [6] ✕ ✕ ✕ ✕ ✕

MIPS (Proposed Approach) ✓ ✓ ✓ ✓ -

6. Conclusion

This paper proposed a dynamic meta-information mechanism for the IoT. This meta-information is

stored in MIPS and maintained by PS. The PS and MIPS are further extensions of PMS. The

representation of this meta-information is shown using a class diagram. This class diagram depicts

numerous relationships among MIPS elements. For the faster searching of meta-information, B+ tree

is used. This B+ tree uses device id to search the data associated with that device-id. A searching

method is described for effectively searching meta-information. This viewpoint is mapped with the

real-life scenario through CDSS as a case study. The proposed idea supports various features such as

interoperability, flexibility, dynamicity, scalability, and fault tolerance. The dynamic behavior of MIPS

is evaluated with the help of JSON schema. In JSON schema, each element of PS is illustrated as an

object, and the meta-information of each object is represented as property. This schema is used to

validate the type of data, i.e., used in JSON, and it aids in dealing with the issue of dynamicity. The

MIPS is compared with several other existing approaches by considering different dynamic features.
In the future, the MIPS semantics will be enriched by adding relevant features and constraints like

the primary key of the device id. These will enable the indexing of the meta-information for efficient

searching operation. The time complexity of the searching algorithm can be further improved by

considering a suitable indexing structure. Detailed experimental analysis of the MIPS performance will

be a prime focus of future work.

Legends: ✓: Fully Supported; ✕: Not Mentioned/Supported; -: Partially Supported

Dynamic Meta-Information Management for IoT-based Applications Madhu Kumari et al.

40

10

References
 [1] S. Mishra and A. Sarkar, "Things-Aware Business Process Model", Accepted in 3rd

International Conferences on Advances in Distributed Computing and Machine Learning

(ADCML), NIT Warangal, India, 2022.

[2] D. C. Nguyen et al., "6G Internet of Things: A Comprehensive Survey", in IEEE Internet

of Things Journal, 2021, pp.1-25, https://doi.org/10.1109/JIOT.2021.3103320.

 [3] A. I. A. Ahmed et al., "Service Management for IoT: Requirements, Taxonomy, Recent

Advances and Open Research Challenges", in IEEE Access, 7, 2019, pp. 155472-155488,

https://doi.org/10.1109/ACCESS.2019.2948027.

 [4] Y. Chen, M. Li, P. Chen, S. Xia, "Survey of cross-technology communication for IoT

heterogeneous devices", IET Communications, 13(12), 2019, pp. 1709-1720,

https://doi.org/10.1049/iet-com.2018.6069.

 [5] F. Martins., D. Domingos, D. Vitoriano, "Automatic decomposition of IoT aware business

processes with data and control flow distribution", in Proceedings of the 21st International

Conference on Enterprise Information Systems (ICEIS), Heraklion, Crete, Greece, vol. 2, 2019,

pp. 516–524, doi:https://doi.org/10.5220/0007766405160524.

[6] A. K. Mandal and A. Sarkar, "A Novel meta-Information Management System for SaaS",

International Journal of Cloud Applications and Computing, 9(3), 2019, pp. 1-21

doi:https://doi.org/10.4018/IJCAC.2019070101.

[7] M. Saqlain, M. Piao, Y. Shim, J. Y. Lee, "Framework of an IoT-based Industrial Data

Management for Smart manufacturing", Journal of Sensor and Actuator Networks, 8(2), 25,

2019, doi:https://doi.org/10.3390/jsan8020025.

[8] M. Abu-Elkheir, M. Hayajneh, and N. A. Ali, "Data Management for the Interhnet of

Things: Design Primitives and solution", Sensors, 13(11), 2013, pp. 15582-15612,

doi:https://doi.org/10.3390/s131115582.

[9] R. C. Huacarpuma, R. T. De S. Junior, M. T. De Holanda, R. De O. Albuquerque, L. J. G.

Villalba, T-H Kim, "Distributed Data Service for Data Management in Internet of Things

Middleware", Sensors, 17(5), 25, 2017, doi:https://doi.org/10.3390/s17050977.

[10] O. Latreche and D. Boukraa, "Self-Service, On-Demand Creation of OLAP Cubes over

Big Data: a Metadata-Driven Approach", IEEE International Conference on Big Data (Big

Data), 2020, pp. 2907-2914, doi:https://doi.org/10.1109/BigData50022.2020.9378026.

[11] T. Ito, H. Noguchi, M. Kataoka, T. Isoda, Y. Yamato and T. Murase, "Evaluation of a

Realistic Example of Information-Centric Network Metadata Management", IEEE 10th Annual

Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON),

2019, pp. 0888-0893, doi:https://doi.org/10.1109/UEMCON47517.2019.8992942.

[12] H. Choi, D. Kang, N. Kim and W. Rhee, "Cross-domain metadata environment for relative

information-based service", IEEE Conference on Wireless Sensors (ICWiSE), 2016, pp. 15-

20, doi:https://doi.org/10.1109/ICWISE.2016.8187755.

[13] A. Fellah, A. Bandi, "Microservice-based Architectures: An Evolutionary Software

Development Model", EPiC Series in Computing, 75, 2021, pp. 41-48.

[14] A. Fellah, A. Bandi, "On architectural decay prediction in real-time software systems",

EPiC Series in Computing, 64, 2019, pp. 98-108.

[15] M. J. Diván and M. L. Sánchez-Reynoso, "A Metadata and Z Score-based Load-Shedding

Technique in IoT-based", International Journal of Mathematical, Engineering and Management

Sciences, 6(1), 2021, pp. 363-382, doi:https://doi.org/10.33889/IJMEMS.2021.6.1.023.

Dynamic Meta-Information Management for IoT-based Applications Madhu Kumari et al.

41

https://doi.org/https:/doi.org/10.5220/0007766405160524
https://doi.org/https:/doi.org/10.4018/IJCAC.2019070101
https://doi.org/https:/doi.org/10.3390/jsan8020025
https://doi.org/https:/doi.org/10.3390/s131115582
https://doi.org/https:/doi.org/10.3390/s17050977
https://doi.org/https:/doi.org/10.1109/BigData50022.2020.9378026
https://doi.org/https:/doi.org/10.1109/UEMCON47517.2019.8992942
https://doi.org/https:/doi.org/10.1109/ICWISE.2016.8187755

