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Abstract

In this paper, we focus on the online diagnosis of Automated Production Systems
(APS) equipped with sensors and actuators emitting binary signals. These systems can be
considered as Discrete Event Systems (DES). The paper presents a Case-Based Reasoning
for the Online Diagnosis of All types of Faults in APS (CBR-ODAF). It is an improvement
of our approach presented previously in order to remedy its limitations. Firstly, it proposes
a new case representation format that describes all the faults to diagnose, adapts to the
dynamic aspect of APS, is quite expressive and is easy to understand by human operators.
Secondly, it allows to classify in real time each new observation as a ’normal case’, ’faulty
case’ or ’unidentified case’ based on a new dissimilarity index which is not intrinsic to the
numerical type. It is an index that adapts to our proposed case representation format and
describes the degree of difference between cases represented by data of different types (i.e.
quantitative and qualitative).

1 Introduction

In recent decades, Automated Production Systems (APS) have evolved significantly. These
systems have increased production, improved product quality, reduced labor costs and saved
energy and raw material. In return, they have become increasingly complex and are quite
often subject to faults. So in order to ensure their availability, guarantee their efficiency and
ensure their safety, the scientific communities of automation engineers and computer scientists
are coalescing to implement diagnosis approaches to detect, locate and identify potential faults
in real time. In this context this paper focuses on the online diagnosis of APS. Our working
hypotheses are as follows:

• Hypothesis 1: It should be noted that the diagnosis role depends on the dynamics of
the APS functioning. It can be classified in three families: Continuous Systems, Discrete
Event Systems (DES) [4] and Hybrid Systems. In this study, we are interested in the APS
diagnosis with sensors and actuators delivering binary signals that fall within the DES
scope.
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• Hypothesis 2: Most of these systems are controlled by a programmable electronic device
called Programmable Logic Controllers (PLC). After an initialization step, a PLC executes
a cycle (T) comprising three successive operations: reading the inputs (E), executing the
program (Pg) and updating the outputs (S). The PLC cycle can be run cyclically or
periodically. In the first case, the PLC executes a new cycle as soon as the previous cycle
is completed. Thus each cycle can have a different execution time. In the second case,
the PLC executes a new cycle after receiving a synchronization by a clock (after some
constant time). If another operation is running then it is canceled. Subsequently, our
work revolves around APS controlled by PLC whose execution algorithm is periodic.

• Hypothesis 3: A fault is a malfunction in a system. The faults present in an APS can be
classified according to several criteria such as the speed of appearance (sudden or gradual),
the time of appearance (during the APS operation or when it stops), the importance
degree (partial or complete), consequences (personal injury or property damage) and
origin (internal factors or external factors). In our work, we will diagnose internal faults
due to a sensor or actuator malfunction. They can be observable faults, such as the
unexpected change from 0 to 1 or from 1 to 0 in a sensor or in an actuator. They can be
also unobservable faults such as the stuck off a sensor or an actuator to 0 or to 1.

• Hypothesis 4: A digital twin is a virtual representation of a physical product, process,
or service. It reflects the physical system state. It can be used when the physical system
is offline or online. The capabilities, the functions, and the features of the digital twin
will be defined by the physical system and represented by the twin. The digital twin must
be accurate while representing physical, communication and operational aspects of the
physical system. If the physical system can do something, the twin must do the same
thing in the same way. The digital model is constantly updated. It changes its settings
to better match the current operating mode of the physical system. In this paper, we are
not interested in the design of a digital twin but we assume that we have one for the raw
data acquisition.

Based on these assumptions, we propose an improvement and an extension of the previously
proposed approach [2] in order to meet our main objective which is the online diagnosis of all
internal faults in APS. This new approach presents two contributions: (a) a case representation
format inspired by Causal Temporal Signatures (CTS) formalism which allows to describe all
internal faults. In addition, this format adapts to the dynamic aspect of APS and (b) a new
dissimilarity index which is not intrinsic to the numerical type. It is an index that adapts to
our proposed case representation format and describes the degree of difference between cases
represented by data of different types (quantitative and qualitative). The paper is organized
as follows: section 2 presents the general concepts. Section 3 introduces our proposed method.
Section 4 exposes our implementation details. In section 5, we present the results of applying
our approach to a benchmark system and compare its performance to the old approach. A
conclusion and overview of future work are presented in the last section.

2 General concepts

2.1 Case-Based Reasoning

Case-based reasoning (CBR) is a paradigm of artificial intelligence and cognitive science that
models the reasoning process as primarily memory based. It use the specific knowledge of past
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experiences, formalized in the form of concrete problem situations called cases. A new problem
is solved by looking for a more similar past case and using it for the resolution of the new
problematic situation. In 1994, Aamodt and Plaza defined a well received four step view on
the process of case-based reasoning [1]. The four steps are: (a) Retrieve the most similar or
the similar case(s) from the case base; (b) Reuse the solution of the most relevant case; (c)
Revise and adapt the proposed solution to become compatible with the current problem and
(d) Retain the confirmed solution in the case base for future use.

2.2 Causal Temporal Signatures

A Causal Temporal Signatures (CTS) is a subset of observable events partially ordered that
characterizes a normal or a faulty behavior of a system. Events are linked by time constraints
on their occurrence. A CTS is a rule that can be formally defined as follows: X → Y where X
consists of two/several triplets and Y is a state of the system following this signature (normal
or faulty behavior). Let (E, F, ct) be a triplet. ’E’ and ’F’ are two events with ’E’ is the
reference event and ’F’ is the constrained event. ’ct’ is a time constraint that can model a date,
a period or a duration. If there are no time constraints between ’E’ and ’F’, ’ct’ becomes ’nct’
that means no time constraint, ’*’ is an operator which separates each triplet. It is used as an
’and’ to connect triplets.

2.3 Why using CBR and CTS ?

We chose to use CBR for the following reasons: (i) it is a method that does not require a
large amount of data to work properly. Indeed, an APS always executes the same work cycle
for which it was programmed. This is why the amount of raw data describing its operation is
limited. CBR can work with this amount of data unlike other machine learning methods that
require a large amount of data to work properly and (ii) it allows a better understanding of the
problem. Unlike ’black box’ type algorithms such as deep learning, the CBR allows us to access
to the reasoning. Its results can easily be justified by presenting similar cases as examples.

We chose to use CTS for the following reasons: (a) it is a formalism that is expressive enough
since it is able to formally describe all the desired behaviors of the system to be diagnosed.
This is done thanks to the temporal constraints and conjunction operators [8]; (b) CTS is
understandable and readable by human supervisory operators to facilitate rules inspection,
correlations discovery and relationships between them and (c) it has high efficiency in knowledge
view of the symptoms of faults diagnosis. However, among the difficulties to overcome for the
diagnosis using this formalism, we find the acquisition and the updating of a representative and
rich knowledge base (that is to say a database of CTS) [8]. Indeed, a poor and unrepresentative
base can lead to mediocre diagnosis system [3]. This database must contain sufficient knowledge
of the system malfunction. Following this study, we concluded that the CTS represent a real
trail that we can draw on to represent our cases.

3 Proposed Solution

Our online diagnosis approach (CBR-ODAF) is illustrated in figure 1. Its implementation
requires an approach involving two phases: (a) Phase 1: the initial case base construction
phase that transforms the various sensors and actuators signals of the virtual APS to empirical
knowledge and (b) Phase 2: the online reasoning and learning phase that diagnoses online
possible faults and updates the case base following the appearance of new unknown behaviours.
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Figure 1: CBR-ODAF architecture.

3.1 The initial case base construction (learning base)

This phase combines a simulation module with a data formatting module to build the initial
case base.

3.1.1 Simulation module

The simulation module provides different data describing the normal and faulty behaviors of
the virtual APS. These data represent the signals of its sensors and actuators. We have chosen
to use a digital twin instead of a real APS because it is possible to inject faults on sensors and
actuators without any material damage. The principle of this module is as follows: [Step 1]:
Simulate the virtual system in several normal operating scenarios; [Step 2]: For each possible
scenario, collect data from sensors and actuators and transform them into empirical knowledge
using the data formatting module. This module will be detailed in the subsection (3.1.2) and
[Step 3]: For the P faults to be diagnosed in APS, simulate the virtual system by injecting
each time a Fi fault and repeat step 2.

3.1.2 Data formatting module

In this module, the data obtained from the virtual system are processed to extract relevant
information that is then modelled as cases. These cases describe normal and faulty behaviours
of the system. To achieve such an objective, it is necessary to choose a case presentation format
that is able to represent all the system faults. For this purpose, we propose in the following
a case representation format to overcome the limitations of the case representation previously
introduced [2].

A. Former case representation

A case is a vector formed by two parts: problem representation part and solution representation
part . The problem representation represents the measurements of sensors and actuators (called
descriptors) obtained during the current PLC cycle (noted T ) and previous PLC cycles (T-1,
T-2, T-3, ...., T-z ) with z is the number of previous cycles whose inputs/outputs change. The
solution part allows to qualify the type of case: normal or faulty. We have noticed that this
representation has some limitations that are subject to extensions and improvements. These
limits are as follows: (a) Incomplete representation: this format only describes observable
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faults such as the unexpected change of a sensor or actuator from 1 to 0 or 0 to 1, but it cannot
describe unobservable faults such as the stuck off a sensor or an actuator to 0 or to 1. (b)
combinatorial explosion of descriptors (i.e. sensor and actuator measurements): this format
can cause a combinatorial explosion of descriptors if the number of the system components is
very large and (c) readability: this format is difficult for system users to understand (i.e. the
binary format is not understandable for humans). To overcome these difficulties and improve
the results, we present a new case representation.

B. New case representation

We are inspired by the CTS formalism to represent our cases in CBR-ODAF. We propose to
adopt an object-based representation format. The latter can be seen as a format easily modelling
a CTS. A case is then represented by an object described by an identifier (ID), a problem (P)
and a solution (S). The problem P is represented by sets of Triplets. Each triplet is described
by two observable events that are partially ordered and respect a temporal constraint. The first
event is called Referent Event (RE), the second event is a Constrained Event (CE) and the
noted Temporal Constraint (TC) is a period described by a Lower Bound (LB) and a Upper
Bound (UB). Solution S represents the behavior nature of the system to be diagnosed. This
behavior may be ’normal ’, ’faulty ’ or ’unidentified ’. The unidentified state is a new state that
is not mentioned in the former representation. It reduces the number of misclassified cases. In
fact, storing a case as ’unidentified’ is better than storing it incorrectly.

According to this case representation, the problem part of a new case is a set of triplets. Each
triplet is represented by (RE, CE, TC). In the following paragraph, we present an algorithm
that transforms the sensor and actuator signals calculated during each PLC cycle to a ’Triplet’
and builds the problem part of the new case from this triplet and the triplets associated with
previous PLC cycles.

C. Generation of problems part

The proposed algorithm has as inputs the signals from APS sensors and actuators and the PLC
cycle time. It has as output the problem part of a new case. It consists of six steps which
are detailed by the following pseudo code. The notations used are the following: Binarysigna-
ture: groups the signals of sensors and actuators during a PLC cycle, T : Current PLC cycle,
T-1 : Previous PLC cycle, CE : Constrained Event, RE : Referent Event, TC : Temporal Con-
straint,LB : Lower Bound of the TC, BS : Upper Bound of the TC, CurrentCycleTime: time
measurement associated with cycle T and PreviousCycleTime: time measurement associated
with cycle T-1.

– Step 0: Group the signals from APS sensors and actuators during the T cycle to build a
Binarysignature. If this Binarysignature is different from the Binarysignature of the T-1
cycle then go to the step 1.

– Step 1: Formulation of the Referent Event (RE ): If it is the first cycle executed then the
RE is an ’IN ’ event (i.e. it is an unconstrained event) otherwise the CE of the T-1 cycle
becomes the RE of the T cycle.

– Step 2: Formulation of the Constrained Event (CE ): Each element of the binary signature
is transformed to an event that can be either the Rising edge (designated by the prefix
’R’) or the Falling edge (designated by the prefix ’F’) of a sensor or actuator. This event
is defined as a CE.
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– Step 3: Formulation of the Temporal Constraint TC. If RE is equal to ’IN ’ then there
is no temporal constraint (i. e. LB=0 and UB=0). If RE is different from ’IN ’
then the TC is calculated after an estimation of the random measurement errors due
to hardware, physical parameters or operator. This leads to first expressing the esti-
mated time: Estimatedtime = CurrentCycleT ime − PreviousCycleT ime thereafter:
LB = Estimatedtime−∆t and UB = Estimatedtime + ∆t with ∆t represents the un-
certainty on the value of time, its value is > 0 and it is set in advance by an expert in the
field.

– Step 4: Group the three previous results to formulate a new triplet.

– Step 5: Add the new triplet to the previous triplets to build the problem part of a new
case.

D. Cases labeling

The operation of the APS in normal or faulty mode allows to automatically label each case
without the need of an expert accompanying the process of data formatting. The normal
operations are represented by a set of normal cases while the faulty operations are defined by
a set of faulty cases. Both types of cases are stored in the initial case base.

3.2 The online reasoning and learning

This phase allows on the one hand the online recognition of this new problem and on the other
hand the updating of the case base. To achieve these objectives, it consists of searching for the
most similar source case, reusing the solution of the selected source case and saving the new
solved case in the database.

3.2.1 Retrieve the most similar source case

As our case representation is made up of qualitative and quantitative data, we have proposed a
Case Similarity Index Measure (CSIM). It calculates the degree of similarity between the new
unsolved case and the source cases of the initial case base. This index allows us to avoid the
dummy coding step 1 for qualitative data.

CSIM for the Casei and Casej consists in calculating the dissimilarity index for its Pi and
Pj problems, which is noted PDIS index. The CSIM index is defined as follows:

CSIM(Casei,Casej) = 1− PDIS(Pi,Pj) (1)

where Pi={Tr1,i,Tr2,i, Tr3,i,..., Trmt,i}, Pj={Tr1,j,Tr2,j, Tr3,j,..., Trmt,j} and mt is the
triplet number. The PDIS index computes the dissimilarity index between the different triplets
of the two problems. It is defined as follows:

PDIS(Pi,Pj) =

∑mt
k=1 DT (Trk,i,Trk,j)

3mt
(2)

where TrK,i=(REK,i, CEK,i, TCK,i) is the k -th triplet of the i -th case, TrK,j=(REK,j,
CEK,j, TCK,j) is the k -th triplet of the j -th case and DT is the dissimilarity index between
the two triplets TrK,i and TrK,j. It amounts to calculate two indices of dissimilarity: one for

1Dummy coding provides one way of using categorical predictor variables in various kinds of estimation
models.
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the events (equation 4) and the other for the temporal constraints (equation 5). In fact, events
are nominal qualitative data and temporal constraints are quantitative data of interval type.
That’s why DT is computed as follows:

DT (Trk,i,Trk,j) = DEV (REk,i,REk,j)

+DEV (CEk,i,CEk,j)

+
IPOS(TCk,i,TCk,j)

Datemax
(3)

where Datemax corresponds to the maximum date of all time intervals constituting the case
base. The dissimilarity index DEV between two events is computed as follows:

DEV (Ek,i,Ek,j) =

{
0 if Ek,i and Ek,j are equal
1 otherwise.

(4)

The positioning index IPOS between two temporal constraints is defined as follows:

IPOS([x, y] , [a, b]) =

{
0 if x ∈ [a, b] ∩ [x, y]

MinPos([x, y], [a, b]) otherwise.
(5)

where:

MinPos([x, y], [a, b]) = min(Pos(x, [a, b]), Pos(y, [a, b])) (6)

[x,y] is the temporal constraint of the triplet Trk,i, [a,b] is the temporal constraint of the triplet
Trk,j and Pos is the positioning index between a point x and an interval [a, b] .

Pos(x, [a, b]) =

{
0 if x ∈ [a, b]

Min(|x− a|, |x− b|) otherwise.
(7)

3.2.2 Adaptation

The new case inherits the solution of the source case that has the maximum similarity and is
greater than the ’decision threshold ’. Otherwise, if the similarity between the selected source
case and the new case is less than or equal to the ’decision threshold, then the new case is
classified as an ’Unidentified case’. The decision threshold must be set in advance by the
system designer.

3.2.3 Retain

The new solved case is retained in the case base and is used immediately to solve future
recognition problems.

4 Implementation details

4.1 Benchmark

To illustrate the performance of the proposed methodology, we used a benchmark [5] which is
the sorting system. In Phase 1, we used a digital twin of the sorting system to build the initial
case base, however, in phase 2 we operated a physical one for online diagnosis. The sorting
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system is made up of eleven sensors and seven actuators. Each sensor and actuator have four
types of faults: (a) The stuck off a sensor or an actuator to 0; (b) the stuck off a sensor or an
actuator to 1; (c) the unexpected movement of a sensor or an actuator from 0 to 1 and (d) the
unexpected movement of a sensor or an actuator from 1 to 0. Although the size of the system is
not so large (18 I/O), it has 72 faults to be diagnosed, which is a relatively high number. For
this reason, we restricted our study to only one sub-system. We chose the turntable, containing
two sensors C4, C5 and one actuator S4, since it was used as a benchmark sub-system in other
diagnosis approaches [7, 5]. C4 is the detector of the turntable loading position; C5 is the
detector of the turntable unloading position and S4 is the turntable order.

In order to simulate different normal and faulty operating scenarios, we used the analysis of
a human expert ([6]). The labels and descriptions of these faults are as follows: F1 : C4 stuck
off at 0; F2 : C4 stuck off at 1; F3 : C5 stuck off at 0; F4 C5 stuck off at 1; F5 S4 stuck off at 0;
F6 : S4 stuck off at 1; F7 : Unexpected movement of C4 from 0 to 1; F8 : Unexpected movement
of C4 from 1 to 0; F9 : Unexpected movement of C5 from 0 to 1; F10 : Unexpected movement of
C5 from 1 to 0; F11 : Unexpected movement of S4 from 0 to 1 and F12 : Unexpected movement
of S4 from 1 to 0.

4.2 Initial case base

We assume that our initial case base is composed by 2 normal cases and 12 faulty. Faulty cases
are labeled by the various faults presented previously.

5 Preliminary evaluation

The initial case base used for the evaluation contains 348 cases distributed over the different
classes as follows: (a) 176 cases, labeled ’N ’, describe the turntable normal operations and (b)
172 cases, showing the different faults injected on the turntable, are distributed as follows: 11
cases of fault F2 ’, 23 cases of fault ’F3 ’, 30 cases of fault ’F4 ’, 16 cases of fault ’F6 ’, 27 cases
of fault ’F7 ’, 18 cases of fault ’F8 ’, 13 cases of fault ’F9 ’, 11 cases of fault ’F10 ’, 15 cases of
fault ’F11 ’ and 4 cases of fault ’F12 ’.

Faults labeled ’F1’ and ’F5’ are not present in the experimental case base. In fact, at each
simulation of these faults, the constructed cases remained the same and their values did not
change.

5.1 Accuracy metrics

The proposed diagnosis system is considered as a multi-class classifier which tries to tidy up
correctly every new case in one of the previously predefined classes. In such classications, there
are common metrics that are being used in the literature to evaluate the classiers performance
which can be computed from a confusion matrix (CM). This rows matrix shows the actual values
of the target attribute for all instances of the test set (i.e. the target attribute is the case class).
Its columns shows the predicted values. It can be represented through four types of responses:
(i) TPi (True Positive of the class Ci): Measures the number of correctly recognized cases
for the class Ci; (ii) TNi (True Negative of the class Ci): Measures the number of correctly
recognized cases that do not belong to the class Ci; (iii) FPi (False Positive of the class Ci):
Measures the amount of cases that are incorrectly assigned to the class Ci and (iv) FNi (False
Negative of the class Ci): Measures the number of cases that are not recognized as belonging
to the class Ci.
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Although the confusion matrix gives us a lot of information about the quality of the clas-
sication system, we can calculate other more concise metrics like the average accuracy (AC).
It presents the proportion of the correct predictions made by the classifier. It measures the
average per-class effectiveness. AC is computed using equation (8).

AC =

∑l
i=1

TPi+TNi

TPi+FNi+FPi+TNi

l
(8)

To measure the performance of our approach and compare it with the old approach, we used
a stratified cross-validation of 10 folds. This method ensures that each fold contains the same
portions of instances of each class. The tests were performed on a 4-core processor with 32 GO
RAM. They were repeated 10 000 times to measure the average accuracy.

5.2 Results

After applying the two approaches to the same experimental case base, it was obvious that the
proposed approach performed the best prediction with an accuracy about 0.994 ± 0.002 while
the old approach having an accuracy about 0.75 ± 0.003. Figure 2 presents the multi-class
confusion matrix obtained from a random execution of the approach proposed above. Figure
3 shows the CM of the CBR-ODAF approach. The number of cases in the diagonal gives an
image of the right one classication:

• For the old approach: 261 cases are correctly classified, 176 cases are classified as normal
cases (see green box) and 85 cases are classified as faulty cases (see red boxes). No false
alarms have been generated (see the orange boxes) but 87 faulty cases are incorrectly
classified (see the blue and the white boxes). They are classified as normal behaviours.
These cases represent instances of faults F2, F3, F4, F6 and F8. Indeed, the approach
fails to recognize the faults of sensor or actuator blocking types at 0 or 1.

• For the CBR-ODAF: 345 cases are correctly classified, 176 cases are classified as normal
cases and 169 cases are classified as faulty cases. No false alarms were generated (see the
orange boxes in the matrix) and no faults were classified as normal behaviour (see the blue
boxes). In overall, our proposed approach misses three cases [2F8+1F4 ]. The F4 fault is
classified as an unidentified case and two instances of the F8 fault were misclassified.

The obtained results show that the CBR-ODAF can provide good prediction with the least
error for the diagnosis of turntable sub-system. It makes it possible to recognize blocking
faults at 0 and 1 and also to reduce the number of misclassified cases by classifying them as
unidentified cases.

6 Conclusions and discussion

Within our CBR-ODAF, we offered an online diagnosis of APS based on a case representation
format inspired by CTS formalism which allows to describe all types of faults to be diagnosed.
We present a new dissimilarity index which describes the degree of difference between cases
represented by data of different types. A revision step is therefore necessary to control the
increase in the case base while retaining only the cases of good performance. In recent years
the amount of data stored in case base is growing rapidly. In the future we propose for our
research to further investigate the practical advantages that can be gain through big data
approach.
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N F2 F3 F4 F6 F7 F8 F9 F10 F11 F12

N 176 0 0 0 0 0 0 0 0 0 0

F2 11 0 0 0 0 0 0 0 0 0 0

F3 28 0 0 0 0 0 0 0 0 0 0

F4 30 0 0 0 0 0 0 0 0 0 0

F6 16 0 0 0 0 0 0 0 0 0 0

F7 0 0 0 0 0 26 0 0 0 0 0

F8 1 0 0 0 0 1 16 0 0 0 0

F9 0 0 0 0 0 0 0 13 0 0 0

F10 0 0 0 0 0 0 0 0 11 0 0

F11 0 0 0 0 0 0 0 0 0 15 0

F12 0 0 0 0 0 0 0 0 0 0 4

Figure 2: The multi-class confusion matrix
of the former proposal.

N F2 F3 F4 F6 F7 F8 F9 F10 F11 F12

N 176 0 0 0 0 0 0 0 0 0 0

F2 0 11 0 0 0 0 0 0 0 0 0

F3 0 0 28 0 0 0 0 0 0 0 0

F4 0 0 0 29 0 0 0 0 0 0 0

F6 0 0 0 0 16 0 0 0 0 0 0

F7 0 0 0 0 0 26 0 0 0 0 0

F8 1 0 0 0 0 1 16 0 0 0 0

F9 0 0 0 0 0 0 0 13 0 0 0

F10 0 0 0 0 0 0 0 0 11 0 0

F11 0 0 0 0 0 0 0 0 0 15 0

F12 0 0 0 0 0 0 0 0 0 0 4

Figure 3: The multi-class confusion matrix
of the CBR-ODAF.
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